Unipotent Hecke algebras: the structure, representation theory, and combinatorics

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updated: 26 March 2015

This is an excerpt of the PhD thesis Unipotent Hecke algebras: the structure, representation theory, and combinatorics by F. Nathaniel Edgar Thiem.

Bibliography

[Bou2002] N. Bourbaki, Lie groups and Lie algebras: Chapters 4-6, Elements of mathematics, Springer, New York, 2002.

[Bum1998] D. Bump, Automorphic forms and representations, Cambridge University Press, ISBN-13: 978-0521658188

[Car1985] R.W. Carter, Finite groups of Lie Type: Conjugacy Classes and Complex Characters, J. Wiley and Sons, New York, 1985.

[Cha1976] B. Chang, Decomposition of Gelfand-Graev characters of GLn(q), Communications in Algebra 4 (1976), 375–401.

[CRe1981] C.W. Curtis and I. Reiner, Methods of Representation Theorey - With Applications to Finite Groups and Orders, Wiley-Interscience, New York, 1981.

[CSh1999] C. Curtis and K. Shinoda, Unitary Kloosterman sums and the Gelfand-Graev representation of GL2, Journal of Algebra 216 (1999), 431–447.

[Cur1988] C. Curtis, A further refinement of the Bruhat decomposition, Proc. Amer. Math. Soc. 102 no. 1 (1988) 37–42.

[Dem1965] M. Demazure, Schémas en groupes réductifs, Bulletin de la S.M.F. 93 (1965), 369–413.

[Dri1987] V.G. Drinfeld, Quantum Groups, Vol. 1 of Proceedings of the International Congress of Mathematicians, Berkley, California USA, 1986, Academic Press, 1987, pp. 798-820.

[GGr1962] I. M. Gelfand and M.I. Graev, Construction of irreducible representations of simple algebraic groups over a finite field, Soviet Mathematics Doklady 3 (1962), 1646–1649.

[Gre1955] J.A. Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80 (1955), 402-447.

[Hoe1974] P.N. Hoefsmit, Representations of Hecke algebras of finite groups with BN-pairs of classical type, PhD thesis, University of British Columbia, 1974.

[HRa1999] T. Halverson and A. Ram, Bitraces for GLn(𝔽q) and the Iwahori-Hecke algebra of type An-1, Indagationes Mathematicae 10 (1999), 247–268.

[Hum1972] J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York 1972.

[IMa1965] N. Iwahori, H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups, Publ. Math. I.H.E.S. 25 (1965) 5-48 or 237-280.

[Isa1994] I. Martin Isaacs, Algebra: A Graduate Course, Brooks/Cole Publishing Co., Pacific Grove, CA, 1994.

[Iwa1964] N. Iwahori, On the structure of a Hecke ring of a Chevalley group over a finite field, J. Fac. Sci. Univ. Tokyo Sect. 1, 10 (1964), 215-236.

[Jim1986] M. Jimbo, A q-analog of U(gl(N+1)), Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), no. 3, 247-252, MR0841713 (87k:17011)

[Jon1983] V. Jones, Index for subfactors, Invent. Math. 72 (1983), 1-25.

[Jon1987] V.F.R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. Math. 126 (1987), 335-388.

[Jon1989] V.F.R. Jones, On knot invariants related to some statistical mechanical models, Pacific Journal of Mathematics 137 (1989), 311-334.

[Kaw1975] N. Kawanaka, Unipotent elements and characters of finite Chevalley groups, Osaka Journal of Mathematics 12 (1975), 523–554.

[KLu1979] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184. MR81j:20066

[Knu1970] D. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific Journal of Mathematics 34 (1970), 709–727.

[LVo1983] G. Lusztig and D. Vogan, Singularities of closures of K-orbits on flag manifolds, Inventiones Mathematicae 21 (1983), 365–379.

[Mac1995] I.G. Macdonald, Symmetric functions and Hall polynomials, Oxford University Press, New York (second edition, 1995).

[Rai2002] J. Rainbolt, The irreducible representations of the Hecke algebras constructed from the Gelfand-Graev representations of GL(3,q) and U(3,q), Communications in algebra 30 (2002), 4085–4103.

[Ram1997] A. Ram, Seminormal representations of Weyl groups and Iwahori-Hecke algebras, Proc. London Math. Soc. (3) 75 (1997), 99-133.

[Sam1969] H. Samelson, Notes on Lie algebras, Van Nostrand Reinhold Mathematical Studies, vol. 23, Van Nostrand Reinhold, New York, 1969.

[Ste1967] R. Steinberg, Lectures notes on Chevalley groups, Yale University, (1967).

[Tit1966] J. Tits, Sur les constantes de sturcute et le théorème d’existence des algèbres de Lie semi-simples, Institut des Hautes Études Scientifiques, Publications Mathématiques 31 (1966), 21–58.

[Wen1988] H. Wenzl, Hecke algebras of type An and subfactors, Invent. Math. 92 (1988), no. 2, 349–383.

[Yok1968] T. Yokonuma, Sur le commutant d’une représentation d’un groupe de Chevalley fini, Journal of the Faculty of Science, University of Tokyo 15 (1968), 115–129.

[Yok1969] T. Yokonuma, Complément au mémoire “Sur le commutant d’une représentation d’un groupe de Chevalley fini”, Journal of the Faculty of Science, University of Tokyo 16 (1969), 147–148.

[Yok1969-2] T. Yokonuma, Sur le commutant d’une représentation d’un groupe de Chevalley fini II, Journal of the Faculty of Science, University of Tokyo 16 (1969), 65–81.

[Zel1981-2] A. Zelevinsky, Representations of finite classical groups, Springer Verlag, New York, 1981.

Notes and References

This is an excerpt of the PhD thesis Unipotent Hecke algebras: the structure, representation theory, and combinatorics by F. Nathaniel Edgar Thiem.

page history