MATH 541: Abstract Algebra Prof. Ram, Fall 2003

HOMEWORK 3 DUE October 14, 2003

Problem A. Understanding definitions

- (1) Define conjugate, conjugacy class, and centralizer and normalizer of an element and explain what these have to do with actions.
- (2) Let G be a group.
 - (a) Define the normalizer of a subset of G.
 - (b) Explain how the centralizer of a subset of G relates to group actions.
 - (c) Let H be a subgroup of G. Show that the normalizer of H is the largest subgroup of G which contains H as a normal subgroup.
- (3) Let G be a group.
 - (a) Define the centralizer of a subset of G.
 - (b) Explain how the centralizer of a subset of G relates to group actions.
- (4) Let G be a group. If S is a subset of G let $Z_G(S)$ denote the centralizer of S in G. If $g \in G$ let $Z_G(g)$ denote the centralizer of g and let C_g denote the conjugacy class of g.
 - (a) Show that $g \in Z(G)$ if and only if $Z_G(g) = G$.
 - (b) Show that $g \in Z(G)$ if and only if $\mathcal{C}_q = \{g\}$.
 - (c) Show that $Z_G(G) = Z(G)$, where Z(G) is the center of G.
- (5) State and prove the class equation.

Problem B. Examples of groups

- (1) Let ℓ be a positive integer.
 - (a) Find the orders, centralizers, and conjugacy classes of the elements in the group $\mathbb{Z}/\ell\mathbb{Z}$.
 - (b) Find the orders, centralizers, and conjugacy classes of the elements in the group \mathbb{Z} .
- (2) For r equal to 2,3,4,5 and 6, find the orders, centralizers, and conjugacy classes of the elements of the group $I_2(r)$.
- (3) Let r be a positive integer. Describe the orders, centralizers, and conjugacy classes of the elements of the group $I_2(r)$.

- (4) For n = 1, 2, 3, 4, 5 find the orders, centralizers, and conjugacy classes of the elements of the group S_n .
- (5) For n = 1, 2, 3, 4, 5 find the orders, centralizers, and conjugacy classes of the elements of the group A_n .
- (6) Let n be a positive integer. Describe the orders, centralizers, and conjugacy classes of the elements of the group S_n .
- (7) Let n be a positive integer. Describe the orders, centralizers, and conjugacy classes of the elements of the group A_n .
- (8)
- (a) Describe the orders, centralizers, and conjugacy classes of the elements of the group $G_{2,1,1}$.
- (b) Describe the orders, centralizers, and conjugacy classes of the elements of the group $G_{2,1,2}$.
- (c) Describe the orders, centralizers, and conjugacy classes of the elements of the group $G_{2,1,3}$.
- (9)
- (a) Describe the orders, centralizers, and conjugacy classes of the elements of the group $G_{2,1,4}$.
- (b) Describe the orders, centralizers, and conjugacy classes of the elements of the group $G_{2,1,n}$.
- (10) Let r and n be positive integers. Describe the orders, centralizers, and conjugacy classes of the elements of the group $G_{r,1,n}$.
- (11) Let n be a positive integer.
 - (a) Describe the orders, centralizers, and conjugacy classes of the elements of the group $G_{2,1,n}$.
 - (b) Describe the orders, centralizers, and conjugacy classes of the elements of the group $G_{2,2,n}$.
- (12) Let r, p and n be positive integers such that p divides r. Describe the orders, centralizers, and conjugacy classes of the elements of the group $G_{r,p,n}$.
- (13) Describe the orders, centralizers, and conjugacy classes of the elements of the tetrahedral group.
- (14) Describe the orders, centralizers, and conjugacy classes of the elements of the octahedral group.
- (15) Describe the orders, centralizers, and conjugacy classes of the elements of the icosahedral group.

- (16) Describe the orders, centralizers, and conjugacy classes of the elements of the group $GL_n(\mathbb{C})$.
- (17) Analyze the class equation for the groups \mathbb{Z} and $\mathbb{Z}/\ell\mathbb{Z}$, where ℓ is a positive integer.
- (18) Analyze the class equation for the groups $I_2(r)$.
- (19) Analyze the class equation for the groups $G_{2,1,1}$, $G_{2,1,2}$, $G_{2,1,3}$, $G_{2,1,4}$, and $G_{2,1,n}$.
- (20) Analyze the class equation for the groups $G_{r,1,n}$.
- (21) Analyze the class equation for the groups $G_{2,2,3}$, $G_{2,2,n}$, and $G_{r,p,n}$.
- (22) Analyze the class equation for the groups S_3 , S_4 , S_5 and S_n ,
- (23) Analyze the class equation for the groups A_3 , A_4 , A_5 , and A_n .
- (24) Analyze the class equation for the tetrahedral group.
- (25) Analyze the class equation for the octahedral group.
- (26) Analyze the class equation for the icosahedral group.
- (27) Analyze the class equation for the group $GL_n(\mathbb{C})$.