Chapter 0. SETS AND FUNCTIONS

The basic building blocks of mathematics are sets and functions. Functions allow us to compare sets.

$\S1T.$ Sets

(0.1.1) Definition.

- A set is a collection of objects which are called elements. We write $s \in S$ if s is an element of a set S.
- The **emptyset**, \emptyset , is the set with no elements.
- A subset T of a set S is a set T such that if $t \in T$ then $t \in S$. We write $T \subseteq S$.
- Two sets S and T are equal if $S \subseteq T$ and $T \subseteq S$. We write T = S.
- Let S and T be sets. The **union** of S and T is the set $S \cup T$ of all u such that $u \in S$ or $u \in T$.

$$S \cup T = \{ u \mid u \in S \text{ or } u \in T \}.$$

• Let S and T be sets. The intersection of S and T is the set $S \cap T$ of all u such that $u \in S$ and $u \in T$.

$$S \cap T = \{ u \mid u \in S \text{ and } u \in T \}.$$

- Let S and T be sets. S and T are **disjoint** if $S \cap T = \emptyset$.
- Let S and T be sets. S is a **proper subset** of T if $S \subseteq T$ and $S \neq T$. We write $S_{\neq}^{\subset}T$.
- The **product** of two sets S and T is the set of all ordered pairs (s, t) where $s \in S$ and $t \in T$,

$$S \times T = \{(s,t) \mid s \in S, t \in T\}.$$

More generally, given sets S_1, \ldots, S_n , the **product** $\prod_i S_i$ is the set of all tuples (s_1, \ldots, s_n) such that $s_i \in S_i$.

• The elements of a set S are **indexed** by the elements of a set I if each element of S is labeled by a unique element of I. If $i \in I$, s_i denotes the corresponding element of S.

We will use the following notations:

$$\begin{split} \mathbf{I} &= \{\dots, -2, -1, 0, 1, 2, \dots\} & \text{ is the set of integers.} \\ \mathbf{N} &= \{0, 1, 2, \dots\} & \text{ is the set of nonnegative integers.} \\ \mathbf{P} &= \{1, 2, \dots\} & \text{ is the set of positive integers.} \\ [1, n] &= \{1, 2, \dots, n\} & \text{ for each } n \in \mathbf{P}. \\ \mathbf{Q} &= \{p/q \mid p \in \mathbf{I}, q \in \mathbf{P}\} & \text{ is the set of rational numbers.} \\ \mathbf{R} & \text{ is the set of real numbers.} \\ \mathbf{C} & \text{ is the set of complex numbers.} \end{split}$$

Example. Let S, T, U, and V be the sets $S = \{1, 2\}$, $U = \{1, 2\}$, $T = \{1, 2, 3\}$, and $V = \{2, 3\}$. Then

a)
$$S \subseteq U \subseteq T$$
.
b) $U \not\subseteq V$.
c) $U \cup V = T$.
d) $U \cap V = \{2\}$.
e) $S \times T = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)\}$.

HW: Show that the emptyset is a subset of every set.

§2T. Functions

(2.2.1) Definition.

• Let S and T be sets. A map or function $f: S \to T$ is given by associating to each element $s \in S$ a unique element $f(s) \in T$.

$$\begin{array}{rcccc} f \colon & S & \to & T \\ & s & \mapsto & f(s). \end{array}$$

- Often in mathematics one will try to define a function without being exactly sure if what has been defined really is a function. In order to check that a function is well defined one must check that a) For every s ∈ S, f(s) ∈ T.
 - b) If $s_1 = s_2$ then $f(s_1) = f(s_2)$.
- Let S and T be sets. Two functions $f: S \to T$ and $g: S \to T$ are equal if

$$f(s) = g(s)$$
, for all $s \in S$.

We write f = g.

• Let S and T be sets and let $f: S \to T$ be a function. Let $R \subseteq S$. The restriction of f to R is the function $f|_R$ given by

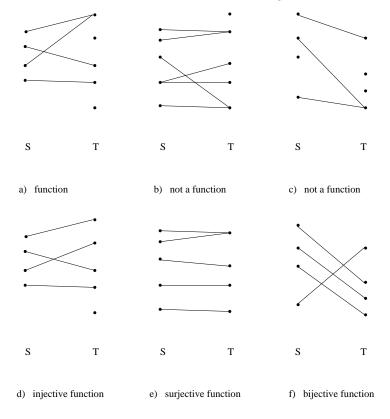
$$\begin{array}{rccc} f|_R \colon & R & \to & T \\ & r & \mapsto & f(r). \end{array}$$

• A map $f: S \to T$ is **injective** or **one-to-one** if it satisfies

If $s_1, s_2 \in S$ and $f(s_1) = f(s_2)$ then $s_1 = s_2$.

- A map $f: S \to T$ is surjective or onto if for each element $t \in T$ there exists $s \in S$ such that f(s) = t.
- A map is **bijective** if it is both injective and surjective.

Examples. It is useful to visualize a function $f: S \to T$ as a graph with edges (s, f(s)) connecting elements of $s \in S$ and $f(s) \in T$. With this idea in mind we have the following.



In these pictures we are viewing the elements of the left column as elements of the set S and the elements of the right column as the elements of a set T. In order to be a function the graph must have exactly one edge adjacent to each element of S. A function is injective if there is at most one edge adjacent to each point of T. A function is surjective if there is at least one edge adjacent to each point of T.

Composition of Functions

(2.2.2) Definition.

• Let $f: S \to T$ and $g: T \to U$ be functions. The **composition** of f and g is the function $g \circ f$ given by

$$\begin{array}{rrrr} (g \circ f) \colon & S & \to & U \\ & s & \mapsto & g(f(s)) \end{array}$$

• Let S be a set. The **identity map** on a set S is the map given by

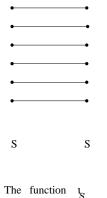
$$\begin{split} \iota_S &: S &\to S \\ s &\mapsto s. \end{split}$$

• Let $f: S \to T$ be a function. An inverse function to f is a function $f^{-1}: T \to S$ such that

$$f \circ f^{-1} = \iota_T$$
 and
 $f^{-1} \circ f = \iota_S$

where ι_T and ι_S are the identity functions on T and S respectively.

If we visualize functions as graphs, the identity function ι_S looks something like



In the pictures below, if the left graph is a pictorial representation of a function $f: S \to T$ then the inverse function to $f, f^{-1}: T \to S$, is represented by the graph on the right.

(2.2.3) Proposition. Let $f: S \to T$ be a function. An inverse function to f exists if and only if f is bijective.

Pictorially, the graph, below left, represents a function $g: S \to T$ which is not bijective. The inverse function to g does not exist in this case; the graph of a possible candidate (below right) is not the graph of a function.

Operations

(2.2.4) Definition.

- An operation on a set S is a map $\circ: S \times S \to S$. If $s_1, s_2 \in S$ we write $s_1 \circ s_2$ instead of $\circ((s_1, s_2))$.
- An operation on a set S is **associative** if, for all $s_1, s_2, s_3 \in S$,

 $(s_1 \circ s_2) \circ s_3 = s_1 \circ (s_2 \circ s_3).$

• An operation on a set S is **commutative** if, for all $s_1, s_2 \in S$,

$$s_1 \circ s_2 = s_2 \circ s_1.$$

Example. The map $+: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ given by

is an operation. This operation is both commutative and associative.

The map $-: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ given by

is an operation. This operation is noncommutative and nonassociative.

Relations

(2.2.5) Definition.

- A relation on a set S is a subset of $S \times S$. We write $s_1 \sim s_2$ if the pair (s_1, s_2) is in this subset.
- A relation is **reflexive** if, for each $s \in S$,
- $s \sim s$.

• A relation is **symmetric** if

$$s_1 \sim s_2 \iff s_2 \sim s_1.$$

• A relation is **transitive** if

$$s_1 \sim s_2$$
 and $s_2 \sim s_3 \Longrightarrow s_1 \sim s_3$.

• An equivalence relation on a set S is a relation on S that is reflexive, symmetric and transitive.

Example. Let S be the set $\{1, 2, 6\}$. Then:

- a) $R_1\{(1,1), (2,6), (6,1)\}$ is a relation on S.
- b) R_1 is not reflexive, not symmetric, and not transitive.
- c) $R_2 = \{(1,1), (2,6), (6,1), (2,1)\}$ is a relation on S.
- d) R_2 is transitive but not symmetric and not reflexive.

(2.2.6) Definition.

• Let S be a set and let \sim be an equivalence relation on S. The **equivalence class** of an element $s \in S$ is the set

$$[s] = \{t \in S \mid t \sim s\}$$

- A partition of a set S is a collection of subsets S_{α} such that:
 - a) If $s \in S$ then $s \in S_{\alpha}$ for some S_{α} .
 - b) If $S_{\alpha} \cap S_{\beta} \neq \emptyset$ then $S_{\alpha} = S_{\beta}$.

(2.2.7) Proposition.

- a) Let S be a set and let \sim be an equivalence relation on S. The set of equivalence classes of the relation \sim is a partition of S.
- b) Let S be a set and let $\{S_{\alpha}\}$ be a partition of S. Then the relation defined by

 $s \sim t$ if s and t are in the same S_{α}

is an equivalence relation on S.

Proposition 2.2.7 shows that the concepts of an equivalence relation on S and of a partition of S are essentially the same. Each equivalence relation on S determines a partition on S and vice versa.

Example. Let $S = \{1, 2, 3, \dots, 10\}$. Let ~ be the equivalence relation determined by

$$1 \sim 5, \quad 2 \sim 3, \quad 9 \sim 10, \\ 1 \sim 7, \quad 5 \sim 8, \quad 10 \sim 4.$$

Since we are requiring that \sim is an equivalence relation, we are assuming that we have all the other relations we need so that \sim is reflexive, symmetric, and transitive:

$$\begin{array}{l} 1 \sim 1, \ 2 \sim 2, \ \ldots, \ 10 \sim 10, \\ 5 \sim 7, \ 7 \sim 8, \ 7 \sim 5, \ 5 \sim 1, \ \ldots \end{array}$$

Then the equivalence classes are given by

$$\begin{split} [1] &= [5] = [7] = [8] = \{1, 5, 7, 8\} \\ [2] &= [3] = \{2, 3\} \\ [6] &= \{6\} \\ [4] &= [9] = [10] = \{4, 9, 10\}, \end{split}$$

and the sets

$$S_1 = \{1, 5, 7, 8\}, S_2 = \{2, 3\}, S_3 = \{6\}, \text{ and } S_4 = \{4, 9, 10\}$$

form a partition of S.

Cardinality of Sets

How big is a set?

(2.2.8) Definition.

• Let S and T be sets. S and T have the same cardinality, Card(S) = Card(T), if there is a bijective map from S to T.

Notation: Let S be a set. Then

$$\operatorname{Card}(S) = \begin{cases} 0 & \text{if } S = \emptyset; \\ n & \text{if } \operatorname{Card}(S) = \operatorname{Card}(\{1, 2, \dots, b\}); \\ \infty & \text{otherwise.} \end{cases}$$

Note: Even if $\operatorname{Card}(S) = \infty$ and $\operatorname{Card}(T) = \infty$, one may have that $\operatorname{Card}(S) \neq \operatorname{Card}(T)$.

(2.2.9) Definition.

- A set S is **finite** if $Card(S) \neq \infty$.
- A set S is **infinite** if S is not finite.
- A set S is countable if either S is finite or if $Card(S) = Card(\mathbb{P})$.
- A set S is **countably infinite** if S is countable and not finite.
- A set S is **uncountable** if S is not countable.

HW: Show that $\operatorname{Card}(\mathbb{R}) = \infty$ and $\operatorname{Card}(\mathbb{Q}) = \infty$ and that $\operatorname{Card}(\mathbb{R}) \neq \operatorname{Card}(\mathbb{Q})$.