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Abstract

This paper introduces calibrated representations for affine Hecke algebras and classifies and
constructs all finite-dimensional irreducible calibrated representations. The primary technique is
to provide indexing sets for controlling the weight space structure of finite-dimensional modules
for the affine Hecke algebra. Using these indexing sets we show that (1) irreducible calibrated
representations are indexed by skew local regions, (2) the dimension of an irreducible calibrated
representation is the number of chambers in the local region, (3) each irreducible calibrated
representation is constructed explicitly by formulas which describe the action of the generators
of the affine Hecke algebra on a specific basis in the representation space. The indexing sets for
weight spaces are generalizations of standard Young tableaux and the construction of the irreducible
calibrated affine Hecke algebra modules is a generalization of A. Young’s seminormal construction
of the irreducible representations of the symmetric group. In this sense Young’s construction has
been generalized to arbitrary Lie type.

0 2003 Elsevier Science (USA). All rights reserved.

0. Introduction

The classical representation theory of the symmetric group, as developed by G. Frobe-
nius and A. Young [47,48], has the following features:
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(a) Theirreducible representatioftsof the symmetric group, are indexed by partitions
A with n boxes.

(b) The dimension o8* is the number of standard tableaux of shape

(c) The S,-module has an elegant explicit constructish: is the span of a basigr)
parametrized by standard tableallxand the action of each generator$fis given
by a simple formula,

1 1
T = 1 T
SVTE STy e+ T < T T — T+ 1)))””
In this paper we prove analogous results for representations of affine Hecke algebras.

(A) The irreducible calibrated representatiai§-/) of the affine Hecke algebr&l are
indexed by skew local regiors, J).

(B) The dimension off “:/) is the number of chambers in the local region/).

(C) The H-module H"/) has an elegant explicit constructioR:"-/) is the span of a
basis{vy | w € F&7)} parametrized by chambers in the local region and the action of
each generator off is given by a simple formula,

-1 -1
oy =gy T :i% 1+&)U _
w q w tYw 1_ [(Xwilai) q 1_ [(Xwilai) Siw

In fact, the classical theory of standard Young tableaux and partitions is a special case of
our theory of chambers and local regions; this is proved in Sections 5 and 6 of this paper.
Section 1 serves to fix notations and fundamental data in the form which will need it. The
bulk of this material can be found in [6, Chapitres IV=VI] and Steinberg’s Yale Lecture
Notes [40]. Two known results which are included in Section 1 are:

(a) the determination of the center of the affine Hecke algebra, and
(b) the Pittie—Steinberg theorem, which provides a nice basis for the affine Hecke algebra
over its center.

In each case we have given an elementary proof, which, hopefully, illustrates the beautiful
simplicity of these powerful results. Section 2 treats the notion of weight spaces for affine
Hecke algebra representations and shows how certain combinatorially defined indexing
sets F:/) give explicit information about the weight space structure of affine Hecke
algebra modules. Section 3 classifies and constructs all irreducible calibrated affine Hecke
algebra modules (for any such thaty? # +1, including roots of unity. Section 4 gives

the main results about the structure of the labeling $&ts”) and defines a conjugation
involution on them. Sections 5 and 6 show that the classical theory of standard Young
tableaux is very special case of the analysis of the combinatorial structure of ttf'séts
Section 7 works out the generalized standard Young tableaux in the type A, root of unity
case. The resulting objects ateperiodic standard Young tableaux. Section 8 describes
how the generalized standard Young tableaux look in the type C, nonroot of unity case.
In this case the objects are negative rotationally symmetric standard Young tableaux. It
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should not be difficult to work out similar explicit tableaux in terms of fillings of boxes in
the other classical types.
Let us put these results into perspective.

(1) p-adic groups and affine Hecke algebras.

The affine Hecke algebra was introduced by Iwahori and Matsumoto [11] as a tool
for studying the representations ofaadic Lie group. In some sense, all irreducible
principal series representations of tpeadic group can be determined by classifying
the representations of the corresponding affine Hecke algebra. Kazhdan and Lusztig
[14] (see also [8]) gave a geometric classification of all irreducible representations of
the affine Hecke algebra. This classification ig-analogue of Springer’s construction

of the irreducible representations of the Weyl group on the cohomology of unipotent
varieties. In theg-case, K-theory takes the place of cohomology and the irreducible
representations of the affine Hecke algebra are constructed as quotients of the K-theory
of the Steinberg varieties. It is difficult to obtain combinatorial information from
this geometric construction. So the combinatorial approach in this paper gives new
information.

(2) The theory of Young tableaux.

The word “Young tableau” is commonly used for three very different objects in
representation theory:

(1a) partitionswith n boxes, which index representations of the symmetric gup
(1b) partitions with< n rows, which index the polynomial representationgGif, (C),
(2) standard tableauxwhich label the basis elements of an irreducible representation of
Sl’la
(3) column strict tableauxwhich label the basis elements of an irreducible polynomial
representation d&L, (C).

The partitions in (1b) were generalized to all Lie types by H. Weyl in 1926, who showed
that finite-dimensional irreducible representations of compact Lie groups are indexed by
the dominant integral weights. There was much important work generalizing the column
strict tableaux in (3) to other Lie types, for a survey of this work see [43]. The problem of
generalizing the column strict tableaux in (3ptbLie types was finally solved by the path
model of Littelmann [20,21]. This paper provides a generalization of the partitions of (1a)
and the standard tableaux of (2) which are valid dfirLie types For important earlier
work in this direction see [24, | Appendix B], Hoefsmit [10], and Ariki and Koike [1].

This paperis a revised, expanded, and updated version of the preprints [28,29]. The orig-
inal preprints will not be published since the results there are contained in and expanded
in this paper. Those preprints will remain available at http://www.math.wisc.adud/
preprints.html.
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1. TheaffineHeckealgebra

Though we shall never really use the d&a@ B, T) it is conceptually useful to note
that there is an affine Hecke algebra associated to each ¢éipte B O T) where

e G is a connected reductive complex algebraic group,
e Bis aBorel subgroup,
e T is a maximal torus.

An example of this data is whe@ = GL,(C), B is the subgroup of upper triangular
invertible matrices, and is the subgroup of invertible diagonal matrices.

The reason that we can avoid the dé@a2> B 2 T) is that it is equivalent to different
data(W, C, L) where

o W is afinite real reflection group with reflection representabipn
e C is afixed fundamental chamber for tHé-action,
e L is aW-invariant lattice iny,.

This will be our basic data. In the example whére= GL,,(C) andB andT are the upper
triangular and diagonal matrices, respectively,

n n
W=S5,, hﬁi:Rn:ZRSi, C={M=Zui8i Mlé---éun,,
i=1 i=1
n
L=> TZs, (1.1)
i=1

whereW = §,, is the symmetric group, acting dy}, = R" by permuting the orthonormal
basises, ..., &,. This example will be treated in depth in Sections 5—-7. We shall show that
the labeling setsF-/) for weight spaces of affine Hecke algebra representations that are
introduced in (2.18) and Corollary 2.19 and used for the classification in Theorem 3.6 are
generalizations of standard Young tableaux.

The component® andL in the dataW, C, L) are obtained frondG 2 B2 T) by

W=N(T)/T, X=Hom(T,C*={x"|relL},

where N(T) is the normalizer off in G and Hom(T', C*) is the set of algebraic group
homomorphisms fronT to C*. The notation is designed so that the multiplication in the
groupX is

Xt Xt =X = x*X*  foru,relL, (1.2)
see [7, Il Section 8]. The reflection (or defining) representation of the gvjug given

by its action orh = R ®z L = R" and with respect to & -invariant inner product, ) on
b the groupW is generated by reflectionsg in the hyperplanes
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Hy={xeby|(x,a)=0}, aeR". (1.3)

See the picture which appears just before Theorem 1.17chimbersare the connected
components o — (U, cx+ Ho) and these are the fundamental regions for the action of
W onby,. Fixing a choice of a fundamental chamigecorresponds to the choice of the set
R of positive roots, which corresponds to the choiceé8dh G.

In our formulation we may view the seR™ as a labeling set for the reflecting
hyperplanesi, in by and

C={xeby|(x,a)>0foralla € RT}. (1.4)

For a roota € R, the positive sideof the hyperplaneH,, is the side toward€, i.e.,
{L ebj | (A, a) > 0}, and thenegative sidef H, is the side away frond’.
Forw € W, theinversion sebf W is

R(w)={x e RT |wa e R7}, (1.5)
whereR~ = —R™T. There is a bijection

W < {fundamental chambers fé¥ acting onh },

w > wic (1.6)

and the chambew~1C is the unique chamber which is on the positive sideHgf for
a ¢ R(w) and on the negative side &f, for @ € R(w).

Thesimple rootsxy, ..., a, in RT index the wallsH,, of the fundamental chamber
and the corresponding reflections .. ., s, generatéW. In fact, W can be presented by
generatorsy, so, ..., s, and relations

s2=1, for1<i <n,
sisjsi"':sjsisj"'s forl?é‘], (17)
—_—— ——

m;; factors  m;; factors

where the (acute) angle/m;; between the hyperplandd,, and H,; determines the
valuem;;.

Fix ¢ € C* with g2 # +1. Thelwahori-Hecke algebrad associated t¢W, C) is the
associative algebra ovérdefined by generatof&, 7>, ..., T, and relations

T2=(q—q¢ YT +1, forl<i<n,
LTT;---=T;T;T; -, fori # j, (1.8)

m;; factors m;; factors
wherem;; are the same as in the presentatiorlof For w € W defineT,, = T;, --- T;,
where s;, ---s5;, = w is a reduced expression fav. By [6, Chapter IV, Section 2
Exercise 23], the elemerit, does not depend on the choice of the reduced expression.
The algebraHd has dimensionW| and the setTy, }.cw is a basis ofH .
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Theaffine Hecke algebral associated toW, C, L) algebra given by
H =C-spar{T,X* |we W, X* e X} (1.9)

where the multiplication of th&,, is as in the lwahori—Hecke algebks, the multiplication
of the X* is as in (1.2) and we impose the relation

XA, _ XSI'A.

XA,’I‘I' :TiXSi)L +(q _q—l)m

, forl<i<nandX*eX. (1.10)

This formulation of the definition off is due to Lusztig [23] following work of Bernstein
and Zelevinsky. The elemenis X*, w € W, X* € X, form a basis of{.
The group algebra aof,

C[X]=C-spar{X* | »e L}, (1.11)
is a subalgebra aoff with a W-action obtained by linearly extending té-action onX,
wX* = X" forweW, X" eX. (1.12)

Theorem 1.13 (Bernstein, Zelevinsky, Lusztig [23, 8.1]he center ofd is C[X]V =
{f eC[X]|wf = fforall we W}.

Proof. Assume

2= Y cwX'T, € Z(H).
reL,weW

Letm € W be maximal in Bruhat order subjectp ,, # 0 for somey € L. If m # 1 there
exists a dominank € L such thaicy +,—mu,m = 0 (otherwisec, ;,—p;.m # 0 for every
dominantu € L, which is impossible sinceis a finite linear combination of* 7). Since
z € Z(H) we have

d=X"FXM = Y WX TP, XM
reL, weW

Repeated use of the relation (1.10) yields

TuX'= Y d.X'T,
veL, veW

whered, , are constants such thay,, ., = 1, dy = 0 for v # wu, andd, , = 0 unless
v<w.So

= Z C)\,wX)LTw = Z Z Ck,wdv,vxkilH»vTv

reLl, weW reLl, weWveL, veW
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and comparing the coefficients ok" 7T, gives ¢, n = ¢ytp—mumdmum. Since
Cy+pu—mu,m = Oitfollowsthatc, ,, = 0, whichis a contradiction. Henee= _, ., o X e
C[X].
The relation (1.10) gives
T =Tiz=(5i)T; + (g — q_l)z/

where 7’ € C[X]. Comparing coefficients ok* on both sides yields’ = 0. Hence
zT; = (siz)T;, and therefore = s,z for L<i <n.Soz e C[X]V. O

It is often convenient to assume thidt acts irreducibly orh, and that the latticd. is
the weight lattice

n
P:{xebﬁy<x,a>erora||aeR+}=ZZw,-, (1.14)
i=1

where thefundamental weightare the elementsy, .. ., w, of R"” given by

2u i

(wi,af)=6ij, whereq;” = (1.15)

(i, @)
ands;; is the Kronecker delta. Many facts are easier to state in this case and the general case
can always be reduced to this one. We will make some further remarks on this reduction at
the end of this section.

Consider the connected regions of the negdiiiearrangementd~ [2,33-35,38,39],
i.e., the arrangement of (affine) hyperplanes given by

H

. @
Hoytan s1C ! C He,
VslsQC SQC )
Asy a
)‘5152 1 )‘52 .
.- - D Hu1+2a2
H(,n +2a0—06 )\sl szlsd.
. .')\52
528152C Sy 5281C
$sys180
.‘>\51525152 5152510
H(x276 H(h,(g Ha1+(1276

The arrangement A~

Fig. 1.
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A” ={Hy, Hy—s | € R+}
where H, = {x eR” ‘ (x,a) = 0}, Hy 5= {x eR” | (x,a) = —1}. (1.16)

Each chambew~—1C, w € W, contains a unique region o4~ which is a cone, and the
vertex of this cone is the point, which appears in the following theorem.

Theorem 1.17 [42]. Suppose thaW acts irreducibly onh, and thatX = {(X*| 1 e P)
whereP is the weight lattice. The algebr@[X] is a freeC[X]" -module with

we W}, whereku,=w1< Z w,»).

Siw<w

basis{ X*»

Proof. The proofis accomplished by establishing three facts:

(a) Let fy, y € W, be a family of elements oZ[X]. Then detzf,) is divisible by
HaeR‘*'(Xa - 1)|W|/2'

(b) det(zXA-“)Z’yeW =[Tyoo(l— X*)IWI/2,

(c) If f €Z[X]then there is a unique solution to the equation

> apX=f witha, e Z[X]".
weW

(a) For eachr € R subtract rowzf, from row s,zfy. Then this row is divisible by
(1 - X~%). Since there ar¢W|/2 pairs of rows(zfy, s«zfy) the whole determinant is
divisible by (1 — Xx~*)IWI/2, Fora, 8 € R the factors(1 — X~%) and (1 — X %) are
coprime, and so detf,) is divisible by [],cz+(1— X~*)WI/2_ This product and the
product in the statement of (a) differ by the ugit??)!"1/2in Z[X].

(b) By (a), detzX*) is divisible by [], g+ (X% — 1HWI2. The top coefficient of
detzX”) is equal to

[T=x*=T] [ x" = ﬁxuwvzm — (xP)WI/2,

zeW EeW i i=1
and the top coefficient df[, g+ (X% — 1)IW1/2 s (X20)IW1/2,
(c) Assume that, € Z[X]" are solutions of the equation, .y, X*ay = f. Act on
this equation by the elements Wf to obtain the system oW | equations

Z (zX*)ay =zf, zeW.

yeW

By (a) the matrix(zX*»). yew is invertible and so this system has a unique solution with
ay € Z[X1". In fact, thea, can be obtained by Cramer’s rule. Cramer’s rule provides
an expression fox, as a quotient of two determinants. By (a) and (b) the denominator
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divides the numerator to give an elemen#Zp¥ ]. Since each determinant is an alternating
function, the quotient is an element®fX1V. O

Remark. In [42] Steinberg proves this type of result in full generality without the
assumptions tha acts irreducibly orhy, and L = P. Note also that the proof given
above is sketchy, particularly in the aspect that the top coefficient of the determinant is
what we have claimed it is. See [42] for a proper treatment of this point.

1.18. Deducing thé7; representation theory froi p

It is often easier to work with the representation theoryHoin the case whei. = P.
It is important to be able to convert from this case to the case of a general lattitéy
acts irreducibly orh, then the latticel. satisfies

QCLCP, where P:ZZw,- and Q=2Zai
i=1 i=1

are the weight lattice and threot lattice, respectively. The grouf® = P/Q is a finite

group (either cyclic or isomorphic td/27 x 7Z/27Z). 1t corresponds to the center of the
corresponding complex algebraic group. Let us denote the corresponding affine Hecke
algebras by

ﬁQEﬁLEﬁP,

according which lattice is used to make the graip

Theorem 1.19 [30]. Then there is an action of the finite grougyL on Hp, by ring
automorphisms, such that

Hy=(Hp)"" ={heHp|gh=hforall geP/L},

is the subalgebra of fixed points under the action of the giByp.

This theorem is exactly what is needed to apply a (not very well known) version
of Clifford theory to completely classify the representations Hyf in terms of the
representations aff p, see [30].
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2. H-modules
2.1. Weights

In view of the results in Section 1.18 we shall (for the remainder of this paper, except
Sections 5-7 where we use the data in (1.1)) assume.tkai in the definition of the
groupX andH, see (1.2), (1.9), and (1.14). The Weyl group acts on

T = Hom(X, C*) = {group homomorphisms X — C*} by (wr)(X") = t(wal*).

Let M be a finite dimensionaH-module and let € T. The r-weight spaceand the
generalized-weight spacef M are

M; = {meM| X 'm=1t(X")mforal X € X} and
M®" = {m e M | for eachx* € X, (X* — 1(X*))'m = 0 for somek € Zo)},

respectively. Then
M =P m* (2.2)
teT

is a decomposition oM into Jordan blocks for the action 6f[ X], and we say that is
aweightof M if M7*"# 0. Note thatt?*"# 0 if and only if M, # 0. A finite-dimensional
H-module

M is calibratedif M**"= M, forallz e T.

Remark. The term tame is sometimes used in place of the term calibrated particularly in
the context of representations of Yangians, see [26]. The word calibrated is preferable since
tame also has many other meanings in different parts of mathematics.

Let M be a simpleﬁ—module. As anX (T)-module,M contains a simple submodule
and this submodule must be one-dimensional since all irreducible representations of a
commutative algebra are one dimensional. Thus, a simple module alway#, a8 for
somer eT.
2.3. Central characters

The Pittie—Steinberg theorem, Theorem 1.17, shows that, as vector spaces,

H=H®C[X]=H®C[X]" ® K, wherek = C-spar{ X"

wEW},

andH is the Iwahori—Hecke algebra defined in (1.8). Tliis a free module oveZ (H) =
Crx1% of rank dim(H) - dim(X) = |W|2. By Dixmier’s version of Schur’s lemma (see
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[44, Lemma 0.5.1])Z(H) acts on a simpleéd-module by scalars and so it follows that
every simpleﬁ-module is finite dimensional of dimensieh| W|2. Theorem 2.12(d) below
will show that, in fact, the dimension of a simple moduledisw|.

LetM be a simpleﬁ-module. Thecentral characteof M is an element € T such that

pm =t(p)m, forallmeM,pe(C[X]sz(ﬁ).

The element is only determined up to the action 8f sincer (p) = wt(p) forall w e W.
Because of this, any element of the orsit is referred to as theentral characteof M.

BecauseP = L in the construction ok, a theorem of Steinberg [41, 3.15, 4.2, 5.3] tells
us that the stabilizeW, of a pointr € T under the action oW is the reflection group

W, =(s¢ | € Z(t)), whereZ(r)={a eR"|1(X*)=1}.
Thus the orbitW can be viewed in several different ways via the bijections

Wit < W/ W, < {weW|Rw)NZ({) =0} < {Chambers on the pos't"}e, (2.4)

side of H, fora € Z(¢)

where the last bijection is the restriction of the map in (1.6). If the root systém s
generated by the simple roatsthat it contains theiV; is a parabolic subgroup ¥ and

{we W | R(w)N Z(t)} is the set of minimal length coset representatives of the cosets in
W/ W,.

2.5. Principal series modules
Fort € T let Cv, be the one-dimension@l[ X]-module given by
X* v =t(X*)v,, for X* e X.
Theprincipal series representatio (¢) is the H-module defined by
M(t) = H ®cix) Co; = IndZ 4 (Cvy). (2.6)

The moduleM (¢) has basi$T,, ® v; | w € W} with H acting by left multiplication.
If we W andX”* e X then the defining relation (1.10) fél implies that

XM(Ty @ v) = t(X"*) (T @ v) + Y au(T, @ vy), 2.7)

u<uw

where the sum is over < w in the Bruhat—Chevalley order amag € C. Let W, = Staliz)

be the stabilizer of under theW -action. It follows from (2.7) that the eigenvaluesXfon

M (t) are of the formw?, w € W, and by counting the multiplicity of each eigenvalue we
have

M@ty = @ M@)y," where din{M()3,") =W, forallwew.  (2.8)

wteWt
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In particular, ifz is regular (i.e., whe; is trivial), there is a unique bas{s,,;; | w € W}
of M(¢) determined by

X" vy = () (X*)vyy, forallwe W andx e P,

v =Ty ® Vi + Y auwu()(Tu ®v;),  Wherea,, (1) € C. (2.9)

u<w

Letr € T. Thespherical vectoin M (¢) is

1= Z qe(W)Tw Q vr. (2.10)
weW

Up to multiplication by constants this is the unique vecta¥iry) such thatr,, 1, = g1,
for all w € W. The following is due to Kato [12, Proposition 1.20 and Lemma 2.3].

Proposition 2.11. Lets € T and letW, be the stabilizer of under theWw -action.

(@) If W, ={1} andv,,, w € W is the basis oM (¢) defined in(2.9)then

—1lyo
— X
1,:2 t(c;), wherec, = || L.

1-— X«
zeW aeR(woz)

(b) The spherical vectot, generatesV (¢) if and only ift(naeR+(q_l —gX%)#£0.
(c) The moduleM (¢) is irreducible if and only ifL,,; generatesV (wt) for all w e W.

Proof. The proof is accomplished in exactly the same way as done for the graded Hecke
algebrain [17, Proposition 2.8]. The only changes which need to be made to [17] are

(1) UseT; (X pew ¢ Tw) =g (X pew ¢ Tw) and 1, = (X ew ¢° Tw)vr and the
r-operators defined in Proposition 2.14 for the proof of (a). (We have included this
result in this section since it is really a result about the structure of principal series
modules. Though the proof uses theoperators, which we will define in the next
section, there is no logical gap here.)

(2) For the proof of (b) use the Steinberg bagk | y € W} and the determinant
det( X< ) from Theorem 1.17(b) in place of the bagis, | w € W} and the
determinant used in [17].O

Part (b) of the following theorem is due to Rogawski [32, Proposition 2.3] and part (c)
is due to Kato [12, Theorem 2.1]. Parts (a) and (d) are classical.

Theorem 2.12. Letr € T andw € W and defineP (1) = {o € Rt | 1(X*) = ¢*2}.

(@) If W, = {1} thenM (¢) is calibrated.
(b) M(r) and M (wt) have the same composition factors.
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() M(v) is irreducib~le if and only ifP (1) = @.
(d) If M is a simpleH-module withM; # 0 thenM is a quotient ofM (¢).

Proof. (a) follows from (2.8) and the definition of calibrated. Part (b) accomplished exactly
as in [17, Proposition 2.8] and (c) is a direct consequence of the definitidt{zopfand
Proposition 2.11.

(d) Letm, be a nonzero vector idf, . If v, is as in the construction @ (¢) in (2.6) then,
asC[X]-modules,Cm; = Cv,. Thus, since induction is the adjoint functor to restriction
thereis a uniqué?—module homomorphism given by

¢ M@) - M,

UV = my.
This map is surjective sinc¥ is irreducible and s@/ is a quotientofM (z). O
2.13. Ther operators

The following proposition defines maps: M7" — Mg;" on generalized weight spaces

of finite-dimensional -modulesM. These are “local operators” and are only defined on
weight spaceMtgen such that (X%) # 1. In generalz; does not extend to an operator on
all of M.

Flroposition 2.14.Fixi,letr € T be such that(X*) # 1 and letM be a finite-dimensional
H-module. Define

(a) The mapr; : M*"— MI"is well defined.

(b) As operators oM ", X*7; = 7; X** for all X* € X.

(c) As operators Omtgein’ Tt = (g - g 1x@ (g — q*lgg*“f)/((l — X%)(1— X~%)).
(d) Both mapst; : M*" — M and 7 : My;" — MP" are invertible if and only if

1(X%) # g2,
(e) Letl<i# j<nandletm;; beasin(1.7). Then

Titjti cee = TjTiTi EEEN
[ — [ —

m;; factors  m;; factors
. . n
whenever both sides are well defined operatorat .

Proof. (a) The elemenk® acts onM?®" by 7(X%) times a unipotent transformation. As
an operator o/ ", 1 — X% is invertible since it has determinafit— 1 (X ~%))¢ where
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d = dim(M?°"). Since this determinant is nonzeip— ¢~ /(1 — X %) = (¢ — g~ ) x
(1— x~%)1is a well defined operator ol **". Thus the definition of; makes sense.

Since(g —¢~1) /(1 — X~%) is not an element off or C[X] it should be viewed only
as an operator o *" in calculations. With this in mind it is straightforward to use the
defining relation (1.10) to check that

—q;

q

1
come (7 979 (o a=a ), @4 X —g X
[ ! 1-X t 1— X—o (1—Xai)(1—X—Dli)

_ -1 _ -1
Xt tim = XA<T,- - 7;_01_ )m = <T,- - 71‘7 )X“m =5X%"m and

SIS

3

for all m € M?*"and X* € X. This proves (a)—(c).

(d) The operatok® acts onM " asz (X* ) times a unipotent transformation. Similarly
for X% . Thus, as an operator dd °"det((qg — ¢ ~1X%)(g —q~1X %)) =0 ifand only
if 1(X%) = ¢g*2. Thus part (c) implies that;z;, and each factor in this composition, is
invertible if and only ifr (X)) # ¢*2.

(e) Letr € T be regular. By part (a), the definition of thg and the uniquenessin (2.9),
the basig vy }wew Of M () in (2.9) is given by

Vur = TwVy, (2.15)

wheret, =7;; --- Ti, for a reduced wordv = s, - - i, of w. Use the defining relation
(1.10) for 4 to expand the product af and compute

Vwor = "'TiTjTiUtZ"'ETjEUt+ Z TwaUtszo®Ut+ Z 1(Py)Ty ® vy
———— —_———

w<wy w<wy
m;; factors m;; factors 0 0

=170 =---T;T;iTjv + Z Ty Quvr =Ty ® v + Z 1(Quw)Ty ® vy
— —

w<wy w<wy
m;; factors m;; factors 0 0

where P,, and Q,, are rational functions in th&”*. By the uniqueness in (2.9)(P,,) =
Awow (1) =1 (Qy) for all w e W, w # wo. Since the values afP,, and Q,, coincide on alll
generic points e T it follows that

P,=0Q, forallweW,w#wo. (2.16)

Thus,

Tt = Ty + E Ty Py =Ty, + E TwQuw=""17;TiTj,
—_—— —_—

w<wg w<wo

m;; factors m;; factors

whenever both sides are well defined operatorsfi". O
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Lett e T and recall that
ZO)={aeR|1(X*)=1} and P()={aeeR"|1(X*)=¢*?}. (2.17)
If J C P(t) define
FOD =lweW|Rw)NZE) =0, Rw)NP@) =J}. (2.18)

We say that the pair, J) is alocal regionif F*/) £ . Under the bijection (2.4) the set
F@J) maps to the set of chambers whose union is the set of poiats;, which are

(a) on the positive side of the hyperplarésfor o € Z(z),
(b) on the positive side of the hyperplanég for « € P(¢)\J,
(c) onthe negative side of the hyperplaigsfor « € J.

See the picture in Example 4.11(d). In this way the local rediqry) really does
correspond to a region il . This is a connected convex regionhf since it is cut out by
half spaces irhj; = R". The elementsy € /) index thechamberss~1C in the local

regionand, as/ runs over the subsets @(r), the setsF*-/) form a partition of the set
{we W | R(w) N Z() =@} (which, by (2.4), indexes the cosetsiy W;).

Corollary 2.19. Let M be a finite dimensionai/-module. Letr € T and letJ € P(r).
Then

d|m(M3)?r) = dlm(Mg,et , for w, w/ c ]_—(;“]).

Proof. Supposew, sjw € F*/). We may assume thafw > w. Thena = w™e; > 0,
@ ¢ R(w) anda € R(siw). Now, R(w) N Z(t) = R(siw) N Z(r) implies 1(X%) # 1,
and R(w) N P(¢) implies 1(X%) # ¢g*2. Sincewr (X%) = t(wal“") =1(X*) #1 and
wit (X%) # ¢*2, it follows from Proposition 2.14(d) that the mag M; " — M%) is well
defined and invertible. It remains to note thawifuw’ € F*/), thenw’ =s;, - - - s;, w where
si, -+ -si,w € FP) for all 1 < k < €. This follows from the fact thaF /) corresponds to

a connected convex regionfiy. O

3. Clasdification of calibrated representations

For simple rootsy; and«; in R and letR;; be the rank-two root subsystem &f
generated by; andea;. A weights e T is calibratableif, for every pairi, j, i # j, tis a
weight of a calibrated representation of the rank-two affine Hecke (sub)algebra generated
by T;, T; andC[X]. A local region

(t, J)isskew if wr is calibratable for ally € F&7).
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The classification of irreducible representations of rank-two affine Hecke algebras given
in [27] can be used to state this condition combinatorially. Specifically, a weigltt is
calibratableif

(a) forall simple rootsy;, 1 <i <n,t(X%)#1, and
(b) for all pairs of simple roots; anda; such that{a € R;; | 1(X%) = 1} # 9, the set
[ e Rjj | t1(X*) = ¢*2} contains more than two elements.

Condition (a) says that is regular for all rank-1 subsystems @f generated by simple
roots. This condition guarantees that the weight is “calibratable” (i.e., appears as a weight
of some calibrated representation) for all rank-1 affine Hecke subalgebfas@éndition

(b) is an “almost regular” condition onwith respect to rank-2 subsystems generated by
simple roots.

Remark. The conversion between the definition of calibratable weight and the combinator-
ial condition givenin (a) and (b) is as follows. Consider a rank-two affine Hecke algebra

(A) By Theorem 2.12, (a) and (d), local regiotrs J) with ¢ regular satisfy (a) and (b)
and always contribute calibrated representationﬁ of

(B) Using the notation of [27], the local regiofys J) with 1 nonregular and which satisfy
both conditions (a) and (b) are:

type A2: none,

typeCo: (1, {@1}) and (t, {a1, @1 + a2}) (for each of theseP(¢) contains 3 ele-
ments),

typeGa: (t.,J) with J # ¢ and J # P(t.) (for each of theseP(s,) contains
4 elements).

From (A) and (B) it follows that the local regions which satisfy (a) and (b) do contribute
calibrated weights. The following shows that the other local regions do not contribute
calibratable weights.

(C) By Lemma 3.1(a) local regiong, J) with a weighté = wr, w € &) such that
&(X*) =1 do not satisfy (a) and, by inspection of the tables in [27], they never
contribute a calibrated representation.

(D) Using the notation of [27], the local regions which satisfy condition (a) but not
condition (b) are

type Az: (tc, {a2}) and(ty, {a1}),
type By (t4, {a2}),
typeGo: (i, {a2}), (t7, {oa}).

(Note that to satisfy (bY (r) must be nonempty.) From the tables in [27] we see that none
of these local regions supports a calibrated representation.
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Remark. The paper [27] does not treat roots of unity. However, it is interesting to note
that, provided g2 # +1, the methods of [27] go through without change to classify all
representations of rank-two affine Hecke algebras even wRés a root of unity. This
classification can be used (as in the previous remark) to show that (a) and (b) above still
characterize calibratable weights wheghis a root of unity such thag? # +1. The key
point is that Lemma 1.19 of [27] still holds. #? = —1 then Lemma 1.19 of [27] breaks
down at the next to last line of the proof in the statement forces¢ (wt(7})), to have
Jordan blocks of size 1..” When g2 = —1 it is possible thatp (wt (7)) has a Jordan
block of size 2. Ifg2 = 1 then one can change the definition of theperators and use
similar methods to produce a complete analysis of sim?)lmodules, but we shall not do
this here, choosing instead to exclude the egse 1 for simplicity of exposition.

The following lemma provides fundamental results about the structure of irreducible
calibratedH -modules. We omit the proof since it is accomplished in exactly the same way
asin[17,Lemmas 4.1 and 4.2].

Lemma 3.1. Let M be an irreducible calibrated module. Then, for ale T such that
M; #0,

(a) If t € T such thatM; # Othens(X%) £ 1forall 1<i < n.

(b) If r € T such thatM; £ 0 thendim(M,) = 1.

(c) If r € T such thatM; and M,,; are both nonzero then the map: M, — M;; is
a bijection.

This lemma together with the classification of irreducible modules for rank-two affine
Hecke algebras gives the following fundamental structural result for irreducible calibrated
H-modules. The proof is essentially the same as the proof of Proposition 4.3 in [17]. We
repeat the proof here for continuity.

Theorem 3.2. If M is an irreducible calibratedd-module with central charactere T
then there is a unique skew local regign J) such that

i (t,J)
dim(My) = { 1 forallweF®9,
0 otherwise.

Proof. By Lemma 3.1(b) all nonzero generalized weight space# dfave dimension 1

and by Lemma 3.1(c) att-operators between these weight spaces are bijections. This
already guarantees that there is a unique local regioh which satisfies the condition. It
only remains to show that this local region is skew.

Let ﬁ,-j be the subalgebra generated Ry T; andC[X]. SinceM is calibrated as an
H-module it is calibrated as ﬁij—module and so all factors of a composition series of
M as anH;;-module are calibrated. Thus the weightsifare calibratable. S@, J) is
a skew local region. O
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The following proposition shows that the weight space structure of calibrated represen-
tations, as determined in Theorem 3.2, essentially force#itlaetion on a weight basis.
The proof is quite similar to the proof of Proposition 4.4 in [17]. However, we include the
details since there is a technicality here; to make the conclusion in (3.4) we use the fact
that the groupX corresponds to the weight lattide= P.

Proposition 3.3. Let M be a calibratedd -module and assume that for alE T such that
M; #0,

(A1) 1(X¥)#1 foralll<i<n, and (A2) dim(M,)=1.

For eachb € T such thatM;, # 0O let v, be a nonzero vector iM;,. The vectorguv,} form
a basis ofM. Let(T})., € C andb(X*) e C be given by

Tivp = Z(T,')vac and X)‘Ub = b(X)‘)vb.
c

Then

(@) (T)ppr = (g —g™1/(1—b(X~%)), for all vy in the basis,
(b) if (T))e» # Othenc = s;b,
©) Tosip(Tsivp = @ 2+ TDop) @2+ (T sibsib)-

Proof. The defining equation foH

XA. _ XSI'A,

XM = TiX =g =4 ) T

’

forces

b(X*) — b(X**)

D (X Teb — (T (X)) ve = (¢ —q ") 1= bx—o)

c

Comparing coefficients gives

(X (T)eb — (Tepb(X*) = 0, if b#c, and
. _3, b(XM) = b(X5)
A . (T sihy _ 1
b(X*)(Te = (Twb(X*7) = (¢ =4 ) =3 —p 5y
These relations give:
if (T)ew#0 then b(X%*)=c(X*) forallX*eX, and
q—q*

(Ti)bb = m

if  b(X~%)=1andb(X*) # b(X%*) for somex* € X.
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By assumption (A1)b(X*) # 1 for all i. For each fundamental weight, X“ € X and
b(X5i®i)y = p(X®i~%) £ b(X®) sinceb(X*) # 1. Thus we conclude that
g—q7'

Tivp = (T)ppvs + (T))sip,pvsip - With (Ti)ps = T by

(3.4)

This completes the proof of (a) and (b). By the definitionthfthe vector
Tizvb = ((Ti)gb + (T b,sip (T)sib.6) Vb + ((TDeb + (T sibosit) (Ti)sib, b Vsio

must equal
(g —a YT+ Vvo = ((¢ — ¢ TDp + L)vo + (@ — ¢ ) (Tsib.6 V-

Using the formula for(7;)5, and (T )s;.5,5, We find (Ti)ss + (Ti)s;p.5 = (g — ¢ ™). So,
by comparing coefficients af,, we obtain the equation

(T)bsib(Tsivb = (7 — To) (Tep +q )
= (tfl-l- (Ti)bb)(q71+ (T})sib.sib)- ad

Theorem 3.5. Let (¢, J) be a skew local region and le€¢:/) index the chambers in the
local region(t, J). Define

H" = C-spar{vy, |w e @D},

so that the symbols,, are a labeled basis of the vector spaﬁé””. Then the following
formulas makeZ /) into an irreducibleH -module For eachw € F7),

X vy = (1) (X*) v, for X* e X, and
Tivy = (TH)wwvw + (qil + (n)ww)v.s;ws for1<i <n,

where(T;)yw = (¢ — ¢~ /(1 — (wt) (X)), and we seby,,, = 0if s;w ¢ FI),

Proof. Since(t, J) is a skew local regiotwz) (X ~%) # 1 for allw € F“/) and all simple
rootse; . This implies that the coefficierit} )., is well defined for ali andw e F*/),

By construction, the nonzero weight spacesHf-/) are (H*/)%°" = (H®-"),,
wherew € F@7) . Since dinitH"")) = 1 for u € F*7), any proper submodul& of
H")) must haveN,, # 0 andN,,, = 0 for somew # w’ with w, w’ € &) This is
a contradiction to Corollary 2.19. S8-7) is irreducible if it is anH -module.

It remains to show that the defining relations férare satisfied. This is accomplished
as in the proof of [17, Theorem 4.5]. The only relation which is tricky to check is the braid
relation. This can be verified as in [17] or it can be checked by case by case arguments (as
in[28]). O
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We summarize the results of this section with the following corollary of Theorem 3.2
and the construction in Theorem 3.5.

Theorem 3.6. Let M be an irreducible calibrated?-module. Let € T be (a fixed choice
of) the central character o#f and let/ = R(w) N P(¢) foranyw € W such thatM,,; # 0.
Then(t, J) is a skew local region and? = H-/) where H-/) is the module defined in
TheorenB.5.

4. Thestructureof local regions
Recall that the Weyl group acts on
T = Hom(X, C*) = {group homomorphisms X — C*} by (wt)(X*) = t(X“’flk).

Any elementr € T is determined by the valuggX“?), t(X*2),...,t(X“"). Fort € T
define thepolar decomposition

t=tite, tr,tc €T suchthat,(X*) e Rooand|t.(X*)| =1,
for all X* € X. There is a uniqug € R” and a unique € R"/P such that
L(x*) =€ and 1.(x*) =" forall e P. (4.1)

In this way we identify the set§, ={r € T |t =1} andT. = {t € T | t = 1.} with by and
bg/ P, respectively.

For this paragraph (our goal here is (4.3) below) assumeyttsatot a root of unity (we
will treat the type A, root of unity case in detail in Section 7). The representation theory of
H is “the same” for any which is not a root of unity, i.e. providegis not a root of unity,

the classification and construction of simglemodules can be stated uniformly in terms
of the parameteg. Suppose < T is such that =, andy € by, is such that

t=¢, inthe sense thatr(x*)=e"* forall X* € X.

For the purposes of representation theory (as in Theorem B8gxes a central character
and so we should assume thais chosen nicely in it§V -orbit. When

g=e and yisdominant, i.e., (y,a)>0 foralla eRT, 4.2)
then
Z(t) =Z(y), P()=P(y), and F@) =F") forasubset C P(1),
where

Z(y)={aeR? |(y.a)=0},  P(y)={aecR"|(y.a)=1},



A. Ram / Journal of Algebra 260 (2003) 367-415 387

Frh={weW|Rw)NZy)=9, Rw)NPy)=J}. (4.3)

In this case the combinatorics of local regions is a new chapter in the combinatorics
of the Shi arrangement defined in (1.16). Other aspects of the combinatorics of the Shi
arrangement can be found in [2,33-35,37-39], and there are several additional places in
the literature [35], [46, 1.11, 2.6], [15,16] which indicate that there is a deep (and not yet
completely understood) connection between the structure and representation theory of the
affine Hecke algebra and the combinatorics of the Shi arrangement.

4.4. Intervals in Bruhat order

Using the formulation in (4.3), Theorem 4.6 will give a complete description of the
structure of F7-/) as a subset of the Weyl group wheris not a root of unity. We will
treat the type A, root of unity cases in Section 7.

Theweak Bruhat ordeis the partial order oV given by

v<w if R(v) € R(w), (4.5)

where R(w) denotes the inversion set aof € W as defined in (1.5). This definition of
the weak Bruhat order is not the usual definition but is equivalent to the usual one by
[4, Proposition 2]. A set of positive root& is closedif o, 8 € K, « + 8 € RT implies
thatoe + B € K. TheclosureK of a subsek € R* is the smallest closed subset Bf
containingK . A set of positive rootk € R™ is the inversion set of some permutation
w € W if and only if K is closed an© = R™\K is closed (see [4, Proposition 2] or [17,
Theorem 5.1]).

The following theoremis proved in [17, Section 5]. The proof of part (b) of the theorem
relies crucially on a theorem of J. Losonczy [22].

Theorem 4.6. Lety < by be dominani.e., (y,«) > Oforall « € RT)andletJ C P(y).
Let 7*-Y) be as given ir(4.3).

(@) ThenF™Y) is nonempty if and only if satisfies the condition
if BeJ,aeZ(y)andfp—acRT then B—aeclJ.
(b) The sub-root system,; = {« € R | (v, @) € Z}, has Weyl group
Wiy1 = (so | @ € Ryyy)
and if W'l = {0 € W | R(0) N Ry, = ¥} then
F.h — wlrl, [Tmax Tminls
wheretmax, tmin € W1 are determined by

R(tma) NRyy=J and R(zmin) N Ry = P\ UZ(y)",
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the complement is taken in the set of positive root®f, and [tmin, Tmax] denotes
the interval betweewmin and wmax in the weak Bruhat order ifV,, ;.

4.7. Conjugation

Assume thay is dominant (i.e.{y,«) >0 for alla € R*) andJ € P(y). Let F»/)
be as given in (4.3). Theonjugateof (y, J) and ofw € F-/) are defined by

Fan 2L ey,
w < w=wul

(v, J)' = (—uy,—u(P(y)\J)) and (4.8)

whereu is the minimal length coset representativeigW, € W/ W, andwg is the longest
element of W. In Section 6.7 we shall show that these maps are generalizations of the
classical conjugation operation on partitions.

Theorem 4.9. The conjugation maps defined(#.8) are well defined involutions.

Proof. (a) Sincey is dominant,—uy = —wgy is dominant and thug$—uy, —ua) =1
only if —ua > 0. Thus the equatiot—uy, —ua) =14 (y,a) =1 gives thatP (—uy) =
—uP(y).

(b) Letv € W, such thatwo = uv. (By [6, IV, Section 1 Exercise 3}; is unique.) Then
RT 2 —woZ(y) = —uvZ(y) =uZ(y), and it follows that

Z(—uy)=R*n{aeR | (uy,a)=0} =R NWZ(y)U—uZy))=uZ(y).

(c) Let R~ = —R™ be the set of negative roots R. Let v € W, such thatwo = uv.

Thenuv is the longest element d¥,, andR(v) = Z(y). Thus, sincavgpR™ = R™,
Ru) ={aeR|aeR", wova e R} ={eeR|aeR", va € RT},
= R"\R(v) = R"\Z(y).

(d) The weight-uy = —uvy = —woy is dominantand-u(P(y)\J) C P(—uy) since
—uP(y) = P(—uy). This shows thaty, J)' is well defined.

(e) Write wo = uv wherev is the longest element d¥,,. Similarly, write wo = u'v’
wherey’ is the minimal length coset representativesg¥,,,,, andv’ is the longest element

in W,y - Conjugation bywg is an involution oW which takes simple reflections to simple
reflections and¥,,,;,, = woW, wo. It follows thatv’ = wovwo. This gives

u'u = (wov') (wov) = wowovwowgov = 1,

and so the second map in (4.8) is an involution.
() Using (e) and (a),

—u'(Puy)\(=u(P(1\V))) = —u'(zuP(\(=u(P()\])))
PONPGIV) =,
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and so the first map in (4.8) is an involution.
(g) Letw € F») and letw’ = wu L. SinceR(w) N Z(y) =9,

=

u- R(wu_l)ﬂZ(y)
{BeR|upeR(wu™), BeZ(y))
[BeR|upe R wutupeR™, peZy))

[BeR|BeuRT, wpeR™, pecZ(y))

={BeR|Becu™'R", peRw), BeZ(y)} (sinceZ(y)<R™)
[BeR|BeuRT, e Rw)NZ(y))
@,

and thus, by (b),
RW)NZ(—uy) = R(wuil) NuZ(y) = u(zflR(wufl) N Z(y)) =0.

SinceR(w) N P(y) =J,

—u 'R(wu™t) N P(y)

[BeR|-upeR(wu™r), pePy)}

[BeR|-uBeR", —wutupe R, pe P(y)}
{BeR|uBpeR™, wBeR", Be P(y)}

{BeR|BeRw), pe R \Rw), BeP(y)} (sinceP(y)<R")
{BER|BERNZ(y), B R \Rw), pe Py}
{BER|BERNZ(y), B P(y)\J} (sinceR(w)NP(y)=1J)
P(y)\J, sinceZ(y)andP(y) are disjoint.

Thus, by (a),

RwN P(—uy) = R(wu*l) N—uP(y)= —u(—zflR(wzfl) NP(y))
= —u(P(y)\J).

and so the second map in (4.8) is well defined

Remark 4.10. In type A, the conjugation involution coincides with the duality operation
for representations gf-adic GL(n) defined by Zelevinsky [49]. Zelevinsky's involution

has been studied further in [18,19,25] and extended to general Lie type by Kato [13] and
Aubert [3]. For H-modules in type A, this is the involution on modules induced by the
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Iwahori-Matsumoto involution off and is detected on the level of characters: it sends
an irreducibleH -moduleL to the unique irreduciblé* with dim((L*)7*") = dim(L’%)

for eachr € T. | would like to thank J. Brundan for clarifying this remark and making it
precise.

Examples 4.11. (a) If y is dominant and is generic (as an element9fthen Z(y) =
P(y) =@ andFr P =w.

(b) Let p be defined by(p, ;) =1, forall 1<i < n. Then
Z(p) =0, P(p)={o1,...,ap}, and FP={weWw|Dw)=1J},

where D(w) = {o; | ws; < w} is theright descent sedf w € W. The setsF">/) which
arise here are fundamental to the theory of descent algebras [9,31,36].

(c) This example is a generalization of (b). Suppose that/) is a local region such
thaty is regular and integral (i.e(y, a) € Z¢ for all @ € R*). Then

Z(y) =0, P(y)S{o1,...,an}, and F"D=lweW |Dw)nPy)=J}.
(d) Let R be the root system of typ&, with simple rootsx; = &1 ap = &2 — 1, where
{e1, £2} is an orthonormal basis of; = R2. The positive roots ar@ " = {a1, a2, a1 + a2,
a1 + 2a}). Lety € R? be given by(y, a1) = 0 and(y, a2) = 1. Theny is dominant (i.e.,

in C) and integral and

Z(y)=A{a1} and P(y)={a2, a1+ a2}
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Figure 3 displays the local regiots?’) as regions i, see the remarks after (2.18).

The solid line is the hyperplane corresponding to the rodt(p) and the dashed lines
are the hyperplanes corresponding to the roo®(in).

(e) LetR be the root system of typ€ as in (d). Lety € R? be defined by

1

(y,a1) =0, (y.a2) = 3.

Then
Z(y) = {oa}, P(y) = {a1 + 2a2}.

If J = P(y) then the unique minimal elemeninin of F7/) has R (wmin) = {o2, a1 +
200} £ T = J.

5. Theconnection to standard Young tableaux

In this section we shall show that the combinatorics of local regions is a generalization
of the combinatorics of standard Young tableaux. Let us first make some general
definitions, which we will show later provide generalizations of standard objects in the
Young tableaux theory. This section is a (purely combinatorial) study of the local regions
in the form which appears in (4.3), and therefore corresponds to the representation theory
of affine Hecke algebras whenis not a root of unity.

5.1. Definitions

Lety € by be dominant and let
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Z(y) = {eeR |{y,a)=0}, P(y)={aeR"|(y,a)=1},
FUYD =lweW|Rw)NZ(y)=¥, Rw)NPy)=J},

asin (4.3).

(@) Alocal regionis a pair(y, J) such thatF-/) is nonempty.
(b) Aribbonis a local region(y, J) such that is regular, i.e.{y, «a) # 0 for all« € R.
(c) Anelementy € C is calibratableif
(1) forall simple rootsy;, 1<i <n, {y,a;) #0, and
(2) for all pairs of simple roots; anda; such thafe € R;; | (y, o) =0} # 0,
the set{a € R;; | {y, @) = 1} contains more than two elements.
(d) A skew local regionis a local region(y, J) such thatwy is calibratable for all
w e F»)_ All ribbons are skew.
(e) A column (respectively row reading tableauis a minimal (respectively maximal)
element ofF">/) in the weak Bruhat order.
() If « € R thea-axial distancdor w € F-7) is the valued, (w) = (wy, a).

Remarks. (1) Theorem 4.6(b) shows that, up to a shift, the&ét’) has a unique maximal

and a unique minimal element and is an interval in the weak Bruhat order. This is the
fundamental importance of the notions of the row reading and the column reading tableaux.
Theorem 6.9 in Section 6 will show how Theorem 4.6(b) is a generalization of a Young
tableaux result of Bjérner and Wachs [5, Theorem 7.2].

(2) The definition of skew local regions is forced by the representation theory of
the affine Hecke algebra (see Theorem 3.6, the classification of irreducible calibrated
representations). In Proposition 6.4 below we shall show that the skew local regions and
the ribbons are generalizations of the skew shapes and border strips which are used in the
theory of symmetric functions [24, |, Section 5 and |, Section 3, Exercise 11]

(3) The axial distances control the denominators which appear in the construction of
irreducible representations of the affine Hecke algebra in Theorem 3.5. In Section 6.1
we shall see how they are analogues of the axial distances used by A. Young [48] in his
constructions of the irreducible representations of the symmetric group.

To summarize, a brief dictionary between local regions combinatorics and the Young
tableaux combinatorics:

skew local regions <> skew shapes/u,
ribbons <« border strips,
local regions < general configurations of boxes,
F»D &  the set of standard tableaf®//.

The remainder of this section and the next section explain in greater detail the conversions
indicated in this dictionary.
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5.2. The root system

Let {e1,...,&,} be an orthonormal basis df, = R" so that each sequenge=
(y1, ..., vn) € R" is identified with the vectop =}, y;¢;. The root system of typd,,_1
is given by the sets

R={+(s;—¢&)|1<i,j<n} and Rt ={e;—¢&|1<i<j<n}
The Weyl group isW = §,,, the symmetric group, acting by permutations of ¢he
5.3. Partitions, skew shapes, and standard tableaux

A partition A is a collection of: boxes in a corner. We shall conform to the conventions
in [24] and assume that gravity goes up and to the left.

[]
[]

Any partition A can be identified with the sequente= (11 > A2 > - --) wherej; is the
number of boxes in row of A. The rows and columns are numbered in the same way as for
matrices. We shall always use the walidgonalto mean a major diagonal. In the example
abovei = (553311 and the diagonals of (from southwest to northeast) contain 1, 1, 1,
2,3,3,2,2,2,and 1 box, respectively.

If » andp are partitions such that; < A; for all i write u € A. Theskew shapé./u
consists of all boxes of which are not inu. Let A/u be a skew shape with boxes.
Number the boxes of each skew shagg along diagonals from southwest to northeast
and

write box to indicate the box numberéd

See Example 5.8 below. standard tableau of shape/u is a filling of the boxes in the
skew shape /u with the numbers 1 .., n such that the numbers increase from left to right
in each row and from top to bottom down each column. £ét* be the set of standard
tableaux of shap&/u. Given a standard tableguof shaper/u define theword of p to

be the permutation

B 1 n
wp_<p(b0X1) p(box,,)> (5.4)

wherep(box;) is the entry in boxof the standard tableau.
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5.5. Placed skew shapes

LetA/u be a skew shape withboxes. Imagine placing/u on a piece of infinite graph
paper where the diagonals of the graph paper are indexed consecutively (with elements
of Z) from southwest to northeast.

2 10123 456 -

S QONNNNNNAN
SN
N -
N\ [

Thecontentof a boxb is
¢(b) = diagonal number of boa.

Identify the sequence

n

y = (c(boxy), c(boX), ..., c(box,)) with y = Zc(boxi)si eR". (5.6)
i=1

The pair(y, A/u) is aplaced skew shapé follows from the definitions in Section 5.1 that

Z(y) = {e; — & | j > i and box and box are in the same diagonal and

P(y) = {ej —e&;i | j > i and box and box are in adjacent diagonals

J= [Sj—si

wherenorthwestmeans strictly north and weakly west.

Define

j>i
box; and box are in adjacent diagonals, (5.7)
box; is northwest of box
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Examples 5.8. The following diagrams illustrate standard tableaux and the numbering of
boxes in a skew shape .

10[12]13[14] 3[4]9]12]
68|11 15|10
51719 7|13]14
] B
2[3] 6]8]
1] 1]
A/p with boxes numbered A standard tableau p of shape \/pu

The word of the standard tableaus the permutation, = (11,6,8,2,7,1, 135,14, 3,
10, 4,9, 12) (in one-line notation).

The following picture shows the contents of the boxes in the placed skew ghapg.)
withy =(-7,-6,-5,-2,0,1,1,2,2,3,3,4,5,6).

3]4]5]6]
1]2]3

-6]-5]
7]

Contents of the boxes of (v, A\/u)

In this caseJ = {ex — €1, €6 — €5, €8 — €7, £10 — €8, £10 — €9, £11 — €9, €12 — €11}

Theorem 5.9. Let (v, A/u) be a placed skew shape and letbe as defined iif5.7). Let
FM1 pe the set of standard tableaux of shapg: and let 7">/) be the set defined in
Sectiorb.1 Then the map

e L g,
p < wp,
wherew, is as defined irf5.4), is a bijection.
Proof. If w= (w(1)---w(n)) is a permutation irs,, then

R(w)={ej —&; | j > i suchthatw(j) < w()}.

The theorem is a consequence of the following chain of equivalences:
The filling p is a standard tableau if and only if, for alkli < j <n,

(@) p(box) < p(box;) if box; and box are on the same diagonal,
(b) p(box) < p(box;) if box; is immediately to the right of bexand
(c) p(box) > p(box;) if box; is immediately above bex
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These conditions hold if and only if

(@) ej —ei ¢ R(wp) ifej —e; € Z(y),
(b) 6 —ei ¢ R(wp) ifej —e; € P(y)\ J,
(C) 8]'—8,'6R(wp) if Ej —&i elJ,

which hold if and only if

(@) v ¢ R(wp) if a € Z(y),
(b) a ¢ R(wp) if « € P(y)\ J,and
() a e R(wp) ifael.

Finally, these are equivalent to the conditio®w,) N Z(y) = ¢ and R(wp,) N
Piy)=J. O

5.10. Placed configurations

We have described how one can identify placed skew sh@apeg ) with certain pairs
(v, J). One can extend this conversion to associate placed configurations of boxes to more
general pairgy, J). The resulting configurations are not always skew shapes.
Let (y,J) be a pair such thay = (y1,...,y,) is a dominant integral weight and
J € P(y). (The sequence is a dominant integral weight if1 < --- <y, andy; € Z
forall i.) If J satisfies the condition

if BelJ,aeZ(y),andB—aec Rt then B—acJ

then(y, J) will determine a placed configuration of boxes (see Theorem 4.6). As in the
placed skew shape case, think of the boxes as being placed on graph paper where the boxes
on a given diagonal all have the same content. (The boxes on each diagonal are allowed
to slide along the diagonal as long as they do not pass through the corner of a box on an
adjacent diagonal.) The sequencelescribes how many boxes are on each diagonal and

the set/ determines how the boxes on adjacent diagonals are placed relative to each other.
We want

n
y =Y c(box)s;
i=1
and

(a) ife; —e; € J then box is northwest of box and
(b) if e; —&; € P(y)\J then box is southeast of box

where the boxes are numbered along diagonals in the same way as for skew shapes,
southeastmeans weakly south and strictly east, amatthwestmeans strictly north and
weakly west.
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If we view the pair(y, J) as a placed configuration of boxes thendtendard tableaux
are fillings p of then boxes in the configuration with, 2, ..., n such that, for alf < j,

(a) p(box) < p(box;) if box; and box are on the same diagonal,

(b) p(box) < p(box;) if box; and box are on adjacent diagonals and béx southeast
of box;, and

(c) p(box) > p(box;) if box; and box are on adjacent diagonals and bhax northwest
of box;.

As in (5.6) the permutation i¥-/) which corresponds to the standard tablgais
w, = (p(boxy), ..., p(box,)). The following example illustrates the conversion.

Example. Supposer = (—1,-1,-1,0,0,0,1,1,1,2,2,2) and
J = {84 —&1,84 —£2,84 —£3,65—E€2,65 — &€3,87 — 5,87 — €6,E8 — €6, £10 — €9,
£10 — €8, £10 — £7, £11 — €9, €11 — &8, £11 — €7, £12 — &9}

The placed configuration of boxes correspondin@to/) is as given below.

B [ B
2 11 4
0|1 47 115
-110 1(5 216
-1 12 2 8112 9 718
1|01 31619 101112
contents of boxes numbering of boxes a standard tableau

5.11. Books of placed configurations

The general case, when= (y1, ..., y,) is an arbitrary element dk" andJ C P(y),
is handled as follows. First group the entriesyoficcording to theiZ-coset inR. Each
group of entries iry can be arranged to form a sequence

B+Cp=B+(z1,....20) =(B+z1,.... B+ 2k,
where 0< 8 < 1,z; € Z,andz; < -+ < 2.
Fix some ordering of these groups and let
¥y =B1+Cpy,.... B +Cp,)

be the rearrangement of the sequepagith the groups listed in order. Singeandy are

in the same orbit it is sufficient to analyze(y corresponds to the central character of the
corresponding affine Hecke algebra representations and thus any convenient element of the
orbit is appropriate, see Section 2.3).
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The decomposition of into groups induces decompositions
zih=Jzs. PG =|JPs. and, itJ<PF), thens=|]Js,
Bi Bi Bi

where Jg;, = J N Pg,. Each pair(Cg, Jg) is a placed shape of the type considered in
the previous subsection and we may identify, /) with the book of placed shapes
((Cpys Iy), - - -5 (Cp,, Jg.)). We think of this as @ookwith pagesnumbered by the values

B1, ..., B and with the placed configuration determined(l6y;,, Jg,) on pageg;. In this

form thestandard tableauwf shape(y, J) are fillings of then boxes in the book with the
numbers 1. .., n such that the filling on each page satisfies the conditions for a standard
tableau in Section 5.10.

Example. If y = (1/2,1/2,1,1,1,3/2, -2, -2, -1/2, -1, -1, -1, -1/2,1/2,0, 0, 0)
then one possibility foy is

7=(-2,-2,-1,-1,-1,0,0,0,1,1,1,-1/2,-1/2,1/2,1/2,1/2, 3/2).
Inthis caseB; =0, 82=1/2,
p1+Cp =(—2,-2,-1,-1,-1,0,0,0,1,1,1), and
B2+ Cp, = (=1/2,-1/2,1/2,1/2,1/2,3/2).
If J =Jpg, UJp, whereJg, = {e14 — €13, 17 — €16} and
Jp, = {63 —€2,64 — €2, 85 — €2, €6 — €3, €6 — €4, £6 — €5, £9 — £7, £9 — €8,
€10 — €7, €10 — €8}

then the book of shapes is

01 I
[2]1 . ' [1]o
1] 1 | 101
-110 | 0
2] [ol1] -
Page 0 Page 3

where the numbers in the boxes are the contents of the boxes. The filling

—
ee}

Ny

[2 [3]6

|
|
|
5] |11 | 7 [10]14
|
|
|
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is a standard tableau of shagg J). This filling corresponds to the permutation

w=(2,12,4,5,9,1,13 15,8,11, 17,3, 7,6,10,16,14) in F7 /) C Sys.

6. Skew shapes, ribbons, conjugation, etc. in type A

In this section we shall explain how the definitions in Section 5.1 correspond to classical
notions in Young tableaux theory. As in the previous sectiorRldte the root system of
TypeA,—_1 as given in Section 5.2. For clarity, we shall state all of the results in this section
for placed shapeg/, J) such thaty is dominant and integral, i.ey, = (y1, ..., ¥») With
y1 < --- <y, andy; € Z. This assumption is purely for notational clarity.

6.1. Axial distance

Let (v, J) be a local region such thatis dominant and integral. Let, € 7/ and
let p be the corresponding standard tableau as defined by the map in Theorem 5.9. Then it
follows from the definitions ofs andw,, in (5.6) and (5.4) that

(wy, &) = (y, w;18[> = C(boxwp—l(l.)) = c(p(i)), (6.2)

wherep(i) is the box ofp containing the entry.

In classical standard tableau theory théal distancebetween two boxes in a standard
tableau is defined as follows. Let be a partition and lep be a standard tableau of
shape,. Let 1< i, j <n andletp(i) andp(j) be the boxes which are filled withand j,
respectively. Le(r;, ¢;) and(r;, ¢;) be the positions of these boxes, where the rows and
columns ofa are numbered in the same way as for matrices. Themsttad distancerom
jtoiinpis

dji(p)=cj—ci+ri—rj,

(see [45]). Rewriting this in terms of the local region J) determined by (5.7),

dji(p) =c(p(j)) —c(p()) = (wpy.ej — &) =de;—¢; (),
wherew,, € F7+/) is the permutation corresponding to the standard tabpesandd, (w )
is the o-axial distance defined in (f) of Section 5.1. This shows that the axial distance
defined in (f) of Section 5.1 is a generalization of the classical notion of axial distance.
These numbers are crucial to the classical construction of the seminormal representations
of the symmetric group given by Young (see Remark (3) of Section 5.1).

6.3. Skew shapes

The following proposition shows that, in the case of a root system of type A, the
definition of skew local region coincides with the classical notion of a skew shape.
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Proposition 6.4. Let (y, J) be a local region withy dominant and integral. Then the
configuration of boxes associated(tp, J) is a placed skew shape if and only(jf, J) is
a skew local region.

Proof. (<) We shall show that if the placed configuration corresponding to th& pair)
has any 2< 2 blocks of the forms

a_ | b a L a
e b |c e
Case (1) Case (2) Case (3)

then there exists a € F-/) such thatwy violates one of the two conditions in (c) of
Section 5.1. This will show that ify, J) is a skew local region then the corresponding
placed configuration of boxes must be a placed skew shape. In the pictures above the
shaded regions indicate the absence of a box and, for reference, we have labeled the boxes
with a, b, c.

Case (1). Create a standard tableatsuch that the % 2 block is filled with

i—1 i

i+l

by filling the region of the configuration strictly north and weakly west of box ¢ in row
reading order (sequentially left to right across the rows starting at the top), putting the
next entry in box c, and filling the remainder of the configuration in column reading order
(sequentially down the columns beginning at the leftmost available columnj ket

be the permutation itF>/) which corresponds to the standard tablpatet p(i) denote

the box containing in p. Then, using the identity (6.2),

(wy. @i +ait1) = (wy. eip1 —er-1) = c(pli + 1) —¢(pi = 1)) =0,

since the boxep(i + 1) andp(i — 1) are on the same diagonal. However,

(wy, o) = (wy, & —ei—1) =c(pi)) —c(pi —1) =1, and
(wy,air1) = (wy, i1 — &) =c(pi +1)) —c(p)) = -1,
and so condition (c)(1) of Section 5.1 is violated.

Case (2). Create a standard tableawsuch that the % 2 block is filled with

i1

i fi+1
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by filling the region weakly north and strictly west of box c in column reading order, putting
the next entry in box c, and filling the remainder of the configuration in row reading order.
Using this standard tablegy the remainder of the argument is the same as for Case (1).

Case (3). Create a standard tableatsuch that the X 2 block is filled with

by filling the region strictly north and strictly west of box b in column reading order, putting
the next entry in box b, and filling the remainder of the configuration in row reading order.
Letw = w, be the permutation iF"-/) corresponding tp and letp(i) denote the box
containingi in p. Then

(wy, ;) = (wy, & —¢&i—1) =c(p@)) — (pi — 1) =0,

sincet (i) andz (i — 1) are on the same diagonal. Hence, condition (c)(1) of Section 5.1 is
violated.

(=) Lety € Z" andA/u describe a placed skew shape (a skew shape placed on infinite
graph paper). Lety, J) be the corresponding local region as defined in (5.7). We will
show that everyy is calibratable for every € 7).

Letw € F7-/) and letp be the corresponding standard tableau of shape Consider
a 2x 2 block of boxes op. If these boxes are filled with

theneithei < j <k <fori <k < j <£.Inboth cases we have< ¢ — 1 and it follows
that¢ — 1 and¢ are not on the same diagonal. Thus

(wy. o) = c(p(0) — c(p(t — 1) #0,

and sowy satisfies condition (a) in the definition of calibratable.

The same argument shows that one can never get a standard tableau i arniéh- 2
occur in adjacent boxes of the same diagonal and thus it followsthaatisfies condition
(b) in the definition of calibratable. Thus, J) is a skew local region. O

6.5. Ribbon shapes
Classically, aorder strip (or ribbon) is a skew shape which contains at most one box

in each diagonal. Although the convention, [24, |, Section 1 p. 5], is to assume that border
strips are connected skew shapes we si@lhssume this.
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Recall from (b) of Section 5.1 that a placed shépgJ) is a placedibbon shape ify
is regular, i.e.{y,a) #0foralla € R.

Proposition 6.6. Let (v, J) be a placed ribbon shape such thats dominant and integral.
Then the configuration of boxes correspondingjtoJ) is a placed border strip.

Proof. Let (y,J) be a placed ribbon shape with dominant and regular. Sincg =
(y1,...,va) is regular,y; # y; for all i # j. In terms of the placed configuratign =
c(box;) is the diagonal that bgxs on. Thus the configuration of boxes corresponding to
(y, J) contains at most one box in each diagonat

Example. If y = (-6, —-5,-4,0,1,3,4,5,6, 7)andJ = {e2—¢1, 65— ¢4, 67— €6, €9 — €8,
£10 — €9} then the placed configuration of boxes correspondingyta/) is the placed
border strip

“[=[3]

ot
1
[N

where the boxes are labeled with their contents.
6.7. Conjugation of shapes

Let (y, J) be a placed shape with dominant and integral (i.ey, = (y1, ..., ¥») With
< -~ <y, andy; € Z) and view(y, J) as a placed configuration of boxes. In terms
of placed configurations, conjugation of shapes is equivalent to transposing the placed
configuration across the diagonal of boxes of content 0. The following example illustrates
this.

Example. Supposey = (—1,-1,—-1,0,0,1,1) and J = (g4 — &2,64 — €3, €6 — &5,
&7 — e5). Then the placed configuration of boxes corresponding{d) is

[-1]o]1
1l
1|0

in which the shaded box is not a box in the configuration.
The minimal length representative of the cosetV,, is the permutation

(12 3 45 6
“=\s5 6 7 3 41 2
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We have—uy = —woy =(-1,-1,0,0,1,1,1) and
—u(P(y)\J) = —ufea— 1,65 — €1, 5 — €2, €5 — €3, £6 — €4, £7 — €4}

= —{e3—¢5,64 — £5,64 — €6, 84 — 67,61 — €3, €2 — €3}

= {65 — 3,65 — 64, €6 — €4, €7 — €4, 63 — €1, €3 — €2}.

Thus the configuration of boxes corresponding to the placed shyape’ is

(1]
0

-1

6.8. Row reading and column reading tableaux

Let(y, J) be a placed shape such thais dominant and integral and consider the placed
configuration of boxes corresponding(tg J). Theminimal boxof the configuration is the
box such that

(my) there is no box immediately above,

(my) there is no box immediately to the left,

(m3) there is no box northwest in the same diagonal, and
(my) it has the minimal content of the boxes satisfying Ja{ms).

There is at most one box in each diagonal satisfying)¢ms). Thus, (m) guarantees
that the minimal box is unique. It is clear that the minimal box of the configuration always
exists.

The column readingtableaux of shapéy, J) is the filling pmin which is created
inductively by

(a) filling the minimal box of the configuration with 1, and
(b) if1,2,...,i have been filled in then fill the minimal box of the configuration formed
by the unfilled boxes with + 1.

The row reading tableawf shape(y, J) is the standard tablegpnax Whose conjugate
Pmax IS the column reading tableaux for the shapeJ)’ (the conjugate shape tg, J)).

Recall the definitions of the weak Bruhat order and closed subsets of roots given after
Eqg. (4.5).

Theorem 6.9. Let (y, J) be a placed shape such thatis dominant and integrafi.e.,
y=01,...,vn) Withy1 < --- <y, andy; € Z). Let pmin and pmax be the column reading
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and row reading tableaux of shape, J), respectively, and letvmin and wmax be the
corresponding permutations if>/). Then

Rwmin)=J,  Rwmad = (P \J)UZy), and FO7) =[wmin, wmax,

where K¢ denotes the complement &f in R™ and [wmin, wmax] denotes the interval
betweenumin and wmax in the weak Bruhat order.

Proof. (a) Consider the configuration of boxes corresponding1d). If £ > i then either
c(box,) > c(box), or box, is in the same diagonal and southeast of;b@kus when we
createpmin we have that

if k>1i then box gets filled before boxs box, is northwestof box;,
where thenorthwests in a very strong sense: There is a sequence of boxes

box =box,, box,, ..., box, =box

such that boy, is either directly above bgx , or in the same diagonal and directly
northwest of boy,_,. In other words,

m—1"
if k>i then pmin(boX) < pmin(b0oX) < box, is northwestof box;.
So, from the formula fow,, in (5.4) we get

if k>i then wmin(k) < wmin(i) S e — €& € .7,

wherewmin is the permutation iF">/) which corresponds to the fillingyin andJ is the
closure of/ in R. It follows that

R(wmin) = J.

(b) There are at least two ways to prove tlRtwmay = (P(y) \ J)U Z(y)°. One
can mimic the proof of part (a) by defining the maximal box of a configuration and a
corresponding filling. Alternatively one can use the definition of conjugation and the fact
thatR(wow) = R(w)¢. The permutatiommi, is the unique minimal element &-/) and
the conjugate ofvmay is the unique minimal element G-/ We shall leave the details
to the reader.

(c) An elementw € W is an element ofF">/) if and only if R(w) N P(y) = J and
R(w) N Z(y) =@. ThusF"7) consists of those permutationse W such that

TS Rw) S (POI\T)UZ(y).

Since the weak Bruhat order is the ordering determined by inclusioR$wof, it follows
that /) is the interval betweewmin andwmax. O
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Example. Supposey = (—1,-1,—-1,0,0,1,1) and J = {e4 — &2,64 — &3, €6 — &5,
€7 — e5). The minimal and maximal elements#{?-/) are the permutations

w__12 3 45 6 and weee (1 2 3456
mn=\1 3 4 2 7 5 6 mx—\1 5 6 2 7 3 4)°

The permutations correspond to the standard tableaux

[1]2]5 [1
3 |6 and
417 6|7

[\v]
R

ot

7. ThetypeA, root of unity case

This section describes the sefi§/) in the case of the root system of Section 5.2 when
g% =€/t a primitive/th root of unity,¢ > 2.
Letr e T. Identify ¢ with a sequence

t=(1,....t,) €C", wherer(X%)=rt.

For the purposes of representation theory (see Theorem B@gxes a central character
(see Section 2.3) and sa@an safely be replaced by any element oMtsorbit. In this case
W is the symmetric groups,,, acting by permuting the sequence (71, ..., ;).

The cyclic group(g?) of order¢ generated by? acts onC*. Fix a choice of a sef}
of coset representatives of thg?) cosets inC*. Replace with the sequence obtained by
rearranging its entries to group entries in the sagfé-orbit, so that

t= (e, 8 ®),

whereéy, ..., & are distinct representatives of the coset<ify (¢2) and each)) is a
sequence of the form

1P = (qzyl,...,qz”f), withy1,...,y,€{0,1,...,¢—1}andy1 <--- < y,.
As in Section 5.11 this decompositionihto groups induces decompositions
k k
Zty=|J 2z and P@t)y=| P ).
j=1 j=1

and it is sufficient to analyze the case whearonsists of only one group, i.e., all the entries
of r are in the saméy?) coset.
Now assume that

t:(qz”l,...,qz”"), withyr <--- <y, v €{0,...,¢£— 1}
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Consider a page of graph paper with diagonals labeled. by, 1,...,¢ —1,0,1,...,
¢—1,0,1,...fromsouthwest to northeast. For each local rediod ), J C P(t), we will
construct arg-periodic configuration of boxes for which tleperiodic standard tableaux
defined below will be in bijection with the elements &1/). For each K i < n, the
configuration will have a box numberéd box, on each diagonal which is labeleggl.
There are an infinite number of such diagonals containing a box numbesatte the
diagonals are labeled in afiperiodic fashion, but each strip of consecutive diagonals
labeled 01, ..., ¢ — 1 will containn boxes. Thecontentof a boxb (see [24, |, Section 1,
Exercise 3]) is

c(b) = (the diagonal number of the bay.
Then
Z(@t) =fej—cili<j, vi=vyj}
= {ej —¢&; |i < j, box and box are in the same diagonal
and

i<jandy;=y +1,0r

P = {8j_8i i<j,yj=£—1andy;=0

= {e; —¢; | i < j and box and box are in adjacent diagonals
We will useJ C P(¢) to organize the relative positions of the boxes in adjacent diagonals:

if ; —e; € J andifc(box;) # £ —1 orc(box) # 0, place box northwest of box
if ; —e; ¢ J andifc(box;) # £ — 1 orc(box) # 0, place box southeast of bgx
if &; —e&; € J andc(box;) = £ — 1 andc(box) = 0, place box southeast of box
if &; —e; ¢ J andc(box;) = £ — 1 andc(box) =0, place box northwest of box

Thus,r determines the number of boxes in each diagonal Amtermines the relative
positions of the boxes in adjacent diagonals. This information completely determines the
¢-periodic configuration of boxes associated to the paiv).

A ¢-periodic standard tableais an¢-periodic filling p of the boxes with 12,...,n
such that

(a) ifi < j and box and box are in the same diagonal thewi) < p(j),

(b) if i < j and box and box are in adjacent diagonals with bpgouthwest of boxthen
p@) < p(j),

(c) if i < j and box and box are in adjacent diagonals with bporortheast of boxthen
p@) > p(j),

where p(i) denotes the entry in bpxAn ¢-periodic standard tablegw corresponds to a
permutation inS, via the correspondence
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{standard tableayx< F©7),

'_)( 1 2 - n )
P=A\r@ p@ - pmy)
Example. Suppose thaj? = €27'/4 and

o o0 0 0 2

2 2
t=(4°%4%4q%4%q%a% d% q* 4% 4% 4°. 4% 4°.4°).

Then

Z(t) = {ep— 1,63 —€1,64 — 61,63 — €2, 4 — €2, 84 — 3,66 — €5,€7 — €5,...} and
P(t) = {es —€1,65 — 2,65 — €3, 65 — €4, 86 — €1, . .., £14 — €9, £10 — &1,

£10 — €2, ..., €14 — €4},

J = {e5— 62,65 — €3, 65 — €4, 86 — €3, 86 — €4, £8 — €5, £8 — €6, £8 — £7, €9 — €7,
€10 — €9,€11 — €9,€12— €9,812 — €2,812— €3,€12— €4,813 — €2,E13 — €3,

£13 — €4, €14 — €3, €14 — €4)

then the correspondingperiodic configuration of boxes and a samplperiodic standard
tableau are

.o I
| |
I_10—T_I \_3—I_I
11, 8[10 L3 2]3
als] [ s oft] [s] _ 12
2! M5! 3 01!
| = | -
L913[2]6] [12 2, 3[0]1] [3
I il I T
43| |918[2 6, 3Jo] [2[8]0,1,
a|7] |14 31 01 0!
—IZI_,?'I 6I_17
L1 1 L1 1
numbering of boxes contents of boxes
.-
|
\_8‘I_I
d1 5/8 _ -
[1[e] [ 15!
11
L2 1,6
1317 [912] |2
f T
Jdof13] [3]7]9 12
14| 4] [|10[13!
_flzll_47
 Hl Gl

a standard tableau p
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8. Standard tableaux for type C in terms of boxes
8.1. The root system

Let{e1, ..., &,} be an orthonormal basis §f, = R" and view elementg =, y;; of
R”" as sequences

Y =-nr-or ¥—1; V1, .-+, ¥n), SUchthat_; =—y;. (8.2)

The root system of typ€, is given by the sets

R = {+26,+(s;+¢) |1<i, j<n} and
RT = {28, ej e | 1<i<j<n) (8.3)

The simple roots are given byy = 2¢1, o; = &; — ¢;—1, 2<i < n. The Weyl group
W = WC, is thehyperoctahedral groupf permutations of-n, ..., —1,1, ..., n such that
w(—i) = —w(i). This groups acts on thg by the rulewe; = &), with the convention
thate_; = —¢;.

For this type C case there is a nice trick. View the root system as

R={*(sjxe)|i<j, i je{xl,...,+n}} and
RY =lej—ei|i<j, i, je{£l, ... +n}}, (8.4)

with the conventionthat_; = —e;. In this notatiore; —s_; = 2¢; ands_; —e_; = ¢; —¢;.
This way the type C root system “looks like” a type A root system and many computations
can be done in the same way as in type A.

8.5. Rearranging

We analyze the structure of the se®§"-/) as considered in (4.3). This corresponds
to when theq in the affine Hecke algebra is not a root of unity. The analysis in this
case is analogous to the method that was used in Section 5.11 to create books of placed
configurations in the type A case.

Lety € R". Apply an element of the Weyl group toto “arrange” the entries of so
that, foreach € {1, ..., n},

1
yi € |:z+ Ez:| for somez € Z.

Then

1
Y_i=—yi € [z/, 7+ 5}’ for somez’ € Z.
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As in the type A case, the se®(y) and P(y) can be partitioned according to ti#e
cosets of the elements pfand it is sufficient to consider eaéhcoset separately and then
assemble the results in “books of pages.” There are three cases to consider:

Case B. TheZ-coset8 +Z, 8 € (1/2,1). Then
y=(B-m<-<—P-—n<-B-w;s frusPt<---<B+z), ze€l,
Case 1/2. TheZ-coset Y2+ Z. Then
y=(12-2,<---<-1/2—-22< -1/2—zy;
1/2+21<Y/24+z22<--<1/2+4z0), 2z € ZLxo,
Case 0. TheZ-cosetZ. Then
y=(-z < <—2< -2 21K 22< - < 2y), i €ZLxo.
It is notationally convenientto let_; = —z;.
8.6. Boxes and standard tableaux

Let us assume that the entriesyofill lie in a singleZ-coset and describe the resulting
standard tableaux. The general case is obtained by creating books of pages of standard
tableaux where the pages correspond to the difféfettisets of entries ip.

The placed configuration of boxes is determined as follows.

8.7. Cases, f € (1/2,1)
Assume thay < by, is of the form

y=(B—-u<<P-—n<-P-z; pru<p+< - --<PB+wm), el

Place boxes on two pages of infinite graph paper. These pages are nuiflsrdd-g

and each page has the diagonals numbered consecutively with the elemgntsan

bottom left to top right. View these two pages, paband page-8, as “linked.” For each

1<i < nplace boxon diagonak; of pages and box ; on diagonal-z; of page— 8. The

boxes on each diagonal are arranged in increasing order from top left to bottom right. The

placement of boxes on pages is a 180 rotation of the placement of the boxes on pgge
Using the notation for the root system of typg in (8.4)

P(y) = {ej —e&; | j > i and box and box are in adjacent diagonals and
Z(y) = {&; —&; | j > i and box and box are in the same diagonal

Notethat_; —s_; € Z(y) ifand onlyifs; —e; € Zg(y), and similarlys_; —e_; € Pg(y)
if and only if e; —&; € Pg(y). If J € P(y) arrange the boxes on adjacent diagonals
according to the rules
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(1) if &; — &; € J place box northwest of box and
(2) ife; —&; € P(y)\J place box southeast of bgx

A standard tableaus a negative rotationally symmetric filling of the 2. boxes with
—n,...,—1,1,...,nsuch that

(a) p(box) < p(box;) if j >i and box and box are in the same diagonal,

(b) p(box) > p(box;) if j > i, box and box are in adjacent diagonals and hois
northwest of box

(c) p(box) < p(box;) if j > i, box and box are in adjacent diagonals and hois
southeast of bgx

The negative rotational symmetry means that the filling of the boxes on-pgds the
same as the filling on page except rotated by 180and with all entries in the boxes
multiplied by —1.

Example. Supposes € (1/2,1), and

y = (B8
+(-2,-2,-2,-1,-1,-1,0,0,0,1,1,1,-1,-1,-1,0,0,0,1,1,1,2,2,2)
=(p-2--2--2-p-1-p-1-B-1L-6,-6,-B-B+1
—-B+1,-8+1;
B—LB-1B-Lp BB A+LA+LA+LA+28+2F+2)

and
J ={ea—e1,6_1—€ 4,64—62,6 20— €_1,64—63,6_3—E_4,65—E2,6_2—E_5,
&5 — 83,63 — 65,67 — 65,65 —€_7,67 — 86,66 — £-7,68 — £6,E—6 — €8,

€10 —€9,6-9—€-10,€10 — £€8,€-8 — £€-10, €10 — €7, -7 — €-10, €11 — €9,

£-9—€-11,€11 — €8, 6-8 — €11, €11 — €7, -7 — €11, €12 — €9, £-9 — £_12}.

The placed configuration of boxes correspondingta/) is

o1 NE 9]-6]-3 v [10]
21 [ 2 28] |2 [ 11
of1] | [o]x sl [4]7
1lo] o+ [1]o 74l 5
-2 : 1) [1]2 11 : 2 8 [12
2] 101 F10] 3]6]9
Page —f3 I Page Page —f3 I Page

contents of boxes numbering of boxes
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and a sample negative rotationally symmetric standard tableau is

-4[-3[5 ST
6]-1 [ L10
slo] | b2
2l12] 1+ [o]=s
10 | -7 6
ﬂ | -5 4
Page —f3 I Page [

a standard tablcau

8.8. Casel/2

Assume thay < by, is of the form

y =(12-2, < <-1/2-22< =1/2— z1;
1/24+20 <124+ 22< - <1/24z4), zi € Lxo.

Place boxes on a page of infinite graph paper which has its diagonals numbered
consecutively with the elements of 2+ Z, from bottom left to top right. This page has
page number 2. For each € {£1, ..., £n} place box on diagonal 12 + z; and box;
on diagonal1/2 — z;. The boxes on each diagonal are arranged in increasing order from
top left to bottom right and the placement of boxes is negative rotationally symmetric in
the sense that a 18@otation takes bgxto box_;.

Using the root system notation in (8.4),

P(y) = {ej — & | j>iandboxand box are in adjacent diagonals and

Z(y) = {ej —e&i | j>iandboxand box are in the same diagonal

Note that it is the formulation of the root system of tyPg in (8.4) which makes the
description ofP(y) andZ(y) nice in this case. I§f C P(y) arrange the boxes on adjacent
diagonals according to the rules

(1) if &; — &; € J place box northwest of box and
(2) ife; —e; € P(y)\J place box southeast of bgx

A standard tableaus a negative rotationally symmetric filling of the 2: boxes with
—n,...,—1,1,...,nsuch that

(a) p(box) < p(box;) if j > i and box and box are in the same diagonal,

(b) p(box) > p(box;) if j > i, box and box are in adjacent diagonals, and hads
northwest of box,

(c) p(box) < p(box;) if j > i, box and box are in adjacent diagonals, and bads
southeast of bgx



412 A. Ram / Journal of Algebra 260 (2003) 367-415

The negative rotational symmetry means that the filling of the boxes is the same if each
entry is multiplied by—1 and the configuration is rotated by 280

Example. Suppose

_(_Z _5_5_3_3_3_3_1_
Y= 2> 2y T2y T2y T2 2T T

Nlol
NI~
~

and

J = {e11—£10,6-10— 6-11, 810 — €8,6-8 — £-10, €9 — £7,6-7 — £_9, €9 — €8
£ 8—€.9,67— 63,6 3—6_7,67—E4,E_4—E_7,66—€2,6_2 —E_6,E6— €3,
£_3—€_6,66— E4,6_4— E_6,E5— E4,6_4 — £_5,65 — £3,6_3 — £_5, 65 — £2,
£ 2—6.5,60—€_1,63—£_1,64—E_1,61— €1}
= {e11— €10, €10 — €8, €9 — £7, £9 — £8, £7 — €3, £7 — £4, €6 — £2, €6 — €3, £6 — £4,

&5 — &4, €5 — €3, 85 — €2, €2 + €1, €3+ €1, €4 + €1, 2e1}.

The placed configuration of boxes correspondin@ta/) is as given below:

ol ol s
‘Z '% % -81-4 5 71-6|  L10l
EINEIEIEI o 3] [6]9] 5| -4 |98
B BEREEE] B B FERRE M B ORREER] [
EIEINEINE 9]-6] [3] [10 slo| 4] |5
EINEE 5] |48 [0 |67
B ] 1]
Page % Page % Page %
contents of boxes numbering of boxes a standard tableau
8.9. Casd&

Assume thay < by, is of the form
y=(-z < <—2< -2 20K 22< - < 2y), i €ZL3o.

Place boxes on a page of infinite graph paper which has its diagonals numbered
consecutively with the elements @f from bottom left to top right. This page has page
number 0. For eache {£1, ..., +n} place box on diagonak; and box; on diagonal
—zi. The boxes on each diagonal are arranged in increasing order from top left to bottom
right and the placement of boxes is negative rotationally symmetric in the sense that a 180
rotation takes bgxto box_;.

Using the root system notation in (8.4),
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P(y) = {ej —¢&; | j>iandboxand box are in adjacent diagonals and

Z(y) = {ej —e&i | j>iandboxand box are in the same diagonal
If J C P(y) arrange the boxes on adjacent diagonals according to the rules

(1) if &; — &; € J place box northwest of box and
(2) ife; — & € P(y)\J place box southeast of box

A standard tableaus a negative rotationally symmetric filling of the 2. boxes with
—n,...,—1,1,...,nsuch that

(a) p(box) < p(box;) if j >i and box and box are in the same diagonal,

(b) p(box) > p(box;) if j > i, box and box are in adjacent diagonals, and hads
northwest of box,

(c) p(box) < p(box;) if j > i, box and box are in adjacent diagonals, and bads
southeast of bqox

The negative rotational symmetry means that the filling of the boxes is the same if each
entry is multiplied by—1 and the configuration is rotated by £80

Example. Supposes = (—2,-1,-1,-1,0,0,0;0,0,0,1, 1,1, 2) and

J ={ea—e1,6 1 — 6 4,64—€2,6 20— € _4,64—63,6_.3—E_2,65—€1,6_1— €5,
65— 62,62 — 65,65 —£3,6_3— 65,86 — 61,61 — £_6,56 — £2,E_2 — £_6,
66— £3,6-3— 66,67 —£6,E-6— 67,66 — 6_1,61 — 66,65 — £_1,61 — £_5,
£4— 61,61 —E_4,65—E_2,60 —E_5,64— E_2,62 — £_4}
= {64 — 61,84 — €2,64 — €3,65 — £1, 65 — £2, €5 — £3, €6 — £1, €6 — £2, €6 — £3,

€7 — 86,66+ €1, 65+ 61, 5 + €2, €4+ €1, 84 + €2}

The placed configuration of boxes correspondin@ta/) is as given below:

01 -3 4 -71-6
1]2 57 -51-4
01 -216 -31-2
0 -1 -1
0 1 1
-1{0 -6 2 203
-2|-1 -71-5 415
-1{0 -4(3 6|7
Page 0 Page 0 Page 0

contents of boxes number of boxes a standard tableau
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8.10. A posteriori the analysis of the three caggsl/2, and 0, it becomes evident
that the trick of using the formulation of the root system of typein (8.4) provides
a completely uniform description of the configurations of boxes and standard tableaux
corresponding to typ€), local regions. All three cases give negative rotationally invariant
tableaux. We could not ask for nature to work out more perfectly.
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