(1.4.1) Definition.

• The alternating group A_n is the subgroup of even permutations of S_n .

The alternating group A_n is the kernel of the sign homomorphism of the symmetric group;

$$A_n = \ker(\varepsilon),$$
 where $\varepsilon: S_n \to \{\pm 1\}$
 $\sigma \mapsto \det(\sigma).$

 HW : Show that A_n is a normal subgroup of S_n .

HW: Show that $|A_n| = n!/2$.

Conjugacy classes

Since A_n is a normal subgroup of S_n , A_n is a union of conjugacy classes of S_n . Let \mathcal{C}_{λ} be a conjugacy class of S_n corresponding to a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$. Then the following Proposition says:

- 1) The conjugacy class \mathcal{C}_{λ} is contained in A_n if an even number of the λ_i are even numbers.
- 2) If the parts λ_i of λ are all odd and are all distinct then \mathcal{C}_{λ} is a union of two conjugacy classes of A_n and these two conjugacy classes have the same size.
- 3) Otherwise \mathcal{C}_{λ} is also a conjugacy class of A_n .

(1.4.2) **Proposition.** Suppose that $\sigma \in A_n$. Let C_{σ} denote the conjugacy class of σ in S_n and let A_{σ} denote the conjugacy class of σ in A_n .

- a) Then σ has an even number of cycles of even length.
- b)

$$|\mathcal{A}_{\sigma}| = \left\{ egin{aligned} & |\mathcal{C}_{\sigma}| \ & | \end{aligned}
ight., & if all \ cycles \ \sigma \ are \ of \ different \ odd \ lengths; \ & |\mathcal{C}_{\sigma}|, & otherwise; \end{aligned}
ight.$$

The proof of Proposition (1.4.2) uses the following lemma.

(1.4.3) Lemma. Let $\sigma \in A_n$ and let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ be the cycle type of σ . Let γ_{λ} be the permutation given, in cycle notation, by

$$\gamma_{\lambda} = (1, 2, \dots, \lambda_1)(\lambda_1 + 1, \lambda_1 + 2, \dots, \lambda_1 + \lambda_2)(\lambda_1 + \lambda_2 + 1, \dots) \dots$$

Let S_{σ} denote the stabilizer of σ under the action of S_n on itself by conjugation. Then,

- a) $S_{\sigma} \subseteq A_n$ if and only if $S_{\gamma_{\lambda}} \subseteq A_n$.
- b) $S_{\gamma_{\lambda}} \subseteq A_n$ if and only if γ_{λ} has all odd cycles of different lengths.

A_n is simple, $n \neq 4$.

A group is simple if it has no nontrivial normal subgroups. The trivial normal subgroups are the whole group and the subgroup containing only the identity element.

(1.4.4) Theorem.

- a) If $n \neq 4$ then A_n is simple.
- b) The alternating group A_4 has a single nontrivial proper normal subgroup given by

$$N = \{(1234), (2143), (3412), (4321)\},\$$

where the permutations are represented in one-line notation.

The proof of Theorem (1.4.4) uses the following lemma.

(1.4.5) **Lemma.** Suppose N is a normal subgroup of A_n , n > 4, and N contains a 3-cycle. Then $N = A_n$.