Assignment 1

MAST30026 Metric and Hilbert Spaces Semester II 2016 Lecturer: Arun Ram to be turned in before 10am on 8 September 2016

(1) (Definition of the nonnegative real numbers)

- (a) Carefully define the nonnegative real numbers $\mathbb{R}_{\geq 0}$.
- (b) Carefully define the usual addition and multiplication on $\mathbb{R}_{\geq 0}$.
- (c) Carefully define the usual order on $\mathbb{R}_{\geq 0}$.
- (d) Carefully define the usual topology $\mathbb{R}_{\geq 0}$.

Be careful that your definitions are not circular (i.e. be careful that your definitions are not somehow already using the real numbers to define the real numbers).

- (2) (Properties of the order on $\mathbb{R}_{\geq 0}$)
 - (a) Prove that if $a, b, c \in \mathbb{R}_{\geq 0}$ and $a \leq b$ then $a + c \leq b + c$.
 - (b) Prove that if $x, y \in \mathbb{R}_{\geq 0}$ then there exists $n \in \mathbb{Z}_{>0}$ such that y < nx.
 - (c) Prove that if $a, b \in \mathbb{R}_{\geq 0}$ and a < b then there exists $c \in \mathbb{Q}_{\geq 0}$ (a rational number) such that a < c < b.
 - (d) Prove that if $a, b \in \mathbb{R}_{\geq 0}$ and a < b then there exists $c \in (\mathbb{R}_{\geq 0} \mathbb{Q}_{\geq 0})$ (an irrational number) such that a < c < b.
- (3) (Least upper bounds and increasing sequences in $\mathbb{R}_{\geq 0}$)
 - (a) Prove that if $A \subseteq \mathbb{R}_{\geq 0}$ and $A \neq \emptyset$ and A is bounded then $\sup(A)$ exists.
 - (b) Give an example (with proof) of an increasing sequence $(a_1, a_2, ...)$ in $\mathbb{R}_{\geq 0}$ which does not converge.
 - (c) Give an example (with proof) of a bounded sequence $(a_1, a_2, ...)$ in $\mathbb{R}_{\geq 0}$ which does not converge.
 - (d) Prove that if $(a_1, a_2, ...)$ is an increasing and bounded sequence in $\mathbb{R}_{\geq 0}$ then $(a_1, a_2, a_3, ...)$ converges.
 - (e) Give an example (with proof) of an increasing and bounded sequence $(a_1, a_2, ...)$ in $\mathbb{Q}_{\geq 0}$ which does not converge.

- (4) (Properties of the topology on $\mathbb{R}_{\geq 0}$)
 - (a) Let $a, b \in \mathbb{R}_{\geq 0}$ with a < b. Prove that (a, b) is open in $\mathbb{R}_{\geq 0}$.
 - (b) Let $a, b \in \mathbb{R}_{\geq 0}$ with a < b. Prove that [a, b] is closed in $\mathbb{R}_{\geq 0}$.
 - (c) Define compact and prove that $\mathbb{R}_{\geq 0}$ is not compact.
 - (d) Define locally compact and prove that $\mathbb{R}_{\geq 0}$ is locally compact.
- (5) (Properties of the uniform structure on $\mathbb{R}_{\geq 0}$)
 - (a) Carefully define the usual uniformity on $\mathbb{R}_{\geq 0}$.
 - (b) Define complete and prove that $\mathbb{R}_{\geq 0}$ is complete.
- (6) (Connected and compact subsets of $\mathbb{R}_{\geq 0}$) Let $A \subseteq \mathbb{R}_{\geq 0}$.
 - (a) Prove that A is connected if and only if A is an interval.
 - (b) Prove that A is compact if and only if A is closed and bounded.
- (7) (Functions on $\mathbb{R}_{\geq 0}$)
 - (a) Carefully define continuous and uniformly continuous functions.
 - (a) Let $n \in \mathbb{Z}_{>0}$. Prove that the function $x^n \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is continuous.
 - (b) Let $n \in \mathbb{Z}_{>1}$. Prove that the function $x^n \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is not uniformly continuous.
 - (b) Let $n \in \{0, 1\}$. Prove that the function $x^n \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is uniformly continuous.
 - (c) Prove that the function $e^x \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is continuous.