MATH 221

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updated: 5 August 2014

Lecture 12

Evaluate limxx2-7x+113x2+10. limx x2-7x+11 3x2+10 =limx 1-7x+11x2 3+10x2 =1-0+03+0=13.

Evaluate limx0sin3xsin5x. limx0 sin3x sin5x = limx0 sin3x 3x ·3x 5xsin5x 15x = limx0 sin3x 3x 1sin5x5x 3x5x = limx0 sin3x3x 1sin5x5x ·35 = 1·11·35=35.

Evaluate limx11-x(cos-1x)2.

Let y=cos-1x. Then y0 as x1 and x=cosy. So limx1 1-x (cos-1x)2 = limy0 1-cosy y2 = limy0 (1-cosy) y2 (1+cosy) (1+cosy) = limy0 (1-cos2y) y2 11+cosy = limy0 sinyy sinyy 11+cosy = 1·1·12=12.

limΔx0f(x+Δx)-f(x)Δx when f(x)=sin2x. limΔx0 f(x+Δx)-f(x)Δx = limΔx0 sin(2(x+Δx))-sin2x Δx = limΔx0 sin(2x+2Δx)-sin2x Δx = limΔx0 sin2x cos2Δx+ cos2x sin2Δx- sin2x Δx = limΔx0 sin2x (cos2Δx-1) Δx +cos2x sin2Δx Δx = limΔx0 sin2x cos2Δx-1 2Δx ·2+cos2x sin2Δx 2Δx ·2 = sin2x·0·2+ cos2x·1·2= 2cos2x.

limΔx0 f(x+Δx)-f(x) Δx when f(x)=cosx2. limΔx0 cos(x+Δx)2-cosx2 Δx = limΔx0 cos(x2+2xΔx+(Δx)2)-cosx2 Δx = limΔx0 cosx2 cos(2xΔx+(Δx)2)- sinx2 sin(2xΔx+(Δx)2) -cosx2 Δx = limΔx0 cosx2 (cos(2xΔx+(Δx)2-1)) Δx -sinx2 sin(2xΔx+(Δx)2) Δx = limΔx0 cosx2 (cos(2xΔx+(Δx)2)-1) 2xΔx+(Δx)2 (2xΔx+(Δx)2) Δx - sinx2 (sin(2xΔx+(Δx)2)) 2xΔx+(Δx)2 (2xΔx+(Δx)2) Δx = limΔx0 cosx2 (cos(2xΔx+(Δx)2)-1) 2xΔx+(Δx)2 ·(2x+Δx)- sinx2 (sin(2xΔx+(Δx)2)) 2xΔx+(Δx)2 ·(2x+Δx) = cosx2·0·2x-sin x2·1·2x= -2xsinx2.

limΔx0f(x+Δx)-f(x)Δx when f(x)=xx. limΔx0 (x+Δx)x+Δx-xx Δx = limΔx0 (eln(x+Δx))x+Δx -(elnx)x Δx = limΔx0 e(x+Δx)ln(x+Δx) -exlnx Δx = limΔx0 exlnx ( e(x+Δx)ln(x+Δx)-xlnx -1 ) Δx = limΔx0 exlnx ( e(x+Δx)ln(x+Δx)-xlnx -1 ) ((x+Δx)ln(x+Δx)-xlnx) ((x+Δx)ln(x+Δx)-xlnx) Δx = limΔx0 exlnx ( e(x+Δx)ln(x+Δx)-xlnx -1 (x+Δx)ln(x+Δx)-xlnx ) ( xln(x+Δx)-xlnxΔx +ln(x+Δx) ) = limΔx0 exlnx ( e(x+Δx)ln(x+Δx)-xlnx -1 (x+Δx)ln(x+Δx)-xlnx ) ( xln(x(1+Δxx))-xlnxΔx +ln(x+Δx) ) = limΔx0 exlnx ( e(x+Δx)ln(x+Δx)-xlnx -1 (x+Δx)ln(x+Δx)-xlnx ) ( x(lnx+ln(1+Δxx))-xlnxΔx +ln(x+Δx) ) = limΔx0 exlnx ( e(x+Δx)ln(x+Δx)-xlnx -1 (x+Δx)ln(x+Δx)-xlnx ) ( xln(1+Δxx)Δx +ln(x+Δx) ) = limΔx0 exlnx ( e(x+Δx)ln(x+Δx)-xlnx -1 (x+Δx)ln(x+Δx)-xlnx ) ( ln(1+Δxx)Δxx +ln(x+Δx) ) = exlnx·1 (1+lnx) = xx+xxlnx.

Notes and References

These are a typed copy of Lecture 12 from a series of handwritten lecture notes for the class MATH 221 given on October 4, 2000.

page history