Introduction to Buildings and Combinatorial Representation Theory American Institute of Mathematics (AIM) March 26, 2007

Arun Ram
Department of Mathematics
University of Wisconsin
Madison, WI 53706
ram@math.wisc.edu

1 Weyl characters

Your favourite group G^{\vee} (probably $SL_3(\mathbb{C})$) corresponds to

$$W = \{\text{chambers}\}$$
 and
$$P^{\vee} = \{\text{dots}\}$$

The irreducible G^{\vee} -modules $L(\lambda^{\vee})$ are indexed by $\lambda^{\vee} \in (P^{\vee})^+$ and

$$\operatorname{char}(L(\lambda^\vee)) = \sum_{\mu^\vee \in P^\vee} \operatorname{Card}(B(\lambda^\vee)_{\mu^\vee} x^{\mu^\vee},$$

where

$$B(\lambda^{\vee})_{\mu^{\vee}} = \{\text{Littelmann paths of type } \lambda^{\vee} \text{ and end } \mu^{\vee}\}.$$

If

$$G = G(\mathbb{C}((t))), \qquad K = G(\mathbb{C}[[t]]), \quad \text{and} \quad U^- = \left\{ \begin{pmatrix} 1 & 0 \\ * & 1 \end{pmatrix} \right\}.$$

then G/K is the loop Grassmanian and

$$G = \bigsqcup_{\lambda^\vee \in (P^\vee)^+} K t_{\lambda^\vee} K \qquad \text{and} \qquad G = \bigsqcup_{\mu^\vee \in P^\vee} U^- t_{\mu^\vee} K.$$

The MV cycles of type λ^{\vee} and weight μ^{\vee} are the elements of

$$MV(\lambda^{\vee})_{\mu^{\vee}} = \{\text{irreducible components of } \overline{Kt_{\lambda^{\vee}}K \cap U^{-}t_{\mu^{\vee}}K} \},$$

and

$$\operatorname{char}(L(\lambda^{\vee})) = \sum_{\mu^{\vee}} \operatorname{Card}(MV(\lambda^{\vee})_{\mu^{\vee}}) x^{\mu^{\vee}}.$$

2 Hecke algebras

The spherical and affine Hecke algebras are

$$\tilde{H}_{\mathrm{sph}} = C(K \backslash G/K)$$
 and $\tilde{H} = C(I \backslash G/I)$,

where

$$\begin{array}{rcl} G &=& G(\mathbb{C}((t))) \\ & \cup & & \cup \\ K &=& G(\mathbb{C}[[t]]) & \stackrel{\Phi}{\longrightarrow} & G(\mathbb{C}) & \text{where} & B = \left\{ \begin{pmatrix} * & * \\ 0 & \cdot & * \end{pmatrix} \right\}. \\ & \cup & \cup & \cup & \cup \\ I &=& \Phi^{-1}(B) & \longrightarrow & B, \end{array}$$

The Satake map is

$$\begin{array}{ccccc} \mathbb{C}[X]^W = Z(\tilde{H}) & \stackrel{\sim}{\longrightarrow} & Z(\tilde{H}) \mathbf{1}_0 = \mathbf{1}_0 \tilde{H} \mathbf{1}_0 = \tilde{H}_{\mathrm{sph}} \\ f & \longmapsto & f \mathbf{1}_0 \\ P_{\lambda^\vee} & \leftarrow & \mathbf{1}_0 X^{\lambda^\vee} \mathbf{1}_0 = \chi_{Kt_{\lambda^\vee} K} & \text{```obvious'' basis} \end{array}$$

and $P_{\lambda^{\vee}}$ are the Hall-Littlewood polynomials.

$$P_{\lambda^{\vee}} = \sum_{\mu^{\vee} \in P^{\vee}} \operatorname{Card}_{q}(\mathcal{P}(\lambda^{\vee})_{\mu^{\vee}}) x^{\mu^{\vee}},$$

where

and

 $\mathcal{P}(\lambda^{\vee})_{\mu^{\vee}} = \{ \text{Hecke paths of type } \lambda^{\vee} \text{ and end } \mu^{\vee} \} \longleftrightarrow \{ \text{slices of } G/K \text{ in } Kt_{\lambda^{\vee}}K \cap U^{-}t_{\mu^{\vee}}K \}$

$$\operatorname{Card}_q(\mathcal{P}(\lambda^{\vee})_{\mu^{\vee}}) = \sum_{p \in \mathcal{P}(\lambda^{\vee})_{\mu^{\vee}}} (\# \text{ of } \mathbb{F}_q \text{ points in slice } p).$$

After normalization,

$$P_{\lambda^{\vee}}|_{q^{-1}=0} = \operatorname{char}(L(\lambda^{\vee})).$$

3 Buildings

The group B is a Borel subgroup of $G = G(\mathbb{C})$ and

$$G/B = \text{flag variety} = \text{building}.$$

The cell decomposition of G/B is

$$G = \bigsqcup_{w \in W} BwB.$$

Idea: The points of W are regions, or chambers.

$$W = \langle s_1, s_2 \mid s_1^2 = s_2^2 = 1, s_1 s_2 s_1 = s_2 s_1 s_2 \rangle$$

If $w = s_{i_1} \cdots s_{i_\ell}$ is a minimal length path to w then

$$BwB = \{x_{i_1}(c_1)s_{i_1}\cdots x_{i_\ell}(c_\ell)s_{i_\ell}B \mid c_1,\dots,c_\ell \in \mathbb{C}\},$$
 where $x_i(c) = 1 + cE_{i,i+1}$,

with $E_{i,i+1}$ the matrix with a 1 in the (i,i+1) entry and all other entries 0.

IDEA: The points of G/B are regions, or chambers.

Just as the building of W, the Coxeter complex, has relations

$$s_1 s_2 s_1 = s_2 s_1 s_2$$

the building of G/B also has relations

$$x_1(c_1)s_1x_2(c_2)s_2x_1(c_3)s_1 = x_2(c_3)s_2x_1(c_1c_3 - c_2)s_1x_2(c_3)s_2$$

An apartment is a subbuilding of G/B that looks like W.

The Borel subgroup of $G = G(\mathbb{C}((t)))$ is I and

G/I is the affine flag variety

with

$$G = \bigsqcup_{w \in \tilde{W}} IwI$$
, where $\tilde{W} = W \ltimes P^{\vee}$

is the affine Weyl group

The affine building G/I has sectors

since
$$G = \bigsqcup_{v \in \tilde{W}} U^- vI$$
.

4 MV polytopes

Let

$$T = \left\{ \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix} \right\} \quad \text{and let } V \text{ be a } T\text{-module}$$

with T-invariant inner product \langle , \rangle (such that $\langle v, v \rangle = 0 \Leftrightarrow v = 0$). Let

$$\mathfrak{h} = Lie(T) \qquad \text{and} \qquad \mathbb{P}V = \{[v] \mid v \in V, v \neq 0\},\$$

where $[v] = \text{span}\{v\}$. The moment map on $\mathbb{P}V$ is

$$\mu \colon \quad \mathbb{P}V \quad \to \quad \mathfrak{h}^* \\ [v] \quad \longmapsto \quad \mu_v \qquad \qquad \text{where} \qquad \mu_v(h) = \frac{\langle hv, v \rangle}{\langle v, v \rangle}.$$

Now let $V = L(\gamma)$ be a simple G-module $(G = G(\mathbb{C}))$ with highest weight vector v^+ . Then

$$B[v^+] = [v^+]$$
 and $G[v^+] \subseteq \mathbb{P}V$

is the image of G/B in $\mathbb{P}V$. The moment map on G/B (associated to γ) is

Joel (Kamnitzer)'s favourite case is G/K with $\gamma=\omega_0$ (the fundamental weight corresponding to the added node on the extended Dynkin diagram) and

 $\mu(MV \text{ cycle of type } \lambda^{\vee} \text{ and weight } \mu^{\vee}) = (MV \text{ polytope of type } \lambda^{\vee} \text{ and weight } \mu^{\vee})$

5 Tropicalization

Let
$$G = G(\mathbb{C}((t)))$$
.

$$\mathbb{C}((t)) = \{a_{\ell}t^{\ell} + a_{\ell+1}t^{\ell+1} + \dots \mid \ell \in \mathbb{Z}, a_i \in \mathbb{C}\}.$$

Points of G/I are

$$gI$$
, where $g = (g_{ij}), g_{ij} \in \mathbb{C}((t)).$

The valuation on $\mathbb{C}((t))$

$$v(a_{\ell}t^{\ell} + a_{\ell+1}t^{\ell+1} + \cdots) = \ell,$$

is like log

$$v(f_1f_2) = v(f_1) + v(f_2)$$
 and $v(f_1 + f_2) = \min(v(f_1), v(f_2)).$

Then v(gI) is a tropical point of v(G/I), the tropical flag variety. An amoeba, or tropical subvariety, is the image, under v, of a subvariety of G/I.