Unipotent Hecke algebras: the structure, representation theory, and combinatorics

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updated: 26 March 2015

This is an excerpt of the PhD thesis Unipotent Hecke algebras: the structure, representation theory, and combinatorics by F. Nathaniel Edgar Thiem.

The representation theory of the Yokonuma algebra

General type

Let 1:U* be the trivial character, and let e1=1U uUuG (6.1) be the idempotent so that IndUG(1)Ge1. Then the Yokonuma algebra 1=EndG (Ge1) e1Ge1 has a basis {e1ve1|vN}, indexed byN=ξi,h|i=1,2,,,hT, where ξi=wi(1)=xi(1)x-αi(-1)xi(1), and T=hH(t)|H𝔥. Recall that hi(t)=hHαi(t).

The map T 1 h e1he1 is an injective algebra homomorphism (see Chapter 3 (E3)). For vN, write Tv=e1ve1 1,with Ti=Tξi,and h=Th,hT.

(Yokonuma). 1 is generated by Ti, i=1,,, and hT with relations Tih = si(h)Ti, Ti2 = q-1hi(-1) +q-1t𝔽q* hi(t)Ti, TiTjTi mij = TjTiTj mij , wheremij is the order ofsisj inW, ThTk = Thk,h,kT.

Proof.

Consider the product ξiξjN for ij. Note that e1ξiξje1 = e1(ααieα) ξiξjeαie1 (by (3.17)) = e1ξi (ααieα) eαieξje1 (by Chapter 3, (E1)) = e1ξie1ξje1 = (e1ξie1) (e1ξje1). Thus, if v=v1v2vrvTN decomposes according to si1si2sirW (see (3.4)), then Tv=e1v1 v2vrvTe1 =Ti1Ti2 TirvT. (6.2) The Yokonuma algebra is therefore generated by Ti, i=1,2,,, and hT.

The necessity of the relations is a direct consequence of (6.2), (N3), (UN3), and (N2) (the last three are from Chapter 3). For sufficiency, use a similar argument to the one used in the proof of Theorem 3.5 in [IMa1965].

A reduction theorem

Let Tˆ index the irreducible T-modules. Since T is abelian, all the irreducible modules are one-dimensional, and we may identify the label γTˆ of Vγ=-span{vγ} with the homomorphism γ:T* given by hvγ=γ(h) vγ,forhT. Suppose V is an 1-module. As a T-module V=γTˆ Vγ,whereVγ ={vV|hv=γ(h)v,hT}.

Note that 1=γTˆ 1τγ,where τγ=1T hTγ(h-1)h. (6.3) Recall the surjection π:NW of (3.3). Use this map to identify w=si1si2 sirW w=ξi1ξi2 ξirN,for rminimal. (6.4) Thus, the W-action on Tˆ (wγ)(h)= γ(w-1(h)), forwW,hT , andγTˆ, implies that for γTˆ, vγVγ, hTwvγ=Tww-1 (h)vγ=γ (w-1h)Twvγ for allhT. Thus, Tw(Vγ) Vwγ. (6.5) Let Wγ= {wW|w(γ)=γ} and 𝒯γ=τγ 1τγ= -span{τγTwτγ|wWγ}. (6.6)

Remarks 1. Since the identity of 1 is e1 and the identity of 𝒯γ is τγ, the algebra 𝒯γ is not a subalgebra of 1. In fact, 𝒯γEnd1(IndT1(γ)). 2. If V is an 1-module, then τγV=Vγ, and so𝒯γV= 𝒯γVγ. In particular, Vγ is an 𝒯γ-module.

Let V be an irreducible 1-module such that Vγ0. Then (a) Vγ is an irreducible 𝒯γ-module; (b) if M is an irreducible 𝒯γ-module, then 1𝒯γM is an irreducible 1-module; (c) the map Ind𝒯γ1(Vγ) = 1𝒯γVγ V Twvγ Twvγ is an 1-module isomorphism.

Proof.

(a) Let 0vγVγ. The irreducibility of V implies that 1vγ=V, so for any vVγ, there exist elements cw,ν such that v = wWνTˆ cw,νTwτνvγ (by (6.3)) = wWcw,γ Twτγvγ (by the orthogonality of characters ofT) = wWγcw,γ τγTwτγvγ. (by (6.5) and sincevVγ) Since an arbitrarily chosen v is contained in 𝒯γvγ, we have 𝒯γvγ=Vγ, making Vγ an irreducible 𝒯γ-module.

(b) Suppose M is an irreducible 𝒯γ-module. Let V = Ind𝒯γ1(M) = 1𝒯γM = -span { Twτνv| wW,νγTˆ,vM } = -span { Twv|wW/ Wγ,vM } where the last equality follows from τνv=τν τγv=τντγ v=0v,for νγ. Note that Vγ=-span{e1v|vM}M. In particular, Vγ is an irreducible 𝒯γ-module and 1Vγ=V.

Suppose V has a nontrivial 1-submodule V. Since V is induced from Vγ, there must by some Tw1 such that Tw(V) Vγ0. But V is an 1-module, so VVγ0. As an irreducible 𝒯γ-module VγV, and by the construction of V, 1V 1Vγ=V. Therefore, V contains no nontrivial, proper submodules, making V an irreducible 1-module.

(c) Follows from the proof of (b).

Let Tˆ/W be the set of W-orbits in Tˆ. Identify Tˆ/W with a set of orbit representatives, and for γTˆ/W, let Tˆγ index the irreducible modules of 𝒯γ.

The map {Irreducible1-modules} {Pairs(γ,λ),γTˆ/W,λ𝒯ˆγ} Ind𝒯γ1(𝒯γλ) (γ,λ) is a bijection.

The algebras 𝒯γ

Let B=UT be a Borel subgroup of G. Since B T uh h is a surjective homomorphism, γ:T* extends to a linear character γ of B given by γ(uh)=γ(h). Note that e1τγ=1B bBγ(b-1)b (e1as in (6.1)). Thus, 𝒯γ=τγe1 Ge1τγ EndG(IndBG(γ)) =(G,B,γ), where if γ is the trivial character 1B, then (G,B,1B) is the Iwahori-Hecke algebra.

Let γTˆ be such that Wγ is generated by simple reflections. Then 𝒯γ is presented by generators {Ti|siWγ} with relations Ti2 = { q-1+q-1 (q-1)Ti, ifγ(hαi(t)) =1for allt𝔽q*, γ(hαi(-1)) q-1, otherwise, TiTjTi mij = TjTiTj mij ,wheremij is the order ofsisj inW.

Proof.

This follows from Theorem 6.1 and (t𝔽q*hαi(t)) τγ=t𝔽q* γ(hαi(t))τγ= { (q-1)τγ, ifγ(hαi(t))= 1for allt𝔽q*, 0, otherwise.

The G=GLn(𝔽q) case

The Yokonuma algebra and the Iwahori-Hecke algebra

If ψμ=1 is the trivial character of U, then μ=(1n). Let Ti=e1sie1 and recall that hεj(t)=Idj-1(t)Idn-j. In the case G=GLn(𝔽q), 1 has generators Ti, hεj(t), for 1i<n, 1jn and t𝔽q* with relations Ti2 = q-1+q-1 hεi(-1) t𝔽q* hεi(t) hεi+1 (t-1)Ti, TiTi+1Ti = Ti+1TiTi+1, TiTj=TjTi, i-j>1, hεj(t)Ti = Tihεj(t), wherej=si(j), hεi(a) hεi(b) = hεi(ab), hεi(a) hεj(b)= hεj(b) hεi(a), a,b𝔽q*.

The Yokonuma algebra has a decomposition 1=γTˆ 1τγ,where τγ=1T hTγ(h-1)h.

Fix a total ordering on the set 𝔽ˆq*={φ1,φ2,,φq-1} of linear characters of 𝔽q*, such that φ1:𝔽q** is the trivial character. Suppose γTˆ. Since hεi(t)|t𝔽q*𝔽q*, γ(h) = γ(hε1(h1)) γ(hε2(h2)) γ(hεn(hn)), whereh=diag(h1,h2,,hn)T, = γ1(h1) γ2(h2) γn(hn), whereγi𝔽ˆq*. Thus, every γTˆ can be written γ=φi1φi2φin.

Let ν=(ν1,ν2,,νn)n with νi0. Write γν= φ1φ1 ν1terms φ2φ2 ν2terms φnφn νnterms andτν= τγν. (6.7) Note that the γν are orbit representatives of the W-action in Tˆ. Let Wν = {wW|w(γν)=γν}= Wν1Wν2Wνn, 𝒯ν = τν1τν= -span{τνTwτν|wWν}. Note that Wν is generated by its simple reflections.

If si is in the kth factor of Wν=Wν1Wν2Wνn, then write siWνk.

Let νn and νTw=τνTwτν for wWν. Then 𝒯ν is presented by generators { νTi| siWν } with relations νTi2 = q-1+φk (-1)q-1 (q-1)νTi, forsiWνk νTiνTi+1 νTi = νTi+1ν TiνTi+1 νTiνTj = νTjνTi, fori-j>1.

Proof.

Note that if siWν then γν(hεi(t))=γν(hεi+1(t)). Thus, the lemma follows from the Yokonuma algebra relations.

The Iwahori-Hecke algebra 𝒯1 is the algebra 𝒯n=(n), (recallφ1is the trivial character). In 𝒯n, write Ii=τ(n)Ti τ(n).

Let ν=(ν1,,νn)n. Index the generators Ii of 𝒯νk by {i|siWνk}. Then the map 𝒯ν 𝒯ν1𝒯ν2𝒯νn νTi φk(-1)11k-1termsIi11n-kterms,forsiWνk, is an algebra isomorphism.

Proof.

Let ν(k)= ( 0,,0k-1terms, νk, 0,,0n-kterms ) νk. Then the map 𝒯ν(k) 𝒯νk ν(k)Ti φk(-1)Ii is an algebra isomorphism by Lemma 6.5. Corollary 6.6 follows by applying this map to tensor products.

The representation theory of 𝒯ν

By Corollary 6.6, understanding the representation theory of 𝒯ν is the same as understanding the representation theory of the Iwahori-Hecke algebras 𝒯νi.

Let μn be a partition. A standard tableau of shape μ is a column strict tableau of shape μ and weight (1n) (i.e. every number between from 1 to n appears exactly once). Suppose P is a standard tableau of shape μ. Let cP(i) = the content of the box containingi, CP(i) = q-11-qcP(i)-cP(i+1). (6.8)

([Hoe1974, Ram1997, Wen1988]). Let G=GLn(𝔽q). Then (a) The irreducible 𝒯n-modules 𝒯nμ are indexed by partitions μn, (b) dim(𝒯nμ)=Card{standard tableauP|sh(P)=μ}, (c) Let 𝒯nμ=-span{vP|sh(P)=μ, wt(P)=(1n)}. Then IivP=q-1CP (i)vP+q-1 (1+CP(i)) vsiP where vsiP=0 if siP is not a column strict tableau.

Recall from Chapter 5, an 𝔽ˆq*-partition λ=(λ(φ1),λ(φ2),,λ(φq-1)) is a sequence of partitions indexed by 𝔽ˆq*. Let λ= λ(φ1)+ λ(φ2)++ λ(φq-1)= total number of boxes.

Let ν=(ν1,ν2,,νn)n with νi0 γν as in (6.7). A standard ν-tableau Q= ( Q(φ1), Q(φ2),, Q(φq-1) ) of shape λ is a column strict filling of λ by the numbers 1,2,3,,n such that (a) each number appears exactly once, (b) jQ(φk) if sjWνk. Let 𝒯ˆνλ = {standardν-tableauQ|sh(Q)=λ}, (6.9) 𝒯ˆν = {𝔽ˆq*-partitionλ|𝒯ˆνλ} = {𝔽ˆq*-partitionλ|λ(φi)=νi}. (6.10)

Example. If ν=(3,0,1,0), then γν=φ1φ1φ1φ3. The set 𝒯ˆν is { (
(φ1)
, (φ2),
(φ3)
, (φ4) )
, (
(φ1)
, (φ2),
(φ3)
, (φ4) )
, (
(φ1)
, (φ2),
(φ3)
, (φ4) )
}
,
and, for example, 𝒯ˆ ν (
(φ1)
,
(φ3)
)
= { (
1 2 3
(φ1)
, (φ2),
4
(φ3)
, (φ4) )
, (
1 3 2
(φ1)
, (φ2),
4
(φ3)
, (φ4) )
}

Let Q𝒯ˆνλ. Suppose sjWνk so that jQ(φk). Write Qj = φk, (6.11) cQ(j) = the content of the box containingjin Q(φk), (6.12) CQ(j) = q-11-qcQ(j)-cQ(j+1) (6.13)

Let ν=(ν1,ν2,,νn)n with νi0 and (ν)=n. Then (a) The irreducible 𝒯ν-modules 𝒯νλ are indexed by λ𝒯ˆν. (b) dim(𝒯νλ)=Card(𝒯ˆνλ). (c) Let 𝒯νλ=-span{vQ|Q𝒯ˆνλ}. Then νTivQ=q-1 Qj(-1)CQ(i) vQ+q-1Qj (-1)(1+CQ(i)) vsiQ, where vsiQ=0 if siQ is not a column strict tableau.

Proof.

Transfer the explicit action of Theorem 6.7 across the isomorphism 𝒯ν𝒯ν1𝒯ν2𝒯νn of Corollary 6.6.

The irreducible modules of 1

The goal of this section is to construct the irreducible 1-modules. According to Corollary 6.3 and (6.7), the map { Pairs(ν,λ),νn, νi0,(ν)=n,λ𝒯ˆν } {Irreducible1-modules} (ν,λ) Ind𝒯ν1(𝒯νλ) (6.14) is a bijection.

Let W/ν be the set of minimal length coset representatives of W/Wν. Then Ind𝒯ν1 (𝒯νλ) = 1𝒯ν 𝒯νλ = -span { TwvQ |wW/ν, sh (Q)=λ, wt (Q)=γν } . (6.15) Note that the map {Pairs(w,Q),wW/ν,QTˆνλ} {tableauQ|sh(Q)=λ, wt(Q)=(1n)} (w,Q) wQ (6.16) is a bijection (since wW/ν implies w preserves the relative magnitudes of the entries in Q(φ) for all φ). For example, under this bijection (
, (
1 3 2 4
(φ1)
,
5 6
(φ2)
,
7
(φ3)
)
)
(
2 6 4 7
(φ1)
,
3 5
(φ2)
,
1
(φ3)
)
(since 2<3 in Q(φ1) on the left side, 4<6 in Q(φ1) on the right side). Write vwQ=TwvQ. If λ=n, then let ˆ1λ = {tableauQ|sh(Q)=λ, wt(Q)=(1n)}, (6.17) ˆ1 = { 𝔽ˆq* -partitionsλ| λ=n } . (6.18)

Remarks. 1. In the notation of Chapter 5, ˆ1= {Θ-partitionλ|ˆ1λ}. 2. The map {Pairs(ν,λ),νn,νi0,(ν)=n,λ𝒯ˆν} ˆ1 (ν,λ) λ is a bijection, so by (6.14), ˆ1 indexes the irreducible 1-modules.

Suppose Q is a tableau of shape λ and weight (1n). As in (6.11)-(6.13), if Q(φ) has the box containing j, then write Qj = φ, cQ(j) = the content of the box containingjin Q(φ), CQ(j) = q-11-qcQ(j)-cQ(j+1).

(a) The irreducible 1-modules 1λ are indexed by λˆ1. (b) dim(1λ)=Card(ˆ1λ). (c) Let 1λ=-span{vQ|Qˆ1λ} as in (6.15) and (6.17). Then hvQ = Q1(h1) Q2(h2) Qn(hn)vQ, forh=diag (h1,h2,,hn) T, TivQ = { q-1vsiQ, ifQi Qi+1, Qi(-1)q-1 CQ(i)vQ+ Qi(-1)q-1 (1+CQ(i)) vsiQ, ifQi= Qi+1, vsiQ, ifQi Qi+1, where vsiQ=0 if siQ is not a column strict tableau.

Proof.

(a) follows from Remark 2, and (b) follows from (6.15) and (6.17).)

(c) Directly compute the action of 1 on 1λ= Ind𝒯ν1 (𝒯νλ)= -span {TwvQ|wW/λ,Q𝒯ˆνλ} For 1i<n, if (siw)<(w), then TiTwvQ = Ti2Tsiw vQ = q-1Tsiw vQ+q-1hεi (-1)t𝔽q* hεi(t) hεi+1 (t-1)TwvQ = q-1TsiwvQ +q-1(wQ)i(-1) t𝔽q* (wQ)i(t) (wQ)i+1(t-1) TwvQ Since (siw)<(w) can hold only if (wQ)i(wQ)i+1, the orthogonality of characters implies TiTwvQ=q-1 TsiwvQ+0. (6.19) If (siw)>(w), then there are two cases:

Case 1: (siwsj)<(siw) for some sjWγ,

Case 2: (siwsj)>(siw) for all sjWγ.

In Case 1, TiTwvQ = TsiwvQ = TsiwsjTj vQ = Tsiwsj TjvQ = Tsiwsj Qj(-1)q-1 CQ(j)vQ+ Qj(-1)q-1 (1+CQ(j)) vsjQ = Qj(-1)q-1 CQ(j)Tsiwsj vQ+Qj(-1) q-1(1+CQ(j)) TsiwsjvsjQ. (6.20) In Case 2, TiTwvQ= TsiwvQ. (6.21) Make the identification of (6.16) in equations (6.19), (6.20), and (6.21) to obtain the 1-action on 1λ.

Sample Computations. If n=10 for 1, then T1 v (
3 5 10 4 7
(φ1)
,
1 6 8
(φ2)
,
2 9
(φ3)
)
= v (
3 5 10 4 7
(φ1)
,
2 6 8
(φ2)
,
1 9
(φ3)
)
,
T2 v (
3 5 10 4 7
(φ1)
,
1 6 8
(φ2)
,
2 9
(φ3)
)
= q-1 v (
2 5 10 4 7
(φ1)
,
1 6 8
(φ2)
,
3 9
(φ3)
)
,
T3 v (
3 5 10 4 7
(φ1)
,
1 6 8
(φ2)
,
2 9
(φ3)
)
= -φ1(-1)q-1 v (
3 5 10 4 7
(φ1)
,
1 6 8
(φ2)
,
2 9
(φ3)
)
+0 ,
T4 v (
3 5 10 4 7
(φ1)
,
1 6 8
(φ2)
,
2 9
(φ3)
)
= φ1(-1)q q+1 v (
3 5 10 4 7
(φ1)
,
1 6 8
(φ2)
,
2 9
(φ3)
)
+φ1(-1) (q-1qq+1) v (
3 4 10 5 7
(φ1)
,
1 6 8
(φ2)
,
2 9
(φ3)
)
.

A Character Table 1 for n=2: 1
a b
a b
(
(φi)
)
φi(ab) φi(-ab)
(
(φi)
)
φi(ab) -φi(-ab)q-1
(
(φi)
,
(φi)
)
φi(a)φj(b)+φi(b)φj(a) 0

Notes and References

This is an excerpt of the PhD thesis Unipotent Hecke algebras: the structure, representation theory, and combinatorics by F. Nathaniel Edgar Thiem.

page history