Chapter 2. RINGS AND MODULES

§1T. Rings
The next step is to study sets with two operations instead of just one.
(2.1.1) Definition.

e A ring is a set R with two operations, addition +: R x R — R and multiplication x: Rx R — R
(we write a + b instead of +(a,b) and ab or a - b instead of x(a,b)), such that
a) (r1+r2) +r3 =711+ (re +7r3) for all r1,72,73 € R.
b) 71 +re=rs + 7 for all 1,72 € R.
c) There exists a zero (sometimes called the additive identity), 0 € R, such that 0 +r =1r
for all r € R.
d) For each r € R there exists an additive inverse, —r € R, such that r + (—r) = 0.
e) (rire)rs = r1(rers) for all rq,re,73 € R.
f) There exists an identity (sometimes called the multiplicative identity), 1 € R, such that
l-r=r-1=rforalreR.
g) Distributive law. For all r,s,¢ € R,

r(s+t)=rs+rt and
(s +t)r = sr+tr.

e A subring of a ring R is a subset S C R such that
a) If 51,80 € S then s; + 52 € S.
b) 0€S.
c) If s € S then —s € S.
d) If 51,82 € S then s1s2 € S.
e) 1e€8S.

e The zero ring, (0), is the set containing only 0 with the operations + and X given by 0 +0 =0
and 0 - 0 = 0 respectively.

Note that a), b), ¢) and d) in the definition of a ring R mean that R is an abelian group under addition.

The definition of a ring is motivated by the properties of the integers. As a result, knowledge about the
integers is an important tool in working with rings.

HW: Show, using Ex. 2.2.5, Part I, that the additive identity 0 € R is unique.

HW: Show, using Ex. 2.2.5, Part I, that if » € R then its additive inverse —r € R is unique.
HW: Show, using Ex. 2.2.5, Part I, that the identity 1 € R is unique.

HW: Show that if » € R then 0 -r = 0 by first showing that 0-r =0-r+0-r.

HW: Show that if »r € R and 1 € R is the identity in R then (=1)-r=1r-(=1) = —r.

Important examples of rings are:
a) The integers, X.
b) The n x n matrices, M,(R).
c¢) Polynomial rings, R[z].

Cosets

(2.1.2) Definition.

e An additive subgroup of a ring R is a subset I C R of R such that
a) Ifhl,hz € I then hy + hy € 1.
b) 0 €I
c) If helthen —hel.

Let R be a ring and let I be an additive subgroup of R. We will use the subgroup I to divide up the ring R.
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(2.1.3) Definition.
e Acosetof I'in Risasetr+ I ={r+i|i€ I} wherer € R.
e R/I (pronounced “R mod I”) is the set of cosets of I in R.

(2.1.4) Proposition. Let R be a ring and let I be an additive subgroup of R. Then the cosets of I in R
partition R.

Notice that the proofs of Proposition 2.1.4 and Proposition 1.1.3 are essentially the same.

HW: Write a very short proof of Proposition 2.1.4 by using Proposition 1.1.3.

Quotient Rings < Ideals

Let R be a ring and let I be an additive subgroup of R. We can try to make the set R/I of cosets of I into
a ring by defining both an addition operation and a multiplication operation on cosets. The only problem
is that this doesn’t work for the cosets of just any additive subgroup, the subgroup has to have special
properties.

HW: Let R be a ring and let I be an additive subgroup of R. Show that I is a normal subgroup of R.

(2.1.5) Definition.

e An ideal, I, is a subset of a ring R such that
a) Ifa,beIthena+bel.
b) Ifi € I and r € R then ir € R and ri € R.

e The zero ideal, (0), of R is the ideal containing only the zero element of R.

HW: Show that if I is an ideal of a ring R then 0 € I and if a € I then —a € I.
HW: Show that an ideal I of a ring R is an additive subgroup of a ring R.

(2.1.6) Proposition. Let I be an additive subgroup of a ring R. I is an ideal of R if and only if R/I with
operations given by
(m+D+@e+)=(r1+m)+I and

(ri+D(re+D)=rra+1
1S a Ting.
Notice that the proofs of Proposition 2.1.6 and Proposition 1.1.8 are essentially the same.
HW: Write a shorter proof of Proposition 2.1.6 by using Proposition 1.1.8.

(2.1.7) Definition.
e The quotient ring, R/I, is the ring of cosets of an ideal I of a ring R with operations given by
i+ D+ e+ =1+r)+Tand (rn+ D2+ 1) =rirs + 1.

So we have successfully made R/I into a ring when I is an ideal of R.

Homomorphisms
Ring homomorphisms are used to compare rings. Let R and S be rings with identities 1 and 1g respectively.

(2.1.8) Definition.
e A ring homomorphism, f: R — S, is a mapping between R and S such that
a) fir+s)=f(r)+ f(s) for all ;s € R.
b) f(rs) = f(r)f(s) for all r,s € R.
¢) f(1r)=1s.
e A ring isomorphism is a bijective ring homomorphism.

e Two rings R and S are isomorphic, R ~ S, if there exists a ring isomorphism f: R — S between
them.



Two rings are isomorphic if both the elements of the rings and their operations match up exactly. Think of
two rings that are isomorphic as being “the same”.

HW: Show that if 1 € I, then I = R and R/I ~ (0).
HW: Give an example of two rings R and S that are isomorphic as groups but not as rings.

In the case of groups, condition b) in the definition of ring homomorphism forced condition c¢) on us. (See
Proposition 1.1.11.) This does not happen here since rings don’t necessarily have multiplicative inverses.

(2.1.9) Proposition. Let f: R — S be a ring homomorphism. Let Or and Og be the zeros for R and S
respectively. Then

a) f(Or) =0s.
b) For anyr € R, f(—r) = —f(r).

(2.1.10) Definition.
e The kernel of a ring homomorphism f: R — S is the set

kerf={r e R| f(r) =0s},

where Og is the zero in S.
e The image of a ring homomorphism f: R — S is the set

imf={se€S|f(r)=sfor somer € R}.

Note that ker f = {r € R | f(r) = Og} not {r € R| f(r) = 1s}. If ker f was {r € R | f(r) = 1s} then
ker f would not necessarily be a subgroup of R (not to mention an ideal) and we couldn’t even hope to get
homomorphism theorems like we did for groups.

(2.1.11) Proposition. Let f: R — S be a ring homomorphism. Then
a) ker f is an ideal of R.
b) im f is a subring of S.

(2.1.12) Proposition. Let f: R — S be a ring homomorphism. Let O be the zero in R. Then
a) ker f = (0g) if and only if f is injective.
b) im f = S if and only if f is surjective.

Notice that the proof of Proposition 2.1.12 b) does not use the fact that f: R — S is a homomorphism, only
the fact that f: R — S is a function.

(2.1.13) Theorem.
a) Let f:R — S be a ring homomorphism and let K = ker f. Define

f: Rl/kerf — S
r+K —  f(r).

Then f is o well defined injective ring homomorphism.

b) Let f: R — S be a ring homomorphism and define
ff R — imf
r = f(r).
Then f' is a well defined surjective ring homomorphism.
¢) If f:R — S is a ring homomorphism, then
R/ker f ~im f

where the isomorphism is a ring isomorphism.
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Direct Sums
Suppose S and T' are rings. The idea is to make S x T into a ring.

(2.1.14) Definition.
e The direct sum, S @ T, of two rings S and T is the set S x T with operations given by

(51,t1) + (s2,t2) = (51 + s2,t1,t2) and
(s1,t1)(82,t2) = (5182, t1t2)

for all §1,82 € S and t1,t2 € T.

e More generally, given rings Ry, ..., R,, the direct sum R1®---®R,, is the set given by Ry x---x R,
with operations given by

(81,---,8iy---,8n) + (b1, sty ytn) = (81 +t1,---, 8 + tiy-eySn + tn)
(81,.. e 598Gy .,Sn)(tl,.. -7ti7-- atn) = (Sltl,.. .,Siti,. ..,Sntn)
where s;,t; € R; and s; +t; and s;t; are given by the operations for the ring R;. The operations in
the direct sum are just the operations from the original rings acting componentwise.

HW: Show that these are good definitions, i.e., that, as defined above, S®T and R; &- - -® R,, are rings with
zeros given by (0s,07) and (Og,,...,0r,) respectively and identities given by (1s,17) and (1g,,.--,1R,)
respectively.

Further definitions

There are many things which help to characterize a ring; some of these will be studied in depth in later
chapters. Some definitions are given here for reference.

(2.1.15) Definition.
e A ring R is commutative if ab = ba for all a,b € R.
e The center of a ring R is the set

Z(R)={a € R|ar =rafor all r € R}.

HW: Give an example of a non-commutative ring.

HW: Prove that Z(R) is a subring of R.

HW: Give an example to show that Z(R) is not necessarily an ideal of R.
HW: What two elements are always in the center of R?

(2.1.16) Definition.

e The characteristic, char(R), of a ring R is the smallest positive integer n such that 1+14---+1
(n times) is 0. If such an integer does not exist, char(R) is 0.

(2.1.17) Proposition. Let R be a ring. Let Or and 1 be the zero and the identity in R respectively.
a) There is a unique ring homomorphism ¢:L— R given by

(,0(0) = OR,
p(m)=1g+---+1g, and
—_———

m times

p(=m) = —p(m),
for every m €X, m > 0.
b) ker p =n I= {nk | k €L} where n = char(R) is the characteristic of the ring R.

HW: Show that if char(R) = 2 then 1 = —1 in R.



(2.1.18) Definition.
e A left inverse of an element b of a ring R is an element ¢ € R such that ¢b = 1.
e A right inverse of an element b of a ring R is an element ¢ € R such that bc = 1.
e An inverse or a two sided inverse of an element b of a ring R is an element ¢ € R such that
cb=bc=1.
e A unit is an element of a ring that has an inverse.
o If Ris aring, R* is the set of units of R.
HW: Show that if b € R has both a left inverse and a right inverse then they must be equal.
HW: Give an example of a ring R and an element of R that has a left inverse but not a right inverse.
HW: What element of a ring is always a unit?
HW: Give an example of a ring such that R* = R — {0}.

(2.1.19) Definition.

e Let R be aring and S a subset of R. The ideal generated by S is the ideal (S) of R such that
a) S C(9).
b) If T is an ideal of R and S C T then (S) C T.

e An ideal of a commutative ring is principal if it is generated by one element.
(S) is the smallest ideal of R containing S. Think of (S) as gotten by adding to S exactly those elements of
R that are needed to make an ideal.
(2.1.20) Definition.

e A proper ideal of a ring R is an ideal that is not (0) or R.

e A maximal ideal of a ring R is a proper ideal of R that is not contained in any other proper ideal
of R.

HW: Show that a proper ideal does not contain any units.

(2.1.21) Proposition. Every proper ideal I of a ring R is contained in o mazimal ideal of R.

(2.1.22) Definition.
e A local ring is a commutative ring with only one maximal ideal.
e A simple ring is ring with no proper ideals.
e A ring R is a division ring if every nonzero element of R has an inverse in R.

e A field is a commutative ring F' such that every nonzero element of F' has an inverse in F'.



§2T. Modules
Let R be a ring with identity 1 € R.

(2.2.1) Definition.

e A left R-moduleis a set M with an addition operation +: M x M — M and an action x: Rx M —
M (we write m; + my instead of +(mq,m2) and rm instead of x(r,m)) such that

a) (my +m2) + m3 = my + (m2 + m3) for all my, ma,m3 € M.

b) my +ma = ma +my for all my,my € M.

c) There exists a zero, 0 € M, such that 0+ m = m for all m € M.

d) For each m € M there exists an additive inverse, —m € M, such that m + (—m) = 0.
e) ri(ram) = (rira)m for all 1,72 € R and m € M.

f) Im =m, for all m € M.

g) r(my +mz) = rmy + rma, for all r € R and my, ms € M.

h) (r1 +7r2)m =rim + ram, for all r1,7o € R and m € M.

e A submodule of a left R-module M is a subset N C M such that
a) If ny,ns € N then ny +ns € N.
b) 0 € N.
c) If n € N then —n € N.
d) If n € N then rn € N for all r € R.

e The zero R-module or trivial R-module, (0), is the set containing only 0 with the operations
+ and x given by 04+ 0 =0 and r - 0 = 0 for all r € R respectively.
R-modules are the analogues of group actions except for rings.

Note that conditions a), b), c), and d) in the definition of a left R-module imply that every left R-module
is an abelian group under addition.

HW: Show, using Ex. 2.2.5, Part I, that the element 0 € M is unique.
HW: Show, using Ex. 2.2.5, Part I, that if m € M then the element —m € M is unique.
HW: Show that if M is a left R-module then 0-m = 0 for all m € M.

Important examples of modules are:
a) For any ring R, R is a left R-module.
b) All abelian groups are Z-modules.
c) If R is a field then the R-modules are vector spaces.

Cosets

(2.2.2) Definition.

e A subgroup of a left R-module M is a subset N C M such that
a) If ny,ns € N then ny +ns € N.
b) 0 € N.
c) If n € N then —n € N.

Let M be a left R-module and let N be a subgroup of M. We will use the subgroup N to divide up the
module M.

(2.2.3) Definition.
e Acosetof Nin Misaset m+ N ={m+n|n€ N} where m € M.
e M/N (pronounced “M mod N”) is the set of cosets of N in M.

(2.2.4) Proposition. Let M be a left R-module and let N be a subgroup of M. Then the cosets of N in
M partition M.

Notice that the proofs of Proposition 2.2.4 and Proposition 1.1.3 are essentially the same.

HW: Write a very short proof of Proposition 2.2.4 by using Propositon 1.1.3.
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Quotient Modules <+ Submodules

Let M be a left R-module and let N be a subgroup of M. We can try to make the set M/N of cosets of N
in M into an R-module by defining an addition operation and an action of R. This doesn’t work with just
any subgroup of N, the subgroup must be a submodule.

(2.2.5) Theorem. Let N be a subgroup of a left R-module M. Then N is a submodule of M if and only if
M/N with the operations given by

(m1+ N)+ (ma+ N)=(m1 +ma)+ N, and
r(my + N) =rmy + N,

is a left R-module.

Notice that the proofs of Proposition 2.2.5 and Proposition 1.1.8 are essentially the same.
HW: Write a shorter proof of Proposition 2.2.5 by using Proposition 1.1.8.

(2.2.6) Definition.

e The quotient module M/N is the left R-module of cosets of a submodule N of an R-module M
with operations given by (m; + N) + (m2 + N) = (m1 +m2) + N and r(m; + N) = rm; + N.

So we have successfully made M/N into a left R-module when N is a submodule of M.

Homomorphisms
R-module homomorphisms are used to compare R-modules.

(2.2.7) Definition.

e An R-module homomorphism is a mapping f: M — N between left R-modules M and N such
that
a) f(m1 +mz) = f(m1) + f(myz) for all my,ms € M.
b) f(rm)=rf(m) for all r € R and m € M.

¢ An R-module isomorphism is a bijective R-module homomorphism.

e Two left R-modules M and N are isomorphic, M ~ N, if there exists an R-module isomorphism
between them.

Note that condition a) in the definition of an R-module homomorphism implies that f is a group homomor-
phism.

HW: Show that if M and N are left R-modules and if f: M — N is an R-module homomorphism then
f(0ar) = On, where Opr and Oy are the zeros in M and N respectively.

HW: Show that if N = M then M /N ~ (0).

(2.2.8) Definition.
e The kernel of an R-module homomorphism f: M — N is the set

ker f = {m e M | f(m) =0n},

where Oy is the zero in N.

e The image of an R-module homomorphism f: M — N is the set

imf={neN]| f(m)=n for some m e M}.

(2.2.9) Proposition. Let f: M — N be an R-module homomorphism. Then
a) ker f is a submodule of M.
b) im f is a submodule of N.



(2.2.10) Proposition. Let f: M — N be an R-module homomorphism. Let Opr be the zero in M. Then
a) ker f = (Opr) if and only if f is injective.
b) im f = N if and only if f is surjective.

Notice that the proof of Proposition 2.2.10 b) does not use the fact that f: M — N is a homomorphism,
only the fact that f: M — N is a function.

(2.2.11) Theorem.
a) Let f: M — N be an R-module homomorphism and let K = ker f. Define

f: M/kerf - N
m+K —  f(m).

Then f is a well defined injective R-module homomorphism.
b) Let f: M — N be an R-module homomorphism and define
fi M - imf
m = f(m).
Then f' is a well defined surjective R-module homomorphism.

¢) If f: M — N is an R-module homomorphism, then

M/ker f ~im f

where the isomorphism is an R-module isomorphism.

Direct Sums
Suppose M and N are R-modules. The idea is to make M x N into an R-module.

(2.2.12) Definition.
e The direct sum, M @ N, of two left R-modules M and N is the set M x N with operations given
by
(m1,n1) + (m2,n2) = (M1 + ma,n1 +n2) and
r(mi,m1) = (rmy,rny)
for all my,ms € M, ny,ny € N,and r € R.
e More generally, given left R-modules My, ..., M,, the direct sum M; & --- @ M, is the set given
by My x --- x M, with operations given by
(m1,...,Miy. oo ymy) + (N1, Ny ooy Ny) = (Mg +01,...,m; +14,...,My +ny)  and
MLy ooy Moy ey M) = (TN ey Ty ey T

where m;,n; € M and m; +n; and rm; are given by the operations for the module M;. The opera-
tions on the direct sum are just the operations from the original modules acting componentwise.

HW: Show that these are good definitions, i.e., that, as defined above, M & N and M; & --- & M,, are left
R-modules with zeros given by (0xr,0n) and (Ops,, - -, 0nr, ) respectively. (0p, denotes the zero in the left
R-module M;.)

Further Definitions

(2.2.13) Definition.
e Let M be a left R-module and let S be a subset of M. The submodule generated by S is the
submodule (S) of M such that
a) S C(9).
b) If T is a submodule of M and S C T then (S) C T.
(S) is the smallest submodule of M containing S. Think of (S) as gotten by adding to S exactly those
elements of M that are needed to make a submodule.
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