Chapter 0. SETS AND FUNCTIONS

The basic building blocks of mathematics are sets and functions. Functions allow us to compare sets.

§1T. Sets

(0.1.1) Definition.

- A set is a collection of objects which are called elements. We write $s \in S$ if s is an element of a set S.
- The emptyset, \emptyset, is the set with no elements.
- A subset T of a set S is a set T such that if $t \in T$ then $t \in S$. We write $T \subseteq S$.
- Two sets S and T are equal if $S \subseteq T$ and $T \subseteq S$. We write $T=S$.
- Let S and T be sets. The union of S and T is the set $S \cup T$ of all u such that $u \in S$ or $u \in T$.

$$
S \cup T=\{u \mid u \in S \text { or } u \in T\} .
$$

- Let S and T be sets. The intersection of S and T is the set $S \cap T$ of all u such that $u \in S$ and $u \in T$.

$$
S \cap T=\{u \mid u \in S \text { and } u \in T\}
$$

- Let S and T be sets. S and T are disjoint if $S \cap T=\emptyset$.
- Let S and T be sets. S is a proper subset of T if $S \subseteq T$ and $S \neq T$. We write $S \neq T$.
- The product of two sets S and T is the set of all ordered pairs (s, t) where $s \in S$ and $t \in T$,

$$
S \times T=\{(s, t) \mid s \in S, t \in T\}
$$

More generally, given sets S_{1}, \ldots, S_{n}, the product $\prod_{i} S_{i}$ is the set of all tuples $\left(s_{1}, \ldots, s_{n}\right)$ such that $s_{i} \in S_{i}$.

- The elements of a set S are indexed by the elements of a set I if each element of S is labeled by a unique element of I. If $i \in I, s_{i}$ denotes the corresponding element of S.

We will use the following notations:

$$
\begin{aligned}
\mathbb{L} & =\{\ldots,-2,-1,0,1,2, \ldots\} \quad \text { is the set of integers. } \\
\mathbb{N} & =\{0,1,2, \ldots\} \quad \text { is the set of nonnegative integers. } \\
\mathbb{P} & =\{1,2, \ldots\} \quad \text { is the set of positive integers. } \\
{[1, n] } & =\{1,2, \ldots, n\} \quad \text { for each } n \in \mathbb{P} . \\
\mathbb{Q} & =\{p / q \mid p \in \mathbb{Z}, q \in \mathbb{P}\} \quad \text { is the set of rational numbers. } \\
\mathbb{R} & \text { is the set of real numbers. } \\
\mathbb{C} & \text { is the set of complex numbers. }
\end{aligned}
$$

Example. Let S, T, U, and V be the sets $S=\{1,2\}, U=\{1,2\}, T=\{1,2,3\}$, and $V=\{2,3\}$. Then
a) $S \subseteq U \subseteq T$.
b) $U \nsubseteq V$.
c) $U \cup V=T$.
d) $U \cap V=\{2\}$.
e) $S \times T=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)\}$.
$H W$: Show that the emptyset is a subset of every set.

$\S 2 T$. Functions

(2.2.1) Definition.

- Let S and T be sets. A map or function $f: S \rightarrow T$ is given by associating to each element $s \in S$ a unique element $f(s) \in T$.

$$
\begin{array}{cccc}
f: & S & \rightarrow & T \\
& s & \mapsto & f(s) .
\end{array}
$$

- Often in mathematics one will try to define a function without being exactly sure if what has been defined really is a function. In order to check that a function is well defined one must check that
a) For every $s \in S, f(s) \in T$.
b) If $s_{1}=s_{2}$ then $f\left(s_{1}\right)=f\left(s_{2}\right)$.
- Let S and T be sets. Two functions $f: S \rightarrow T$ and $g: S \rightarrow T$ are equal if

$$
f(s)=g(s), \quad \text { for all } s \in S
$$

We write $f=g$.

- Let S and T be sets and let $f: S \rightarrow T$ be a function. Let $R \subseteq S$. The restriction of f to R is the function $\left.f\right|_{R}$ given by

$$
\begin{array}{cccc}
\left.f\right|_{R}: & R & \rightarrow & T \\
& r & \mapsto & f(r) .
\end{array}
$$

- A map $f: S \rightarrow T$ is injective or one-to-one if it satisfies

$$
\text { If } s_{1}, s_{2} \in S \text { and } f\left(s_{1}\right)=f\left(s_{2}\right) \text { then } s_{1}=s_{2}
$$

- A map $f: S \rightarrow T$ is surjective or onto if for each element $t \in T$ there exists $s \in S$ such that $f(s)=t$.
- A map is bijective if it is both injective and surjective.

Examples. It is useful to visualize a function $f: S \rightarrow T$ as a graph with edges $(s, f(s))$ connecting elements of $s \in S$ and $f(s) \in T$. With this idea in mind we have the following.

a) function

-

T
S
d) injective function

S

S
c) not a function

S
T
f) bijective function

In these pictures we are viewing the elements of the left column as elements of the set S and the elements of the right column as the elements of a set T. In order to be a function the graph must have exactly one edge adjacent to each element of S. A function is injective if there is at most one edge adjacent to each point of T. A function is surjective if there is at least one edge adjacent to each point of T.

Composition of Functions

(2.2.2) Definition.

- Let $f: S \rightarrow T$ and $g: T \rightarrow U$ be functions. The composition of f and g is the function $g \circ f$ given by

$$
\begin{array}{rlcc}
(g \circ f): & S & \rightarrow & U \\
s & \mapsto & g(f(s)) .
\end{array}
$$

- Let S be a set. The identity map on a set S is the map given by

$$
\begin{aligned}
\iota_{S}: \quad S & \rightarrow \\
& \rightarrow \\
s & \mapsto
\end{aligned}
$$

- Let $f: S \rightarrow T$ be a function. An inverse function to f is a function $f^{-1}: T \rightarrow S$ such that

$$
\begin{aligned}
& f \circ f^{-1}=\iota_{T} \quad \text { and } \\
& f^{-1} \circ f=\iota_{S}
\end{aligned}
$$

where ι_{T} and ι_{S} are the identity functions on T and S respectively.
If we visualize functions as graphs, the identity function ι_{S} looks something like

S S

The function ${ }_{S}$
In the pictures below, if the left graph is a pictorial representation of a function $f: S \rightarrow T$ then the inverse function to $f, f^{-1}: T \rightarrow S$, is represented by the graph on the right.

S

T
f

T

$$
f^{-1}
$$

(2.2.3) Proposition. Let $f: S \rightarrow T$ be a function. An inverse function to f exists if and only if f is bijective.

Pictorially, the graph, below left, represents a function $g: S \rightarrow T$ which is not bijective. The inverse function to g does not exist in this case; the graph of a possible candidate (below right) is not the graph of a function.

Operations

(2.2.4) Definition.

- An operation on a set S is a map $\circ: S \times S \rightarrow S$. If $s_{1}, s_{2} \in S$ we write $s_{1} \circ s_{2}$ instead of $\circ\left(\left(s_{1}, s_{2}\right)\right)$.
- An operation on a set S is associative if, for all $s_{1}, s_{2}, s_{3} \in S$,

$$
\left(s_{1} \circ s_{2}\right) \circ s_{3}=s_{1} \circ\left(s_{2} \circ s_{3}\right)
$$

- An operation on a set S is commutative if, for all $s_{1}, s_{2} \in S$,

$$
s_{1} \circ s_{2}=s_{2} \circ s_{1}
$$

Example. The map $+: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ given by

$$
\begin{array}{cccc}
+: & \mathbb{Z} \times \mathbb{Z} & \rightarrow & \mathbb{Z} \\
& (i, j) & \mapsto & i+j
\end{array}
$$

is an operation. This operation is both commutative and associative.
The map $-: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ given by

$$
\begin{array}{cccc}
-: & \mathbb{Z} \times \mathbb{Z} & \rightarrow & \mathbb{Z} \\
& (i, j) & \mapsto & i-j
\end{array}
$$

is an operation. This operation is noncommutative and nonassociative.

Relations

(2.2.5) Definition.

- A relation on a set S is a subset of $S \times S$. We write $s_{1} \sim s_{2}$ if the pair $\left(s_{1}, s_{2}\right)$ is in this subset.
- A relation is reflexive if, for each $s \in S$,

$$
s \sim s
$$

- A relation is symmetric if

$$
s_{1} \sim s_{2} \Longleftrightarrow s_{2} \sim s_{1}
$$

- A relation is transitive if

$$
s_{1} \sim s_{2} \text { and } s_{2} \sim s_{3} \Longrightarrow s_{1} \sim s_{3}
$$

- An equivalence relation on a set S is a relation on S that is reflexive, symmetric and transitive.

Example. Let S be the set $\{1,2,6\}$. Then:
a) $R_{1}\{(1,1),(2,6),(6,1)\}$ is a relation on S.
b) R_{1} is not reflexive, not symmetric, and not transitive.
c) $R_{2}=\{(1,1),(2,6),(6,1),(2,1)\}$ is a relation on S.
d) R_{2} is transitive but not symmetric and not reflexive.

(2.2.6) Definition.

- Let S be a set and let \sim be an equivalence relation on S. The equivalence class of an element $s \in S$ is the set

$$
[s]=\{t \in S \mid t \sim s\}
$$

- A partition of a set S is a collection of subsets S_{α} such that:
a) If $s \in S$ then $s \in S_{\alpha}$ for some S_{α}.
b) If $S_{\alpha} \cap S_{\beta} \neq \emptyset$ then $S_{\alpha}=S_{\beta}$.

(2.2.7) Proposition.

a) Let S be a set and let \sim be an equivalence relation on S. The set of equivalence classes of the relation \sim is a partition of S.
b) Let S be a set and let $\left\{S_{\alpha}\right\}$ be a partition of S. Then the relation defined by

$$
s \sim t \text { if } s \text { and } t \text { are in the same } S_{\alpha}
$$

is an equivalence relation on S.
Proposition 2.2 .7 shows that the concepts of an equivalence relation on S and of a partition of S are essentially the same. Each equivalence relation on S determines a partition on S and vice versa.

Example. Let $S=\{1,2,3, \ldots, 10\}$. Let \sim be the equivalence relation determined by

$$
\begin{array}{lll}
1 \sim 5, & 2 \sim 3, & 9 \sim 10 \\
1 \sim 7, & 5 \sim 8, & 10 \sim 4
\end{array}
$$

Since we are requiring that \sim is an equivalence relation, we are assuming that we have all the other relations we need so that \sim is reflexive, symmetric, and transitive:

$$
\begin{aligned}
& 1 \sim 1,2 \sim 2, \ldots, 10 \sim 10 \\
& 5 \sim 7,7 \sim 8,7 \sim 5,5 \sim 1, \ldots
\end{aligned}
$$

Then the equivalence classes are given by

$$
\begin{aligned}
{[1]=[5]=[7]=[8] } & =\{1,5,7,8\} \\
{[2]=[3] } & =\{2,3\} \\
{[6] } & =\{6\} \\
{[4]=[9]=[10] } & =\{4,9,10\},
\end{aligned}
$$

and the sets

$$
S_{1}=\{1,5,7,8\}, S_{2}=\{2,3\}, S_{3}=\{6\}, \text { and } S_{4}=\{4,9,10\}
$$

form a partition of S.

Cardinality of Sets

How big is a set?

(2.2.8) Definition.

- Let S and T be sets. S and T have the same cardinality, $\operatorname{Card}(S)=\operatorname{Card}(T)$, if there is a bijective map from S to T.

Notation: Let S be a set. Then

$$
\operatorname{Card}(S)= \begin{cases}0 & \text { if } S=\emptyset \\ n & \text { if } \operatorname{Card}(S)=\operatorname{Card}(\{1,2, \ldots, b\}) \\ \infty & \text { otherwise }\end{cases}
$$

Note: Even if $\operatorname{Card}(S)=\infty$ and $\operatorname{Card}(T)=\infty$, one may have that $\operatorname{Card}(S) \neq \operatorname{Card}(T)$.

(2.2.9) Definition.

- A set S is finite if $\operatorname{Card}(S) \neq \infty$.
- A set S is infinite if S is not finite.
- A set S is countable if either S is finite or if $\operatorname{Card}(S)=\operatorname{Card}(\mathbb{P})$.
- A set S is countably infinite if S is countable and not finite.
- A set S is uncountable if S is not countable.
$H W:$ Show that $\operatorname{Card}(\mathbb{R})=\infty$ and $\operatorname{Card}(\mathbb{Q})=\infty$ and that $\operatorname{Card}(\mathbb{R}) \neq \operatorname{Card}(\mathbb{Q})$.

