p-adic analog of the Kazhdan-Lusztig Hypothesis

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 15 April 2014

Notes and References

This is an excerpt of the paper p-adic analog of the Kazhdan-Lusztig Hypothesis by A. V. Zelevinskii. Terrestrial Physics Institute, Academy of Sciences of the USSR. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 15, No. 2, pp. 9-21, April-June, 1981. Original article submitted November 27, 1980.

Literature cited

[Zel1980] A. Zelevinsky, Induced representations of 𝔭-adic groups II: On irreducible representations of GL(n), Ann. Sci. École Norm. Sup. (4) 13 (1980) 165–210.

[Zel1977] A. V. Zelevinskii, Classification of irreducible noncuspidal representations of the group GLn over a 𝔭-adic field, Funkts. Anal. Prilozhen., 11, No. 1, 67-68 (1977).

[Zel1977-2] A. V. Zelevinskii, the ring of representations of the group GL(n) over a 𝔭-adic field, Funkts. Anal. Prilozhen., 11, No. 3, 78-79 (1977).

[KLu1979] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184.

[KLu1980] D. Kazhdan and G. Lusztig, Schubert Varieties and Poincare Duality, preprint 1980.

[Dix1977] J. C. Dixmier, Enveloping Algebras, Elsevier (1977).

[BGG1976] I.N. Bernstein, I.M. Gel'fand and S.I. Gel'fand, On a certain category of 𝔤-modules, Funkts. Anal. Prilozhen., 10, No. 2, 1-8 (1976).

[GMa1968] M. Goreskii and R. MacPherson, Intersectio homology theory, Topology, 19, No. 2, 135-162 (1980).

[Ste1968] R. Steinberg, Lectures on Chevalley groups, Notes prepared by John Faulkner and Robert Wilson, Yale University, New Haven, CT, 1968.

[LVi1973] R. A. Liebler and M. R. Vitale, Ordering the partition characters of the symmetric group, J. Algebra, 25, No. 3, 487-489 (1973).

[Cur1980] C. W. Curtis, Truncation and duality in the character ring of a finite group of Lie type, J. Algebra, 62, 320-332 (1980).

[Alv1979] D. Alvis, The duality operation in the character ring of a finite Chevalley group, Bull. Am. Math. Soc., New Series, 1, 907-911 (1979).

[Pya1975] V. S. Pyasetskii, Linear Lie groups that act with a finite number of orbits, Funkts. Anal. Prilozhen., 9, No. 4, 85-86 (1975).

[Del1977] P. Deligne, Cohomologie Etale, Lect. Notes Math., Vol. 569, Springer-Verlag, Berlin-New York (1977).

page history