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Georgia Benkart completed her PhD in 1974 at Yale Uni-
versity, where she was the 30th of Nathan Jacobson’s 34
PhD students. From there she joined the faculty at the
University of Wisconsin–Madison, where she is now Pro-
fessor Emerita. Since her retirement from teaching she has
provided tremendous service to the mathematical commu-
nity, notably as President of the AWM and as an Associate
Secretary of the AMS for more than a decade.

In this article we highlight a few selected gems from her
extensive contribution to our field, organized in a roughly
chronological sequence of vignettes and images (which
can be read or viewed in any order). Our hope is that
we can capture and transmit a snapshot of Georgia’s rich
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mathematics, beautiful style, andwonderfulmathematical
personality.
Classifying simple Lie algebras. In algebra in 1974, the
air was thick with the classification of finite simple groups,
with new finite simple groups being discovered in a frenzy,
and the question always in the air:

“Have we found them all?”

At that time there was another such classification effort
beginning: a search for all of the finite-dimensional simple
Lie algebras.

In characteristic 0 the problem had been completed by
Cartan and Killing around 1894, resulting in the list of
Dynkin diagrams (Figure 1), which are in bijection with
the finite-dimensional simple Lie algebras. Over an alge-
braically closed field of characteristic 𝑝 > 7, four addi-
tional series occur:

• the Witt Lie algebras 𝑊(𝑚, 𝑛),
• the special Lie algebras 𝑆(𝑚, 𝑛)(1),
• the Hamiltonian Lie algebras 𝐻(2𝑚, 𝑛)(2),
• the contact Lie algebras 𝐾(2𝑚 + 1, 𝑛)(1).

The monograph by Benkart, Gregory, and Premet [BGP09]
provides complete details on these algebras. They are
known as the generalized Cartan-type Lie algebras, be-
cause they are derived from Cartan’s four infinite fam-
ilies (Witt, special, Hamiltonian, contact) of infinite-
dimensional complex Lie algebras. Cartan’s work set the
stage for Kostrikin–Šafarevič [KŠ66], who identified the
above four unifying families of simple Lie algebras living
in the Witt algebras. Earlier work of George Seligman
[Sel67] (also at Yale) emphasized the role and the impor-
tance of the Lie algebras of Cartan type. George was one of
Jacobson’s first students and Georgia was one of his last.

In 1966, Kostrikin and Šafarevič conjectured that the
Cartan-type Lie algebras and the Lie algebras coming from
characteristic 0 were all of the finite-dimensional simple
Lie algebras (over an algebraically closed field) in charac-
teristic 𝑝. The original formulation was for “restricted” Lie
algebras, and the general statement for finite-dimensional
simple Lie algebras is the “Generalized Kostrikin–Šafarevič
conjecture.”
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Type Dynkin diagram

𝐴𝑛−1 1 2 3 𝑛−2 𝑛−1

𝐵𝑛 1 2 3 𝑛−1 𝑛

𝐶𝑛 1 2 3 𝑛−1 𝑛

𝐷𝑛
2

1

3 4 𝑛−1 𝑛

𝐸6

1 3 4 5 6

2

𝐸7

1 3 4 5 6 7

2

𝐸8

1 3 4 5 6 7 8

2

𝐹4 1 2 3 4

𝐺2 1 2

Figure 1. The classification of finite-dimensional simple Lie
algebras in characteristic 0 is by the above Dynkin diagrams.
In characteristic 𝑝 > 3 there are five additional series of
algebras:
(1) the Witt Lie algebras 𝑊(𝑚, 𝑛),
(2) the special Lie algebras 𝑆(𝑚, 𝑛)(1),
(3) the Hamiltonian Lie algebras 𝐻(2𝑚, 𝑛)(2), and
(4) the contact Lie algebras 𝐾(2𝑚 + 1, 𝑛)(1);
and when 𝑝 = 5 there is one more additional series:
(5) the Melikyan Lie algebras 𝑀(2, 𝑛).

The study and proof of the Kostrikin–Šafarevič con-
jecture inspired work by many people around the world.
Georgia brought toWisconsin themindset of the Jacobson
school, emphasizing a module-theoretic approach to the
classification of algebraic systems. She joined a thriving
algebra community that included Marty Isaacs, Marshall
Osborn, Donald Passman, and Louis Solomon. Also in
the thick of the action around the Kostrikin–Šafarevič con-
jecture were Richard Block, Robert Wilson (who had been
a student of George Seligman at Yale), and Victor Kac, who
seemed to be everywhere, classifying all things Lie.

Benkart and Osborn [BO84] classified the finite-
dimensional simple Lie algebras of characteristic 𝑝 > 7

with a one-dimensional Cartan subalgebra, showing that
they are either 𝔰𝔩(2) or Albert–Zassenhaus Lie algebras (the
algebras 𝑊(1, 𝑛) and a family of Hamiltonian Lie alge-
bras). Their paper [BO90] studied the subalgebra 𝐿(𝛼) =
𝐿0⊕𝐿𝛼⊕𝐿2𝛼⊕⋯⊕𝐿(𝑝−1)𝛼 of a finite-dimensional sim-
ple Lie algebra 𝐿 determined by a root 𝛼. Modulo the rad-
ical, these one-sections 𝐿(𝛼) are isomorphic to either 𝔰𝔩(2),
𝑊(1, 1), or to a subalgebra of 𝐻(2, 1) containing 𝐻(2, 1)(2).

The results of Benkart and Osborn, along with their
proof techniques, were ultimately absorbed into the gen-
eral classification process. In the 1990s, Alexander Premet
and Helmut Strade pulled it all together, methodically
completing every step to a full classification.

Of course, as with any huge project, there were many
other important contributors in addition to those named
here. In the middle of it all, in 1980, Melikyan found a
new finite-dimensional simple Lie algebra in characteris-
tic 5, of dimension 125. That certainly put a wrench into
things, and increased the worry that, in those small 𝑝 cases,
there might exist even more fascinating and untamed alge-
bras that nobody had seen before. Fortunately, now the
whole project is finished for 𝑝 > 3 and is comprehensively
exposited in the 1100 pages of the three volumes of Hel-
mut Strade’s books, Simple Lie algebras over fields of positive
characteristic Vols. I, II, and III [Str17a,Str17b,Str13].

Quoting from the Math Review of Vol. III:

Kac’s recognition theorem is one major result
whose proof is not included in the book. All de-
tails for an arbitrary 𝑝 > 3 can be found in a
paper of G.M. Benkart, T.B. Gregory and Premet
[BGP09].

The Recognition Theorem was a hugely important step
on the long road to completion of the classification. To
quote from the introduction of [BGP09]: “The Recogni-
tion Theorem is used several times throughout the classi-
fication; its first application results in a complete list of
the simple Lie algebras of absolute toral rank two, and its
last application yields a crucial characterization of the Me-
likyan Lie algebras, thereby completing the classification.”
Finally those mysterious Melikyan algebras (they had mul-
tiplied in the interim and become awhole family) were un-
der control in the sense that the freedom that causes them
to appear had been pinpointed, and it had been checked
carefully that this freedom doesn’t cause other sporadic ex-
amples of this nature. The monograph of Benkart, Gre-
gory, and Premet is a wonderful work to read: thorough,
efficient, elementary, with precise definitions; it contains a
clear big-picture point of view. It is absolutely beautifully
written.
Infinite dimensions and magic squares. The structure of
a finite-dimensional Lie algebra 𝔤 corresponding to one of
the Dynkin diagrams in Figure 1 is governed by its root

376 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 69, NUMBER 3



Figure 2. Georgia Benkart on February 22, 1979 during a visit
to Indiana University. An image from the Paul R. Halmos
Photograph Collection.

system Δ, and 𝔤 decomposes into a direct sum of the form,

𝔤 = 𝔥 ⊕ (⨁
𝛼∈∆

𝔤𝛼), with dim(𝔤𝛼) = 1 (1)

and dim(𝔥) equal to the number of vertices in the Dynkin
diagram. Furthermore, the root system Δ has a geometric
description connecting it to the world of polytopes (see
Figure 3).

The blue and red vectors
form the root system Δ
of the finite-dimensional
Lie algebra 𝔤 = 𝔰𝔭6.

Figure 3. The root system Δ for a Lie algebra 𝔤 corresponding
to the Dynkin diagram 𝐶3. The root system Δ consists of the
vectors from the center to the vertices and from the center to
the midpoints of the edges of the octahedron. See equation
(1).

The second half of the 20th century produced a huge
expansion into the universe of infinite-dimensional Lie al-
gebras. The finite-dimensional Cartan-type Lie algebras
in Figure 1 are the characteristic 𝑝 versions of infinite-
dimensional characteristic 0 Lie algebras that arose from
Cartan’s study of “pseudogroups.” The study of Feynman
path integrals and the development of string theory also
produced new examples of infinite-dimensional Lie alge-
bras with interesting structure.

The underlying structure of the infinite-dimensional Lie
algebra 𝐿 comes from a finite-dimensional 𝔤 sitting in-
side 𝐿. This property was formalized in the early 1990s
by Berman and Moody when they defined Δ-graded Lie

algebras. A Δ-graded Lie algebra 𝐿 contains a subalgebra
𝔤 corresponding to a Dynkin diagram, and the whole Lie
algebra 𝐿 decomposes into root spaces 𝐿𝜇 indexed by the
root system Δ of 𝔤,

𝔤 ⊆ 𝐿 and 𝐿 = ⨁
𝛼∈∆∪{0}

𝐿𝛼.

Berman andMoody classified theΔ-graded Lie algebras for
which the Dynkin diagram does not have double or triple
edges by viewing them as Lie algebras analogous to 𝔰𝔩𝑛(𝑅),
where 𝑅 is an (associative) algebra. Favorite examples are
the polynomial rings 𝑅 = ℂ[𝑡1, … , 𝑡𝑛] and the Laurent poly-
nomial rings 𝑅 = ℂ[𝑡±11 , … , 𝑡±1𝑛 ], but 𝑅 can be much more
general.

Berman and Moody’s classification leads one to won-
der what happens when the Dynkin diagram has multiple
edges. EfimZelmanov had started to study these cases, and
in the course of his work gave a few lectures in the semi-
nar at the University of Wisconsin. One morning Geor-
gia came in and indicated that she thought that some of
the ideas from her thesis might apply to this question. It
didn’t take long before Georgia and Efim hunkered down
and quickly polished off all the other cases and completed
the amazing theorem that

all Δ-graded Lie algebras have the form
𝐿 = (𝔤 ⊗ 𝐴) ⊕ (𝑊 ⊗ 𝐵) ⊕ 𝐷,

(2)

where 𝔤 is a finite-dimensional Lie algebra with root sys-
tem Δ, 𝑊 is a small 𝔤-module, and 𝐷 is a subalgebra of
derivations that acts on the algebra 𝔞 = 𝐴 ⊕ 𝐵. Hence the
infinite-dimensional Lie algebra 𝐿 is something like that
in Figure 4, where 𝐴 and 𝐵 are visualized as appendages to
the root system Δ. The Benkart–Zelmanov paper [BZ96]
explaining how this works has become a classic.

Georgia didn’t stop there. There are two basic steps in
the classification of Δ-graded Lie algebras:

First: One has to show that the only possible forms
that a Δ-graded Lie algebra can take are 𝐿 = (𝔤⊗𝐴)⊕
(𝑊 ⊗ 𝐵) ⊕ 𝐷.
Second: After narrowing down the possibilities, one
has to show that they all occur in reality and do, in
fact, produce Δ-graded Lie algebras.

This second step is obtained by powerful constructions
which go by various names (see Tables 1 and 2): “Freuden-
thal’s magic square,” the “Tits–Kantor–Koecher construc-
tion,” “generalized octonions.” These constructions were
originally conceived to build the Lie algebras correspond-
ing to the Dynkin diagrams 𝐸6, 𝐸7, 𝐸8, 𝐹4, and 𝐺2. They
were vastly generalized by Benkart–Zelmanov to construct
Δ-graded Lie algebras and by Benkart–Elduque and El-
duque to extend to exceptional Lie superalgebras and Lie
algebras and Lie superalgebras in characteristic 𝑝.
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Figure 4. The infinite-dimensional Δ-graded Lie algebra
corresponding to the root system Δ for the Dynkin diagram
𝐶3. The octahedron provides the structure of the root system
Δ of the finite-dimensional Lie algebra 𝔤. The Δ-graded Lie
algebra 𝐿 = (𝔤 ⊗ 𝐴) ⊕ (𝑊 ⊗ 𝐵) ⊕ 𝐷 is built by fitting 𝔤-modules
𝐴 and 𝐵 into sockets on the mother board 𝔤 labeled by the
elements of Δ. See (2).

T(𝐶, 𝐽) 𝐻3(𝔽) 𝐻3(𝔽2) 𝐻3(𝑀2(𝔽)) 𝐻3(𝐶(𝔽))
𝔽 𝐴1 𝐴2 𝐶3 𝐹4
𝔽2 𝐴2 𝐴2 ⊕𝐴2 𝐴5 𝐸6

𝑀2(𝔽) 𝐶3 𝐴3 𝐷6 𝐸7
𝐶(𝔽) 𝐹4 𝐸6 𝐸7 𝐸8

Table 1. The Tits–Kantor–Koecher construction. In this table
𝔽2 = 𝔽 × 𝔽, 𝑀2(𝔽) denotes the algebra of 2 × 2 matrices with
entries from a field 𝔽, and 𝐻3(𝐶′) is the Jordan algebra of 3 × 3
Hermitian matrices over the unital composition algebra 𝐶′.

𝔤(𝐶, 𝐶′) 1 2 4 8
1 𝐴1 𝐴2 𝐶3 𝐹4
2 𝐴2 𝐴2 ⊕𝐴2 𝐴5 𝐸6
4 𝐶3 𝐴3 𝐷6 𝐸7
8 𝐹4 𝐸6 𝐸7 𝐸8

Table 2. Freudenthal’s magic square or the symmetric
(Vinberg) construction. The rows are indexed by dim(𝐶), and
the columns are indexed by dim(𝐶′).

The construction has two forms: the first method is to
take a Jordan algebra 𝐽 and a composition algebra 𝐶 and
twist them together to get a Lie algebra 𝐿 = T(𝐶, 𝐽). The
other version of the construction (introduced by Vinberg)
builds the Lie algebra 𝐿 from two composition algebras
𝐶 and 𝐶′. In this version, the symmetry of Freudenthal’s
magic square is embedded into the construction.

The wonderful article of Elduque in the Tits 80th birth-
day volume [Eld11] provides an accessible survey of the
various constructions of Freudenthal’s magic square, along
with recent advances in the theory involving Georgia and
her coauthors and a nice entrée into open questions
and current research in this vein. The original paper of
Benkart–Zelmanov [BZ96] classified Δ-graded Lie algebras
for the cases where the Dynkin diagram of Δ is 𝐵𝑟, 𝐶𝑟, 𝐹4,

and 𝐺2. The AMS Memoir of Allison, Benkart, and Gao
[ABG02] provides an amazing resource for understand-
ing all parts of the classification of Δ-graded Lie algebras,
the analysis of their derivations, central extensions and in-
variant forms, and their constructions, including the Tits–
Kantor–Koecher constructions.
Elemental Lie algebras. Imagine that it is the early 1800s
and you are Dalton, or Gay-Lussac, or Avogadro, trying to
figure out how atoms combine to make molecules. There
are two fundamental problems to solve:

(a) What are the individual elements?
(b) How do they combine to make molecules?

Now imagine that it is the turn of the 21st century and you
are Georgia Benkart trying to figure out how Lie algebras
are built. There are two fundamental problems:

(a) What are the littlest Lie algebras?
(b) How do they combine to make larger Lie algebras?

A motivating phenomenon is that all finite-dimensional
simple Lie algebras 𝔤 (in characteristic 0) and all Kac–
Moody Lie algebras are constructed from the little Lie al-
gebras 𝔰𝔩2 glued together appropriately.

Letting [𝑎, 𝑏] = 𝑎𝑏 − 𝑏𝑎,

𝔰𝔩2 = {(𝑎1 𝑎2
𝑎3 −𝑎1

)} = span{𝑥, 𝑦, ℎ},

where

𝑥 = (0 1
0 0) , 𝑦 = (0 0

1 0) , ℎ = (1 0
0 −1) ,

and
[𝑥, 𝑦] = ℎ, [ℎ, 𝑥] = 2𝑥, [ℎ, 𝑦] = −2𝑦.

Another little Lie algebra is the three-dimensional Heisen-
berg Lie algebra

H = {(
0 𝑎1 𝑎3
0 0 𝑎2
0 0 0

)} = span{𝑥, 𝑦, ℎ},

where

𝑥 = (
0 1 0
0 0 0
0 0 0

) , 𝑦 = (
0 0 0
0 0 1
0 0 0

) ,

ℎ = (
0 0 1
0 0 0
0 0 0

) ,

and
[𝑥, 𝑦] = ℎ, [ℎ, 𝑥] = 0, [ℎ, 𝑦] = 0.

These algebras are strikingly similar in presentation, but
different in application. If one has these examples inmind,
then it is not very surprising that Georgia has sequences
of papers engaged in the study of families of “elemental”
algebras over a field 𝔽 :
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(A) the parametric family

𝐴ℎ, generated by 𝑥 and 𝑦 with

[𝑥, 𝑦] = ℎ, where ℎ ∈ 𝔽[𝑥], and (3)

(B) the down-up algebras [BR98], depending on parameters
𝛼, 𝛽, 𝛾 ∈ 𝔽:

𝐴(𝛼, 𝛽,𝛾), generated by 𝑢 and 𝑑 with

𝑑2𝑢 = 𝛼𝑑𝑢𝑑 + 𝛽𝑢𝑑2 + 𝛾𝑑 and

𝑑𝑢2 = 𝛼𝑢𝑑𝑢 + 𝛽𝑢2𝑑 + 𝛾𝑢.
(4)

If 𝛾 = 0, 𝛽 = −1, and 𝛼 = 2, then 𝑑2𝑢 − 2𝑑𝑢𝑑 + 𝑢2𝑑 = 0,
and we recover the Heisenberg algebra. This is because
in H, the relation 0 = [ℎ, 𝑥] expands to 0 = ℎ𝑥 − 𝑥ℎ =
[𝑥, 𝑦]𝑥 − 𝑥[𝑥, 𝑦] = (𝑥𝑦 − 𝑦𝑥)𝑥 − 𝑥(𝑥𝑦 − 𝑦𝑥) = 𝑥𝑦𝑥 − 𝑦𝑥2 −
𝑥2𝑦 + 𝑥𝑦𝑥 = −(𝑥2𝑦 − 2𝑥𝑦𝑥 + 𝑦𝑥2).

⋮
𝑢𝑑

𝑢𝑑

𝑢𝑑

⋮

𝑢𝑑

𝑢𝑑

𝑢𝑑

⋮

⋮
𝑢𝑑

𝑢𝑑

𝑢𝑑

highest weight lowest weight doubly infinite

𝑢

𝑢

𝑢 𝑑𝑢𝑑

𝑢𝑑 𝑢

𝑑

𝑢 𝑑

finite-dimensional

Figure 5. Irreducible modules for the down-up algebras
𝐴(𝛼, 𝛽, 𝛾). Up to constants depending on the parameters 𝛼, 𝛽, 𝛾,
the 𝑢 operators act according the red edges and the 𝑑
operators act according the blue edges. The black vertex
represents the highest weight and the lowest weight,
respectively. See (4).

These algebras 𝐴ℎ and 𝐴(𝛼, 𝛽, 𝛾) capture the core under-
lying structures that join together to make larger Lie alge-
bras and their quantum groups. Georgia and her collab-
orators have done thorough studies of the properties of
these “little quantum groups” by determining all of the
following: automorphisms, inner automorphisms, cen-
ters, derivations, inner derivations, their Hochschild coho-
mology 𝐻𝐻1, prime ideals, primitive ideals, Duflo corre-
spondences between primitive ideals and annihilators of
simple modules, highest weight modules, lowest weight

modules, finite-dimensional modules, Whittaker mod-
ules, and also some tensor product rules for simple mod-
ules in case that wasn’t enough already.

Just to highlight a tiny portion of these results, Geor-
gia and her collaborators determine precisely all the possi-
ble “shapes” of irreducible modules of down-up algebras
𝐴(𝛼, 𝛽, 𝛾). These are shown pictorially in Figure 5.

Because the algebras 𝐴ℎ and 𝐴(𝛼, 𝛽, 𝛾) are so “ele-
mental” (generalizing the structures from 𝔰𝔩2 and three-
dimensional Hesenberg algebras), one has confidence that
they will be useful to mathematicians of the future in
the same way that intimate knowledge of Mendeleev’s
periodic table is indispensible for any post-19th century
chemist. The elemental Lie algebras are the atoms from
which larger Lie algebras and quantum groups that arise in
nature (i.e., many other parts of mathematics and physics)
are built.
Talking the talk: A Tale of Two Groups. In a Dickensian
plenary address at the 1994 Joint Math Meetings, Geor-
gia told the story of Schur–Weyl duality as a “Tale of Two
Groups.” See [Ben96]. The protagonist is a group 𝐺 acting
on tensor powers of a defining representation, and the an-
tagonist is the algebra of endomorphisms End𝐺(𝑉⊗𝑛) that
commute with 𝐺. See Figure 6.

𝑉⊗𝑛𝐺 End𝐺(𝑉⊗𝑛)
dim(𝑉)=𝑟

𝐺𝐿𝑟(ℂ)

𝑂𝑟(ℂ)

𝑆𝑟

⊆ ⊆

⊆ ⊆

ℂ𝑆𝑛

𝐵𝑛(𝑟)

𝑃𝑛(𝑟)

Figure 6. Schur–Weyl duality between the general linear
group 𝐺𝐿𝑟(ℂ) and the symmetric group 𝑆𝑛, between the
orthogonal group 𝑂𝑟(ℂ) and the Brauer algebra 𝐵𝑛(𝑟), and
between the symmetric group 𝑆𝑛 and the partition algebra
𝑃𝑛(𝑟).

In his groundbreaking thesis at the turn of the 20th
century, Schur used these methods to construct the irre-
ducible polynomial representations of the general linear
group 𝐺 = 𝐺𝐿𝑟(ℂ). He showed that End𝐺(𝑉⊗𝑛) is gener-
ated by ℂ𝑆𝑛, the algebra of permutations, displayed here
as a permutation diagram,

acting on 𝑉⊗𝑛 by tensor place
permutation.

In the 1930s Brauer showed that if 𝐺 = 𝑂𝑛(ℂ), then
End𝐺(𝑉⊗𝑛) is generated by the algebra of Brauer diagrams,
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which correspond to arbitrary matchings of 2𝑛 vertices,

acting on 𝑉⊗𝑛 by permutation
and contraction onto subspaces.

In about 1990, Paul Martin and Vaughan Jones showed
that if 𝐺 = 𝑆𝑟, the symmetric group, then the centralizer
End𝐺(𝑉⊗𝑛) is generated by set partition diagrams,

acting on 𝑉⊗𝑛 by permutation,
contraction, and fragmentation.

Set partition diagrams multiply with one another via con-
catenation:

=

Schur–Weyl duality allows information to flow back
and forth between the group 𝐺 and its centralizer
End𝐺(𝑉⊗𝑛). In an AMS Memoir [BBL90] Georgia and
her coauthors, Dan Britten and Frank Lemire, study finite-
dimensional representations of 𝐺𝐿𝑟(ℂ), 𝑆𝐿𝑟(ℂ), 𝑂𝑟(ℂ),
and 𝑆𝑝2𝑟(ℂ). They identify submodules for these 𝐺 inside
the tensor space 𝑉⊗𝑛 and use the combinatorics of the cen-
tralizer, for example,

Young tableaux

1 1 2 3 3
2 4 4 5
3 5 5 7
4 7 7
5 9

contraction mappings

and Young symmetrizers 𝑖

to understand stability properties for irreducible 𝐺-
modules as 𝑟 grows. Georgia [Ben90] and Sheila Sun-
daram [Sun90] each give elegant descriptions of these com-
binatorial methods in representation theory.

In 1989, in a collaboration [BCH+94] with five graduate
students at the University of Wisconsin, Georgia defined
the walled-Brauer algebra by determining the centralizer of
the𝐺𝐿𝑛(ℂ) on𝑉⊗𝑛⊗(𝑉∗)⊗𝑚, where𝑉∗ is the dualmodule
to 𝑉 . This time, the diagrams come with a left part and
a right part separated by a wall, with the constraint that
horizontal edges must cross the wall and top-to-bottom
edges must not cross the wall,

acting on 𝑉⊗𝑛 ⊗ (𝑉∗)⊗𝑚.

This collaboration, with Georgia leading a group of five
junior mathematicians at once, was unusual at the time.
Now, this is more common and one finds, among Geor-
gia’s recent papers, several team collaborations that in-
clude early-career researchers who have been stimulated by
Georgia’s leadership. Not only is Georgia a natural and in-
spiringmentor for these teams, but she initiated them long
before there were organizations like Banff (see Figure 11)
and MSRI helping so effectively to make it happen.
Walking the walk: The Representation Theory Way. In
2014, Georgia delivered the Noether Lecture at the Inter-
national Congress of Mathematicians in Seoul, Korea enti-
tled, “Walking on Graphs the Representation Theory Way.”
The motivating idea is that one can build

every irreducible 𝐺-module 𝑉 𝑖
from a single well-chosen 𝐺-module 𝑉 ,

by applying idempotents 𝑝𝑖 of End𝐺(𝑉⊗𝑛) to 𝑉⊗𝑛. The
idempotent

𝑝𝑖 = 𝑖

is a projection onto the irreducible𝐺 summand𝑉 𝑖. A pow-
erful way to study this is by building a graph that keeps
track of what happens when one tensors by 𝑉 . This repre-
sentation graph, orMcKay quiver, has vertices 𝑉 𝑖 and 𝑟 edges
𝑉 𝑖 → 𝑉 𝑗 if 𝑉 𝑗 appears 𝑟 times in 𝑉 𝑖 ⊗ 𝑉 . For example, if
𝐺 = {1, 𝑔, 𝑔2, … , 𝑔𝑛−1} is the cyclic group of order 𝑛, and 𝑉
is the two-dimensional representation of 𝐺 corresponding
to the matrix

𝑔 = (𝜔
−1 0
0 𝜔) , 𝜔 = 𝑒2𝜋𝑖/𝑛,

then the representation graph of the pair (𝐺, 𝑉) is

̂𝐴𝑛−1 0

1
23

4

5
6 7 𝑛−1

.

If 𝐺 = {𝑔, ℎ ∣ 𝑔2𝑛 = 1, ℎ2 = 𝑔𝑛, 𝑔ℎ = ℎ𝑔−1} is the binary
dihedral group of order 4𝑛 and 𝑉 is the two-dimensional
representation given by the matrices

𝑔 = (𝜁
−1 0
0 𝜁) , 𝜁 = 𝑒𝜋𝑖/𝑛, and ℎ = (0 𝑖

𝑖 0) ,

then the representation graph of the pair (𝐺, 𝑉) is

𝐷̂𝑛

0 1 2

0′

𝑛 − 1 𝑛

𝑛′
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Finally, if 𝐺 is one of the three polyhedral groups,

𝕋 = {symmetries of }, of order 24,

𝕆 = {symmetries of }, of order 48,

𝕀 = {symmetries of }, of order 120,

and𝑉 is the two-dimensional representation of𝐺, then the
representation graphs of the pairs (𝐺, 𝑉) are the graphs in
Figure 7. The observation that the graphs ̂𝐴𝑛−1, 𝐷̂𝑛, ̂𝐸6, ̂𝐸7,
̂𝐸8 are exactly the “simply-laced affine Dynkin diagrams”

is the amazing McKay correspondence. These same graphs
also describe (see [Kac90] and [Bri71]) the internal struc-
ture of the Lie algebras of loop groups as well as the struc-
ture of the subregular nilpotent orbits for reductive alge-
braic groups!

In these examples, if we now let 𝑍𝑛 = End𝐺(𝑉⊗𝑛), then
the two commuting actions of 𝐺 and 𝑍𝑛 on 𝑉⊗𝑛

𝑉⊗𝑛𝐺 𝑍𝑛 = End𝐺(𝑉⊗𝑛)

give a decomposition of 𝑉⊗𝑘 into irreducible (𝐺, 𝑍𝑛)-
bimodules,

𝑉⊗𝑛 =⨁
𝑖
𝑉 𝑖 ⊗ 𝑍𝑖𝑛.

Thewalks on the representation graph Γ(𝐺, 𝑉) encodemul-
tiplicities and dimensions:

#{walks of length 𝑛 from 0 to 𝑖 on Γ(𝐺, 𝑉)}
= multiplicity of the 𝐺-module 𝑉 𝑖 in 𝑉⊗𝑛

= dimension of the 𝑍𝑛-module 𝑍𝑖𝑛,
and dim(𝑍𝑛) is the number of walks that come back home
(to the node labeled 0) after 2𝑛 steps:

dim(𝑍𝑛) = ∑𝑖 dim(𝑍𝑖𝑛)2

= #{walks of length 2𝑛 from 0 to 0 on Γ(𝐺, 𝑉)}.
A particularly elegant way to enumerate walks on the

representation graph Γ(𝐺, 𝑉) is to expand them into paths
on the corresponding Bratteli diagramB(𝐺, 𝑉), which is an
infinite lattice organized so that the nodes on level 𝑛 are
those that can be reached by an 𝑛-step walk starting at the
root on Γ(𝐺, 𝑉) (see Figure 8).

With several collaborators, Georgia has used walks on
these representation graphs to answer many questions
in combinatorial representation theory. To name just a

̂𝐸6

0 1 2 3 4

3′

4′

̂𝐸7

0 1 2 3 4 5 6

4′

̂𝐸8

0 1 2 3 4 5 6 7

6′

Figure 7. The representation graphs of the binary tetrahedral,
octahedral, and icosahedral groups are the simply-laced
affine Dynkin diagrams of type ̂𝐸6, ̂𝐸7, and ̂𝐸8.

few: they describe the projection operators in McKay and
Motzkin centralizer algebras; they characterize the kernel
of the partition algebra on tensor space; they describe
walks on hypercubes; and they are used to perform chip
firing on Dynkin diagrams and McKay quivers.
Fusion rules! Georgia’s most recent talks and collabora-
tions have centered around fusion rules. Fusion matrices
encode the rules that determine the decomposition of the
tensor product of two modules into a direct sum of simple
modules. In the case of the McKay correspondence, the
fusion matrices are the adjacency matrices of the represen-
tation graphs in Figure 7, and in conformal field theory
in physics, integrable models are described by the fusion
rules for their charges.

In a group project [BBK+21] that began at the workshop
in Leeds for Women in Noncommutative Algebra and Rep-
resentation Theory (WINART3), Georgia and her collabo-
rators compute fusion matrices for certain classes of finite-
dimensional Hopf algebras. They express the eigenvalues
and eigenvectors of these matrices in terms of Chebyshev
polynomials, furthering the case that Chebyshev polyno-
mials are as dense in representation theory as they are in
numerical analysis. A key step is to relate the eigenvectors
to characters, and an overarching question in this work is
to find a good notion of a character table for a Hopf alge-
bra.

In another exciting collaboration, Georgia worked with
Persi Diaconis, Martin Liebeck, and Pham Huu Tiep (see
[BDLT20]) at MSRI to use fusion matrices to analyze fami-
lies ofMarkov chains. They studied walks in a similar man-
ner to the case pictured in Figure 8 above, except now using
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𝑛=0∶

𝑛=1∶

𝑛=2∶

𝑛=3∶

𝑛=4∶

𝑛=5∶

𝑛=6∶

𝑛=7∶

𝑛=8∶

𝑛=9∶

𝑛=10∶

0
1

1
1

0
1

2
1

1
2

3
1

0
2

2
3

4′
1

4
1

1
5

3
5 51

0
5

2
10

4′
5

4
6

6
1

1
15

321 57

0
15

2
36

4′
21

4
28

6
7

1
51

385 5
35

0
51

2
136

4′

85

4
120

6
35

Figure 8. The Bratteli diagram for ̃𝐸7. Surprising and beautiful
things happen in this diagram. The Dynkin diagram ̂𝐸7 is
embedded at the top of the Bratteli diagram (shaded in blue).
The dimension of the irreducible 𝑍𝑛-modules are the red
labels, which satisfy a Pascal’s triangle-like addition rule. The
dimension dim(𝑍𝑛) is the number of paths ending at 0 on level
2𝑛, i.e., the numbers 1, 1, 2, 5, 15, 51, …. Thus the red number at
node 0 on level 2𝑛 is the sum of the squares of the red
numbers on level 𝑛. For example, dim(𝑍5) = 52 + 52 + 12 = 51.

groups and quantum groups like

𝑆𝐿2(𝔽𝑝), 𝑆𝐿3(𝔽𝑝), 𝑆𝐿2(𝔽2𝑛), 𝑆𝐿2(𝔽𝑝2),

and 𝑈𝜉(𝔰𝔩2),
instead of the octahedral group used in Figure 8.

The game is similar to walking on graphs with represen-
tations and the McKay correspondence. You start with an
empty mixing bowl, choose a small representation, put it
in the bowl, and hand it to the next cook. The second cook
chooses a small representation to tensor with, and mixes
it into the bowl (i.e., calculates the tensor product with
what is already there) and hands it on to the next cook in
line. This process continues . . . , and there’s one person at
the restaurant (Persi Diaconis) who always wants to know
when the food is going to arrive, i.e., how long it takes for
all this mixing and cooking to get to the stationary state.

There are several finicky issues that have to be dealt
with:

(a) In characteristic 𝑝, the tensor products don’t always
decompose as direct sums.

(b) Tensoring by the natural module 𝑉 doesn’t always pro-
duce all representations.

They fix the issue in (a) by using the Grothendieck ring
(Brauer characters) in some cases and by using indecom-
posable representations instead of irreducible representa-
tions in others. They fix the issue in (b) by tensoring by
𝑉 ⊕ triv or by tensoring with 𝑉 ⊕ 𝑉 (𝑝), where 𝑉 (𝑝) is the
Frobenius twist of 𝑉 by the 𝑝th power field automorphism,
and by restricting attention only to the representations of
a normal subgroup called the Frobenius kernel.

A few selected answers for the walks and their conver-
gence rates are as follows:

(a) For 𝐺 = 𝑆𝐿2(𝔽𝑝2), when mixing (tensoring) by the
two-dimensional natural representation 𝑉 at each
step, the walk takes 𝑝4 steps to equilibriate.

(b) For 𝐺 = 𝑆𝐿2(𝔽2𝑛), when walking (tensoring) by
the two-dimensional natural representation 𝑉 at each
step, the mixing takes 22𝑛 steps to converge to station-
arity.

See Figure 9 and Figure 10.
The bottom line. Georgia Benkart is a clear and creative
writer and speaker, who finds great joy in peppering her
talks with inventive, mostly deadpan, and always amusing
mathematical puns.

The first article Georgia coauthored as an undergradu-
ate appeared in the Pi Mu Epsilon Journal. She was crushed
when the publication appeared: they had listed her name
as George Benkart. This rather inauspicious beginning to
publishing papers was followed by graduate school at Yale
University and, in 1974, a postdoc at the University of
Wisconsin–Madison. By 1983, she had risen to full profes-
sor at Wisconsin–Madison. In 1991, of the 340 tenured or
tenure-track faculty at the ten top-ranked schools in math-
ematics, 12 were women (see Table 2 in [BLW21]). Two
decades prior to 1991, it was likely a quarter to a half that
number.

Georgia’s research on Lie theory, representation theory,
combinatorics, and noncommutative algebra has resulted
in over 130 journal publications and research mono-
graphs. The more than 350 invited talks she has given dur-
ing her career include plenary lectures at the Joint Mathe-
matics Meetings on three different occasions and at the an-
nual meetings of the Canadian Mathematical Society and
theMathematical Association of America. In 2014, shewas
chosen to give both the AWM Noether Lecture at the Joint
Mathematics Meetings and the International Mathemati-
cal Union’s Emmy Noether Lecture at the International
Congress of Mathematicians in Seoul.

Georgia was President of the Association for Women in
Mathematics from 2009 to 2011 and one of the five US del-
egates to the 2014 International Mathematical Union Gen-
eral Assembly. She has served as an Associate Secretary of
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Figure 9. The representation graph for 𝐺 = 𝑆𝐿2(𝔽𝑝2 ) and the
two-dimensional natural representation 𝑉 = (1, 0). The double
headed arrows indicate that the representation appears twice
in the tensor product decomposition. The walk has a drift to
the left and a drift downward. Heuristically, the walk moves
back and forth at a fixed horizontal level. Once it hits the
right-hand wall, it usually bounces back, but with small
probability (order 1

𝑝
), it jumps up or down by one level. The

walk takes order 𝑝4 steps to totally equilibriate.

Figure 10. The representation graph for 𝐺 = 𝑆𝐿2(𝔽23 ) and the
two-dimensional natural representation 𝑉 = (1, 1, 0). The
double headed arrows indicate that the representation
appears twice in the tensor product decomposition. For
𝐺 = 𝑆𝐿2(𝔽23 ), this walk takes order 22⋅3 steps to reach
stationarity.

the AMS, as a member of the AMS Council, as a member
of the US National Committee for Mathematics of the Na-
tional Academies, and on several editorial boards, includ-
ing Journal of Algebra, Algebra and Number Theory, and AMS
Mathematical Surveys and Monographs.

Figure 11. 2011 “Algebraic Combinatorixx (11w5025)”
workshop, taken at Banff International Research Station in
Banff, Alberta.

However, we feel that Georgia’s contribution to our
discipline goes well beyond this astonishing catalog of
research papers, monographs, lectures, and service roles.
She has left an indelible mark on a generation of math-
ematicians through supportive collaborations with more
than 90 coauthors, many of whom are (or, more accu-
rately, were) early-career researchers. And there are even
more mathematicians who were not her coauthors but for
whom Georgia’s mentoring, advice, and support made it
possible for them to achieve much more than they ever
expected of themselves. Georgia, always humbly and per-
fectly, serves as a role model and mentor to all.

In the acknowledgments at the opening of her PhD the-
sis Georgia thanked the many people who supported her
by saying,

Many people have contributed to my mathemati-
cal education. I owe them all my sincerest thanks.

I would like to express my special appreciation
to my advisor, Professor Nathan Jacobson, and to
Professor George Seligman who first suggested in-
ner ideals as a possible avenue of research. Among
the other individuals who helped with the prepa-
ration of this dissertation are Professors Wallace
Martindale and James Lepowsky, Darrell Haile,
Carl Bumiller, Nicholas Bourbaki, Jr., and Mary
Ellen DelVecchio. I am also profoundly grate-
ful for the financial support awarded me through
National Science Foundation graduate fellowships
and National Science Foundation grant GP-33591.

Now in 2022 it is our turn to sincerely thank Georgia for
teaching us so much beautiful mathematics and helping
us to begin and sustain careers in research mathematics.
Most meaningful to us all is her kindness, decency, and
humanity.
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and the 𝑝-algebras of Lie (Russian), Dokl. Akad. Nauk SSSR
168 (1966), 740–742. MR0199235

[Sel67] G. B. Seligman, Modular Lie algebras, Ergebnisse der
Mathematik und ihrer Grenzgebiete, Band 40, Springer-
Verlag New York, Inc., New York, 1967. MR0245627

[Str13] Helmut Strade, Simple Lie algebras over fields of positive
characteristic. III: Completion of the classification, De Gruyter
Expositions in Mathematics, vol. 57, Walter de Gruyter
GmbH & Co. KG, Berlin, 2013. MR3025870

[Str17a] Helmut Strade, Simple Lie algebras over fields of posi-
tive characteristic. Vol. 1: Structure theory, De Gruyter Expo-
sitions in Mathematics, vol. 38, De Gruyter, Berlin, 2017.
Second edition [of MR2059133]. MR3642321

[Str17b] Helmut Strade, Simple Lie algebras over fields of pos-
itive characteristic. Vol. II: Classifying the absolute toral rank
two case, De Gruyter Expositions in Mathematics, vol. 42,
De Gruyter, Berlin, 2017. Second edition [of MR2573283].
MR3642323

[Sun90] Sheila Sundaram, Tableaux in the representation the-
ory of the classical Lie groups, Invariant theory and tableaux
(Minneapolis, MN, 1988), IMA Vol. Math. Appl., vol. 19,
Springer, New York, 1990, pp. 191–225. MR1035496

Tom Halverson Arun Ram

Credits

Opening photo is courtesy of Yvonne Nagel.
Figures 1 and 3–8 are courtesy of Tom Halverson.
Figure 2 is courtesy of the University of Texas.
Figures 9 and 10 are courtesy of Georgia Benkart. Graphics

appeared previously in Georgia Benkart, Persi Diaconis,
Martin W. Liebeck, and Pham Huu Tiep, “Tensor product
Markov chains,” Journal of Algebra, Volume 561, 2020.

Figure 11 is courtesy of the Banff International Research Sta-
tion.

Photo of Tom Halverson is courtesy of David J. Turner /
Macalester College.

Photo of Arun Ram is courtesy of Yvonne Nagel.

384 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 69, NUMBER 3

http://dx.doi.org/10.1090/memo/0751
http://dx.doi.org/10.1090/memo/0430
http://dx.doi.org/10.1006/jabr.1994.1166
http://dx.doi.org/10.1016/j.jalgebra.2019.10.038
http://dx.doi.org/10.1090/conm/194/02387
http://dx.doi.org/10.1090/memo/0920
http://dx.doi.org/10.1090/noti2239
http://dx.doi.org/10.1006/jabr.1998.7511
http://dx.doi.org/10.1007/s002220050087
http://dx.doi.org/10.1017/CBO9780511626234
http://dx.doi.org/10.4310/PAMQ.2011.v7.n3.a4
http://www.ams.org/mathscinet-getitem?mr=1902499
http://www.ams.org/mathscinet-getitem?mr=1010997
http://www.ams.org/mathscinet-getitem?mr=1280591
http://www.ams.org/mathscinet-getitem?mr=4135538
http://www.ams.org/mathscinet-getitem?mr=1121952
http://www.ams.org/mathscinet-getitem?mr=1395593
http://www.ams.org/mathscinet-getitem?mr=2488391
http://www.ams.org/mathscinet-getitem?mr=4218176
http://www.ams.org/mathscinet-getitem?mr=744860
http://www.ams.org/mathscinet-getitem?mr=955488
http://www.ams.org/mathscinet-getitem?mr=1652138
http://www.ams.org/mathscinet-getitem?mr=0437798
http://www.ams.org/mathscinet-getitem?mr=1408554
http://www.ams.org/mathscinet-getitem?mr=1035496
http://www.ams.org/mathscinet-getitem?mr=3642323
http://www.ams.org/mathscinet-getitem?mr=2573283
http://www.ams.org/mathscinet-getitem?mr=3642321
http://www.ams.org/mathscinet-getitem?mr=2059133
http://www.ams.org/mathscinet-getitem?mr=3025870
http://www.ams.org/mathscinet-getitem?mr=0245627
http://www.ams.org/mathscinet-getitem?mr=0199235
http://www.ams.org/mathscinet-getitem?mr=1104219
http://www.ams.org/mathscinet-getitem?mr=2848587



