Translation Functors and the Shapovalov Determinant

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updated: 19 February 2015

This is an excerpt from the PhD thesis Translation Functors and the Shapovalov Determinant by Emilie Wiesner, University of Wisconsin-Madison, 2005.

Bibliography

[CPr1994] V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994. MR1358358

[DKa1992] C. DeConcini and V. Kac, Representations of quantum groups at roots of 1: reduction to the exceptional case, Infinite analysis, Part A, B (Kyoto, 1991), 141-149, Adv. Ser. Math. Phys., 16, 16 World Scientific Publishing, River Edge, NJ 1992.

[Dix1996] J. Dixmier, Enveloping algebras, Graduate Studies in Mathematics 11, American Mathematical Society, Providence, RI, 1996. ISBN: 0-8218-0560-6, MR1393197 (97c:17010)

[FFu1990] B.L. Feigin and D.B. Fuchs, Representations of the Virasoro algebra, Representation of Lie groups and related topics, Adv. Stud. Contemp. Math. 7, Gordon and Breach, New York, 1990, 465-554.

[Hum1978] J.E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics 9, Springer-Verlag, New York-Berlin, 1978.

[Isa1994] I. Martin Isaacs, Algebra: A Graduate Course, Brooks/Cole Publishing Co., Pacific Grove, CA, 1994.

[Jan1973] J.C. Jantzen, Darstellungen halbeinfacher algebraischer Gruppen und zugeordnete kontravariante Formen, Bonner math. Schriften 67 (1973).

[KRa1987] V.G. Kac and A.K. Raina, Bombay lectures on highest weight representations of infinite-dimensional Lie algebras, Advanced Series in Mathematical Physics, 2. World Scientific Publishing Co., Inc., Teaneck, NJ, 1987. xii+145 pp. MR1021978

[Kac1980] V.G. Kac, Highest weight representations of infinite-dimensional Lie algebras, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), pp. 299–304, Acad. Sci. Fennica, Helsinki, 1980. MR0562619

[Kac1104219] V. Kac, Infinite dimensional Lie algebras, Third edition. Cambridge University Press, Cambridge, 1990. xxii+400 pp. ISBN: 0-521-37215-1; 0-521-46693-8, MR1104219.

[Lus1990-4] G. Lusztig, Quantum groups at roots of 1, Geom. Dedicata 35 (1990), no. 1-3, 89–113. MR1066560

[MPi1995] R. Moody and A. Pianzola, Lie algebras with triangular decompositions, Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1995. MR1323858

[Nei1984] W. Neidhardt, Irreducible subquotients and imbeddings of Verma modules, Algebras Groups Geom. 1 (1984), no. 1, 127–136. MR0744733

[RCW1982] A. Rocha-Caridi and N.R. Wallach, Projective modules over graded Lie algebras. I, Math. Z. 180 (1982), no. 2, 151–177. MR0661694

[Sha1972] N.N. Shapovalov, On a bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra, Funct. Anal. Appl. 6 (1972), 307-312.

Notes and References

This is an excerpt from the PhD thesis Translation Functors and the Shapovalov Determinant by Emilie Wiesner, University of Wisconsin-Madison, 2005.

page history