MATH 541: Abstract Algebra Prof. Ram, Fall 2003

HOMEWORK 1 DUE September 8 and 15, 2003

Problem A. Understanding definitions

- (1) Define operation, associative, commutative, identity and inverse.
- (2) Define set, subset, and equal (for sets).
- (3)
- (a) Define function, injection, surjection, and bijection.
- (b) Give an example of a function, and of something that looks like a function but is not a function.

(4)

- (a) Define function, injection, surjection, bijection and image.
- (b) Show that if $f: S \to T$ is a function then f is surjective if and only if $\operatorname{im} f = T$.
- (5) Define inverse function and show that a function f is a bijection if and only if the inverse function to f exists.
- (6) Define group, subgroup and multiplication table. Why isn't $\{0, 1, 2, 3, 4, 5\}$ a group?
- (7)
- (a) Define center, abelian group, and finite group.
- (b) Show that the center of a group G is a subgroup of G.
- (c) Let G be a group. Show that G is abelian if and only if G = Z(G).
- (8) Show that the identity of a group is unique.
- (9) Show that the inverse of an element g in a group G is unique.
- (10) Explain why 0 + 0 = 0, $1 \cdot 1 = 1$, -(-5) = 5 and 1/(1/3) = 3, and show that if g_1, g_2 are elements of a group G, then $(g_1g_2)^{-1} = g_2^{-1}g_1^{-1}$.
- (11)
- (a) Define the order of a group and the order of an element of a group.
- (b) Give an example of a group, and list the order of the group and the orders of all its elements.

- (12) Let G be a group and let M be the multiplication table of G. Let $g \in G$. Show that each row and each column of M contains g exactly once.
- (13) Let H_1 and H_2 be subgroups of a group G.
 - (a) Show that $H_1 \cap H_2$ is a subgroup of G.
 - (b) Show that $H_1 \cup H_2$ is a subgroup of G if and only if $H_1 \subseteq H_2$ or $H_2 \subseteq H_1$.
- (14)
- (a) Define the direct product of groups.
- (b) Let H_1 and H_2 be subgroups of groups G_1 and G_2 , respectively. Show that $H_1 \times H_2$ is a subgroup of $G_1 \times G_2$.
- (15) Let G be a group and let S be a subset of G. Show that the subgroup generated by S is unique (if it exists).
- (16) Let G be a group and let S be a subset of G. Show that the subgroup generated by S exists.

(17)

- (a) Define group homomorphism.
- (b) Show that if $\phi: G \to H$ is a group homomorphism then $f(1_G) = 1_H$, where 1_G is the identity element of G and 1_H is the identity element of H.
- (c) Show that if $\phi: G \to H$ is a group homomorphism and $g \in G$ then $f(g)^{-1} = f(g^{-1})$.

- (a) Define group homomorphism, isomorphism, kernel and image.
- (b) Show that the kernel and the image of of a group homomorphism are subgroups.
- (19)
- (a) Define group homomorphism, isomorphism, kernel and image.
- (b) Show that a group homomorphism ϕ is injective if and only if ker $\phi = \{1\}$.
- (c) Show that a group homomorphism $\phi: G_1 \to G_2$ is surjective if and only if $\operatorname{im} \phi = G_2$.
- (d) Show that a group homomorphism is an isomorphism if and only if it is both injective and surjective.
- (20) Show that, in the exact sequence

$$\{1\} \longrightarrow K \xrightarrow{g} G \xrightarrow{f} H \longrightarrow \{1\}$$

the homomorphism g is always injective and the homomorphism f is always surjective.

(21)

⁽¹⁸⁾

(a) Let *H* be a subgroup of a group *G*. The **canonical injection** is the map $\iota: H \to G$ given by

$$\begin{array}{ccccccc} \iota : & H & \longrightarrow & G \\ & h & \longmapsto & h \, . \end{array}$$

Show that ι is a well defined injective group homomorphism.

(b) Let $f: G \to H$ be a group homomorphism. Show that

$$\{1\} \longrightarrow \ker f \xrightarrow{\iota} G \xrightarrow{f} \operatorname{im} f \longrightarrow \{1\}$$

is an exact sequence.

(22) Let $f: G \to H$ be a group homomorphism. Let M be a subgroup of G and define

$$f(M) = \{ f(m) \mid m \in M \}.$$

- (a) Show that f(M) is a subgroup of H.
- (b) Show that $f(M) \subseteq \operatorname{im} f = f(G)$.
- (23) Let $f: G \to H$ be a group homomorphism. Let N be a subgroup of H and define

$$f^{-1}(N) = \{ g \in G \mid f(g) \in N \}.$$

- (a) Show that $f^{-1}(N)$ is a subgroup of G.
- (b) Show that $f^{-1}(N) \supseteq \ker f = f^{-1}(1)$.
- (24) Let $f: G \to H$ be a group homomorphism.
 - (a) Let M be a subgroup of G and show that $M \subseteq f^{-1}(f(M))$.
 - (b) Give an example of a homomorphism $f: G \to H$ and a subgroup m of G such that $M \neq f^{-1}(f(M))$.
 - (c) Show that if M is a subgroup of G that contains ker f then $M = f^{-1}(f(M))$.
- (25) Let $f: G \to H$ be a group homomorphism.
 - (a) Let N be a subgroup of H and show that $f(f^{-1}(N)) \subseteq N$.
 - (b) Give an example of a homomorphism $f: G \to H$ and a subgroup N of H such that $N \neq f(f^{-1}(N))$.
 - (c) Show that if N is a subgroup of H and $N \subseteq \inf f$ then $N = f(f^{-1}(N))$.
- (26) Let $f: G \to H$ be a group homomorphism. Show that there is a bijection between subgroups of G that contain ker f and subgroups of H that are contained in $\inf f$.
- (27) Define relation, transitive, symmetric and reflexive.
- (28) Define partial order, total order and well ordering.
- (29) Define Hasse diagram and lattice.

(30)

- (a) Define equivalence relation, equivalence classes partition (of a set) and partition (of a positive integer n).
- (b) Show that the equivalence classes of an equivalence relation form a partition.

Problem B. Examples of groups

- (1) Define \mathbb{Z} and $\mathbb{Z}/\ell\mathbb{Z}$.
- (2) Define the Klein 4-group, the symmetric group S_3 and the quaternion group.
- (3) Define the cyclic groups and the dihedral groups.
- (4) Define the symmetric groups and the alternating groups.
- (5) Define the general linear groups, the special linear groups, the orthogonal groups, the special orthgonal groups, the symplectic groups, the unitary groups, and the special unitary groups.
- (6) Define the groups $G_{r,1,n}$ and the groups $G_{r,p,n}$.
- (7) Define the tetrahedral group, the octahedral group, and the icosahedral group.
- (8) Find all groups of order ≤ 4 by determining their multiplication tables.
- (9) Compute the multiplication tables of \mathbb{Z} and $\mathbb{Z}/\ell\mathbb{Z}$, where ℓ is a positive integer.
- (10) Write out the multiplication tables for $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$ and for S_3 .
- (11) Give an example of an abelian group and a nonabelian group.
- (12) Give an example of an infinite cyclic group and a finite cyclic group.
- (13) Give two examples of finite dihedral groups. Be sure to show that your examples are different.
- (14) Give three examples of abelian groups of order 8. Be sure to show that your examples are all different.
- (15) Show that the quaternion group is not isomorphic to the dihedral group of order 8.
- (16) Show that $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$ and S_3 are dihedral groups.

(17) Let G be a cyclic group. Show that

$$G \cong \begin{cases} \mathbb{Z}, & \text{if } G \text{ is infinite,} \\ \mathbb{Z}/\ell\mathbb{Z}, & \text{if } |G| = \ell. \end{cases}$$

- (18) Let G_1 and G_2 be finite dihedral groups. Show that $G_1 \cong G_2$ if and only if G_1 and G_2 have the same order.
- (19) Show that any two infinite dihedral groups are isomorphic.
- (20)
- (a) Let $i = \sqrt{-1}$ in the complex numbers $\mathbb{C} = \{a + bi \mid a \in \mathbb{R}, b \in \mathbb{R}\}$. Show that $\langle i \rangle \cong \mathbb{Z}/4\mathbb{Z}$.
- (a) Show that every nonzero element of \mathbb{C} is invertible.
- (b) Show that every nonzero element of \mathbb{H} is invertible.
- (c) Show that \mathbb{C} is commutative and \mathbb{H} is not commutative.
- (21) Find the orders of the Klein 4-group, the symmetric group S_3 and the quaternion group.
- (22) Find the orders of the cyclic groups and the dihedral groups.
- (23) Find the orders of the symmetric groups and the alternating groups.
- (24) Find the orders of the tetrahedral, octahedral, and icosahedral groups.
- (25) Find the orders of the groups $G_{r,1,n}$ and $G_{r,p,n}$.
- (26) Show that $G_{r,1,1}$ is a cyclic group. Which one is it?
- (27) Show that $G_{r,r,2}$ is a dihedral group. Which one is it?
- (28) Show that $G_{1,1,n}$ is the symmetric group. Which one is it?
- (29) Show that $G_{2,1,3}$ is the octahedral group.
- (30) Find the centers of the cyclic groups and the dihedral groups.
- (31) Find the centers of the symmetric groups and the alternating groups.
- (32) Find the centers of the groups $GL_n(\mathbb{C})$ and $SL_n(\mathbb{C})$.
- (33) Find the centers of the groups $G_{r,1,n}$ and $G_{r,p,n}$.

(34) Show that the determinant

$$\begin{array}{cccc} \det & GL_n(\mathbb{C}) & \longrightarrow & GL_1(\mathbb{C}) \\ & g & \longmapsto & \det(g) \end{array}$$

is a group homomorphism.

(35)

- (a) Show that $\{z \in \mathbb{C} \mid z^n = 1\}$ is a cyclic group. (b) Draw the group $\{z \in \mathbb{C} \mid z^5\}$ in the complex plane.
- (36) Draw the sugroup lattices for the groups $\mathbb{Z}/28\mathbb{Z}$, $\mathbb{Z}/29\mathbb{Z}$, $\mathbb{Z}/30\mathbb{Z}$.
- (37) Draw the sugroup lattices for the groups $\mathbb{Z}/25\mathbb{Z}$, $\mathbb{Z}/26\mathbb{Z}$, $\mathbb{Z}/27\mathbb{Z}$.
- (38) Draw the sugroup lattices for the dihedral groups of orders 14, 15, 16, 18, and 20.
- (39) Draw the sugroup lattices for the symmetric groups S_3 and S_4 .
- (40) Draw the sugroup lattices of the tetrahedral group and the octahedral group.
- (41) Draw the sugroup lattice of the icosahedral group.