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(1) (positive definite inner product spaces are normed vector spaces) Let (V, 〈, 〉) be a
positive definite inner product space. The length norm on V is the function

V → R>0

v 7→ ‖v‖ given by ‖v‖2 = 〈v, v〉.

Show that (V, ‖ ‖) is a normed vector space.

(2) (normed vector spaces are metric spaces) Let (V, ‖ ‖) be a normed vector space.
The norm metric on V is the function

d : V × V → R>0 given by d(x, y) = ‖x− y‖.

Show that (V, d) is a metric space.

(3) (uniformity of a pseudometric) [Bou, Top. Ch. IX §1 no. 2] Let X be a set. A
pseudometric on X is a function f : X ×X → R>0 ∪ {∞} such that

(a) If x ∈ X then d(x, x) = 0,

(b) If x, y ∈ X then d(x, y) = d(y, x),

(c) If x, y, z ∈ X then d(x, y) 6 d(x, z) + d(z, y).

Show that the sets

Bε = {(x, y) ∈ X ×X | d(x, y) 6 ε}, for ε ∈ R>0,

generate a uniformity Xd on X.

(4) (The uniform space topology is a topology) Let (X,X ) be a uniform space. Let

BV (x) = {y ∈ X | (x, y) ∈ V } for V ∈ X and x ∈ X, and let

N (x) = {BV (x) | V ∈ X} for x ∈ X.

Show that T = {U ⊆ X | if x ∈ U then U ∈ N (x)} is a topology on X.
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(5) (The metric space topology is a topology) Let (X, d) be a metric space. Let

Bε(x) = {y ∈ X | d(y, x) < ε} for ε ∈ R>0 and x ∈ X.

Let B = {Bε(x) | ε ∈ R>0, x ∈ X}.

(a) Show that T = {unions of sets in B} is a topology on X.

(b) Show that if U is a topology on X and U ⊇ B then U = T .

(6) (consistency of metric space topology, uniform space topology and metric space
uniformity) Let (X, d) be a metric space and let X be the metric space uniformity
on X. Show that the uniform space topology of (X,X ) is the same as the metric
space topology on (X, d).

(7) Give an example of a topological space that is not a uniform space.

(8) Give an example of a uniform space that is not a metric space.

(9) Give an example of a metric space that is not a normed vector space.

(10) Give an example of a normed vector space that is not a positive definite inner
product space.

(11) (Lipschitz equivalence implies topological equivalence) Let X be a set and let

d1 : X ×X → R>0 and d2 : X ×X → R>0 be metrics on X.

The metrics d1 and d2 are topologically equivalent if

the metric space topology on (X, d1) and on (X, d2) are the same.

The metrics d1 and d2 are Lipschitz equivalent if there exist c1, c2 ∈ R>0 such that

if x, y ∈ X then c1d2(x, y) 6 d1(x, y) 6 c2d1(x, y).

Show that if d1 and d2 are Lipschitz equivalent then d1 and d2 are topologically
equivalent.

(12) (every metric space is topologically equivalent to a bounded metric space) A metric
space (X, d) is bounded if it satisfies

there exists M ∈ R>0 such that if x1, x2 ∈ X then d(x1, x2) < M .

Let (X, d) be a metric space and define b : X ×X → R>0 by

b(x, y) =
d(x, y)

1 + d(x, y)
.
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(a) Show that b : X ×X → R>0 is a metric on X.

(b) Show that the metric space topology of (X, b) and the metric space topology
on (X, d) are the same.

(c) Show that (X, b) is a bounded metric space.

(13) (boundedness is not a topological property) A metric space (X, d) is bounded if it
satisfies

there exists M ∈ R>0 such that if x1, x2 ∈ X then d(x1, x2) < M .

Let X = R and let d : X × X → R>0 and b : X × X → R>0 be the metrics on R
given by

d(x, y) = |x− y| and b(x, y) =
|x− y|

1 + |x− y|
.

Show that (R, d) and (R, b) have the same topology, that (R, d) is unbounded, and
(R, b) is bounded.

(14) (composition of continuous functions is continuous) Continuous functions are for
comparing topological spaces. Let (X, T ) and (Y,U) be topological spaces. A
continuous function from X to Y is a function f : X → Y such that

if V is an open set of Y then f−1(V ) is an open set of X,

Let f : X → Y and g : Y → Z be continuous functions. Show that g◦f is continuous.

(15) (composition of uniformly continuous functions is uniformly continuous) Uniformly
continuous functions are for comparing uniform spaces. Let (X,X ) and (Y,Y)
be uniform spaces. A uniformly continuous function from X to Y is a function
f : X → Y such that

if W ∈ Y then there exists V ∈ X such that if (x, y) ∈ V then (f(x), f(y)) ∈ W .

Let f : X → Y and g : Y → Z be uniformly continuous functions. Show that g ◦ f
is uniformly continuous.

(16) (continuous is the same as continuous at each point) Let X and Y be topological
spaces and let a ∈ X. A function f : X → Y is continuous at a if f satisfies the
condition

if V is a neighborhood of f(a) in Y then f−1(V ) is a neighborhood of a in X.

Let X and Y be topological spaces and let f : X → Y be a function. Show that f
is continuous if and only if

f satisfies: if a ∈ X then f is continuous at a.
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(17) (continuous images of connected sets are connected and continuous images of com-
pact sets are compact) Let (X, T ) be a topological space and let E ⊆ X. The set
E is connected if there do not exist open sets A and B in X (A,B ∈ T ) with

A ∩ E 6= ∅ and B ∩ E 6= ∅ and A ∪B ⊇ E and (A ∩B) ∩ E = ∅.

The set E is compact if E satisfies

if S ⊆ T and E ⊆

(⋃
U∈S

U

)
then there exists

` ∈ Z>0 and U1, U2, . . . , U` ∈ S such that E ⊆ U1 ∪ U2 ∪ · · · ∪ U`.

Let f : X → Y be a continuous function and let E ⊆ X. Show that

(a) If E is connected then f(E) is connected,

(b) If E is compact then f(E) is compact.
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