Metric and Hilbert Spaces

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updated: 4 November 2014

Lecture 15: Completion of a metric space

(Xˆ,dˆ) with φ:XXˆ is a completion of (X,d).

Proof.

To show:
(a) (Xˆ,dˆ) is a metric space.
(b) (Xˆ,dˆ) is complete.
(c) φ:XXˆ is an isometry.
(d) φ(X)=Xˆ.
(a)
To show: (Xˆ,dˆ) is a metric space.
To show:
(aa) dˆ:Xˆ×Xˆ0 given by dˆ(x,y)=limnd(xn,yn), is a function.
(ab) If x,yXˆ then dˆ(x,y)=dˆ(y,x).
(ac) If xXˆ then dˆ(x,x)=0.
(ad) If x,yXˆ and dˆ(x,y)=0 then x=y.
(ae) If x,y,zXˆ then dˆ(x,y)dˆ(x,z)+dˆ(z,y).
(ab) To show: If x,yXˆ then dˆ(x,y)=dˆ(y,x).
Assume x,yXˆ with x=(x1,x2,) and y=(y1,y2,).
Since d(xn,yn)=d(yn,xn), dˆ(x,y)= limnd(xn,yn)= limnd(yn,xn)= dˆ(y,x).
(ac) To show: If xXˆ then dˆ(x,x)=0.
Assume xXˆ.
To show: dˆ(x,x)=0.
Since d(xn,xn)=0, dˆ(x,x)= limnd(xn,xn)= limn0=0.
(ad) To show: If x,yXˆ and dˆ(x,y)=0 then x=y.
Assume x,yXˆ and dˆ(x,y)=0.
To show: x=y.
This is a consequence of the definition of Xˆ which requires that x=y if dˆ(x,y)=0.
(ae) If x,y,zXˆ then dˆ(x,y)dˆ(x,z)+dˆ(z,y).
Assume x,y,zXˆ.
To show: dˆ(x,y)dˆ(x,z)+dˆ(x,y). dˆ(x,y) = limnd(xn,yn) limn ( d(xn,zn)+ d(zn,yn) ) = limn d(xn,zn)+ limn d(zn,yn) = dˆ(x,z)+ dˆ(z,y), where the next to last equality follows from the continuity of addition in 0.
(d) To show: φ(X)=Xˆ.
To show: If zXˆ then there exists a sequence x1,x2, in φ(X) such that limnxn=z.
Let z=(z1,z2,)Xˆ.
To show: There exists x1,x2, in φ(X) with limnxn=z.
Let x1 = (z1,z1,z1,z1,) =φ(z1), x2 = (z2,z2,z2,z2,) =φ(z2), x3 = (z3,z3,z3,z3,) =φ(z3), Then x1,x2, is the sequence φ(z1),φ(z2), in φ(X).
To show: limnxn=z.
To show: limndˆ(xn,z)=0.
To show: If ε>0 then there exists N>0 such that if n>0 and n>N then dˆ(xn,z)<ε.
Assume ε>0.
Let N>0 be such that if r,s>0 and r>N and s>N then d(zr,zs)<ε2.
To show: If n>0 and n>N then dˆ(xnz)<ε.
Assume n>0 and n>N.
To show: dˆ(xn,z)<ε.
To show: limkd(zn,zk)<ε. limkd(zn,zk) ε2<ε, since d(zn,zk)<ε2 for k>N.
So limnxn=z.
So φ(X)=Xˆ.
(b)
To show: (Xˆ,dˆ) is complete.
To show: If x1,x2, is a Cauchy sequence in Xˆ then x1,x2, converges.
Assume x1 = ( x11, x12, x13, ) , x2 = ( x21, x22, x23, ) , x3 = ( x31, x32, x33, ) , is a Cauchy sequence in Xˆ.
To show: There exists z=(z1,z2,) in Xˆ such that limnxn=z.
Using that φ(X) in Xˆ, for k>0 let zkX be such that dˆ(φ(zk),xk)<1k. x1 = ( x11, x12, x13, ) , x2 = ( x21, x22, x23, ) , x3 = ( x31, x32, x33, ) , φ(z1) = (z1,z1,z1,), φ(z2) = (z2,z2,z2,), φ(z3) = (z3,z3,z3,),
To show:
(ba) z=(z1,x2,) is a Cauchy sequence.
(bb) limnxn=z.
(ba) To show: If ε>0 then there exists N>0 such that if r,s>0 and r>N and s>N then d(zr,zs)<ε.
Assume ε>0.
To show: There exists N>0 such that if r,s>0 and r>N and s>N then d(zr,zs)<ε.
Let N1=3ε+1, so that 1N1<ε3.
Let N2>0 such that if r,s>0 and r>N2 and s>N2 then dˆ(xr,xs)<ε3.
Let N=max(N1,N2).
To show: If r,s>0 and r>N and s>N then d(zr,zs)<ε.
Assume r,s>0 and r>N and s>N.
To show: d(zr,zs)<ε. d(zr,zs) = dˆ(φ(zr),φ(zs)) dˆ(φ(zr),xr)+ dˆ(xr,xs)+ dˆ(xs,φ(zs)) < 1r+ε3+ 1s < 1N1+ε3 +1N1 = ε3+ ε3+ ε3 = ε. So z is Cauchy.
(bb) To show: limndˆ(xn,z)=0. limn dˆ(xn,z) limn ( dˆ(xn,φ(zn))+ dˆ(φ(zn,z)) ) limn ( 1n+dˆ (φ(zn),z) ) = limn1n+ limndˆ(φ(zn),z) = 0+0 = 0. So (Xˆ,dˆ) is complete.
So (Xˆ,dˆ) with φ is a completion.

Notes and References

These are a typed copy of Lecture 15 from a series of handwritten lecture notes for the class Metric and Hilbert Spaces given on August 21, 2014.

page history