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ABSTRACT. When we were at the beginnings of our careers Sergei’s sup-
port helped us to believe in our work. He generously encouraged us to
publish our results on Brauer and Birman-Murakami-Wenzl algebras, re-
sults which had in part, or possibly in total, been obtained earlier by
Sergei himself. He remains a great inspiration for us, both mathematical-
ly and in our memory of his kindness, modesty, generosity, and encour-
agement to the younger generation.

In memory of Sergei Kerov 1946-2000

0. INTRODUCTION

The rook monoid Ry is the monoid of k x k matrices with entries from
{0, 1} and at most one nonzero entry in each row and column. Recently,
the representation theory of its “Iwahori-Hecke” algebra R (g¢), called the
g-rook monoid algebra, has been analyzed. In particular, a Schur-Weyl
type duality on tensor space was found for the g-rook monoid algebra
and 1ts irreducible representations were given explicit combinatorial con-
structions. In this paper we show that, in fact, the g-rook monoid algebra
is a quotient of the affine Hecke algebra of type A. With this knowledge
in hand, we show that the recent results on the ¢-rook monoid algebras
actually come from known results about the affine Hecke algebra. In par-
ticular

(a) The recent combinatorial construction of the irreducible representa-
tions of Rj;(¢) by Halverson [6] turns out to be a special case of the
construction of irreducible calibrated representations of affine Hecke
algebras of Cherednik [3] (see also Ram [13]), the construction of ir-
reducible representations of cyclotomic Hecke algebras by Ariki and
Koike [1], and the construction of the irreducible representations of
Iwahori-Hecke algebras of type B by Hoefsmit [7].
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Q-ROOK MONOID ALGEBRAS 225

(b) The Schur-Weyl duality for the ¢-rook monoid algebra discovered
by Solomon [15-17] and studied by Halverson [6] turns out to be a
special case of the Schur—Weyl duality for cyclotomic Hecke algebras
given by Sakamoto and Shoji [18].

Though these results show that the representation theory of the g-rook
monoid algebra is “just” a piece of the representation theory of the affine
Hecke algebra, this was not at all obvious at the outset. It was only on
the analysis of the recent results in [17] and [6] that the similarity to
affine Hecke algebra theory was noticed. This observation then led us to
search for and establish a concrete connection between these algebras.

The g-rook monoid algebra was first studied in its ¢ = 1 version in the
1950’s by Munn [10, 11]. Solomon [14] discovered the general g-version
of the algebra as a Hecke algebra (double coset algebra) for the finite
algebraic monoid M, (F,) of n X n matrices over a finite field with ¢
elements, with respect to the “Borel subgroup” B of invertible upper
triangular matrices. Later Solomon [15] found a Schur-Weyl duality for
Rj(1) in which Rj(1) acts as the centralizer algebra for the action of the
general linear group G L, (C) on V* where V = L(g1)® L(0) is the direct
sum of the “fundamental” n-dimensional representation and the trivial
module L(0) for GL,(C). Then Solomon [16, 17] gave a presentation
of Rj(q) by generators and relations and defined an action of Ry(q) on
tensor space.

Halverson [6] found a new presentation of Rj(¢) and used it to show
that Solomon’s action of Ri(q) on tensor space extends the Schur—Weyl
duality so that Rj(g) is the centralizer of the quantum general linear
group U,gl(n) on VO where now V = L(e1) & L(0) is the direct sum
of the “fundamental” and the trivial module for U,gl(n). Halverson al-
so exploited his new presentation to construct, combinatorially, all the
irreducible representations of Rj(¢) when Rjp(¢) is semisimple.

The main results of this paper are the following:

(a) We find yet another presentation (1.6) of Rj(q) by generators and
relations.

(b) Our new presentation shows that

Ri(q) = Hp(0,1;9)/1,

where (0, 1;¢q) is the Twahori-Hecke algebra of type By with pa-
rameters specialized to 0 and 1, and 7 is the ideal generated by the
minimal ideal of H5(0,1;¢) corresponding to the pair of partitions

A=((12),0).
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(¢) We show that the irreducible representations of Rp(¢) found in
[6] come from the constructions of irreducible representations of
Hk(oa 1; Q)'

(d) We use the fact that Ry(q) is a quotient of H(0, 1;¢) and the fact
that the Iwahori-Hecke algebra Hp(q) of type Ax_1 is a quotient
of Ri(q) to easily determine, in Corollary 2.21, the values of ¢ for
which Rj(q) is semisimple. These values were first found in [17]
using other methods.

(e) We show that the Schur-Weyl duality between Rjy(¢) and U,gl(n)
comes from the Schur—Weyl duality of Sakamoto and Shoji [18] for
the cyclotomic Hecke algebras (Theorem 3.5).

(f) We give a different Schur—Weyl duality for algebras Ap(uy, us;q) =
Hi(uy,ug;9)/1, where uy, us # 0, Hp(u1, us; ¢) is the Iwahori-Hecke
algebra of type By and I is the ideal generated by the minimal ideal
of Hs(u1,us;q) corresponding to the pair of partitions A = ((1%), ).
This Schur-Weyl duality comes from the Schur-Weyl duality of
Orellana and Ram for the affine Hecke algebra (Theorem 3.3).

Acknowledgements. A. Ram thanks the Isaac Newton Institute for the
Mathematical Sciences at Cambridge University for support for a very
pleasant residency during which the research in this paper was completed.

1. Presentations of the ¢-rook monoid algebras.
Fix ¢ € C*. The g-rook monoid algebra is the algebra Rj;(¢) given by
generators

Pl,Pz,...,Pk and Tl,Tz,...,Tk_l

with relations

(Al) T7=(q—q¢ DHTi+1, 1<i<k—1,
(A2) LT Ty = T Ty T4, 1<ig<k—2,

+ + +
(A3) T;1; = 1515, li —j] > 1,

o = (] <Z<
(R1) P?=rP, L<i<k,

3L j — R gla]é ;
R2) PP = PP, 1<i,j<k
(R3) PT; =T;P;, 1<i<j<k,
(R4) PT; =T;P; = qP;, 1<j<i<k,
(R5) Pip1 = qP T 'Pi=q(PTiP— (q— ¢~ Y)P), 1<i<k—1.

(1.1)

The algebra Rj(q) was introduced by Solomon [14] as an analogue of
the Iwahori-Hecke algebra for the finite algebraic monoid My (F,) of k x k
matrices over a finite field with ¢ elements with respect to its “Borel
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subgroup” of invertible upper triangular matrices. The presentation of
Ry (q) given above is due to Halverson [6].

When ¢ = 1, Ri(q) specializes to the algebra of the rook monoid
Ry, that consists of k& X k matrices with entries from {0,1} and at most
one nonzero entry in each row and column. These correspond with the
possible placements of nonattacking rooks on an k x k chessboard. In this
specialization, 7; becomes the matrix obtained by switching rows ¢ and
¢ 4+ 1 in the identity matrix I and, for 1 < ¢ < k — 1, P; becomes the
matrix By i1 + Fig1,i42+ -+ Ep 5, where Ej ; is the matrix with a
1 in position (%, j) and zeros elsewhere. The generator Py specializes to
the 0 matrix (which is not the 0 element in the monoid algebra).

Remark 1.2. The definition of Ry(q) in [14, 16, 17] and [6] uses gen-
erators T; in place of T;. These generators satisfy 77 = (¢ — 1)1} + ¢
in place of (Al). In our presentation, if we let 7; = ¢T;, then 17 =

C(q—¢ HL+1) = (> = 1D)qTi +q¢* = (¢* - 1)73 +¢?%, which shows that
our algebra is the same except with parameter ¢° instead of gq.
Define

Xs =TT V(1 = POV - Ty, 1< <k, (1.3)
so that X;11 = T; X;T;.

Lemma 1.4. In Ry(q) we have the following relations
(a) PZ'P]' = P]'PZ' = P]', for 1 < _]
(b) P,Xy =P, — Ps.

Proof. (a) If ¢ = j this is (R1). If ¢ < j then, by (R5) and induction,
PP = Pi(Pj1Tj-1Pj—1 = (¢ = ¢ ) Pj-1) =
=P TPy = (¢ = ¢ )Pj-1 = Pj.
(b) We use relations (Al), (R4), and (R5) to get

PiXs = PTy(1— P)Ty = PT? — PV Py TY
=(q— ¢ HPTy + P — PV P\Th
=(q—q¢g HPT, + P — ¢ Py — (g — ¢ HPTY
=P —¢'PT =P — P,
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Proposition 1.5. The ¢-rook monoid algebra Ry (q) is generated by the
elements X1,T1,...,Ti—1, and these elements satisfy the relations (A1),
(A2), (A3), and
(B1) XiT} = T; Xy, for 2 < j <k,
(B2) X?= X,
(B3) X, 11X\ Th = 1 X1 Ty Xy,
(B4) (1 - Xl)(Tl - q)(l - Xl)(l - Xz) = 0, where X2 = TleTl.
Proof. By (Rb), R,(q) is generated by X; =1— P, T1,... , Tp—1.
(B1) By (R3), X1, = (1— P)Ty = Ty(1 — Py) = T, X1
(B2) By (R1), X2 = (1 - P)?=1—2P, + P2 =1- P, = X.
(B3) Using (R4) and (R5),
T PITiPL— (g — ¢ WP =T Py = Py =
=q¢(PT\P\Ty — (¢ — ¢~ PITY),
and so
PPy =T PT P+ (¢ — ¢ )(PTy — TV P). (*)
Now, using (*) and (A1),
X\ TV X\ Ty = (1 — POTi(1 — P)Ty
=T} - PT} -T\PTy + PT\P\T}
=17 —(q— ¢ HPTi — P - Ty T+
+ TP P+ (g — ¢~ YT — Th Py)
=T - P -T'PTy+ T PTL P — (g — ¢ TPy
=T2—T2P —T\P/Ty + T P\Ty Py
=Ty(1 - P)Ti(1— Py)
=TNXT1X;.
Finally, to show (B4), we use Lemma 1.4(b),
(1=X)(Th — )1 = X0)(1 = Xp) = P(Th — q) (1 — X>)
=PNP—qP—PTiPXs+qP1Xo
=P T1Pr—qP1—P T\ (P1 — Po)+q(P1 — P»)
=—qPy+ P P,
= —qP2 + qP1P2 by (R4)
—qPs 4+ qPs by Lemma 1.4(a)
=0. .
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Define a new algebra Az(¢) by generators
X1 and Tl,Tz,... ;Tk—l
and relations
(A2) TiTi T = Tiy LT, 1<ig<k—2,
(A3) TT; =TT, li—jl>1,
(B1) XhT; =T;Xy, 2< )<k,
(B2) X?=X,,
(B3) Xi\TiXiTh = Ty X Th X1,
(B4) (1—X1)(T1 —q)(l—Xl)(l—Xz) IO, where X2 IT1X1T1.
(1.6)
We will show that Ri(q) = Ar(q). Define
Pi=(1-Xy) and Py =q(PTiPi—(g—q¢ HP), 1<i<k—1.
(1.7)
Lemma 1.8. Relations (B1)- (B4) are equivalent, respectively, to
(B1") PlT T; P, for2 < j <
( ) Pl;
(B3) P2T1 T, P,
(B4) P2 =P,
Proof. Subtracting T; from each side of
T, - AT = (1= P)Ty = XiT; = ;X = Ty(1 = P) = T; = T, P,

shows that (B
equivalent since

1) is equivalent to (B1’). Relations (B2) and (B2

") are

1-Pi=X;=X{=(1-P) =1-2P + P..
Since
XihXhTh=(1-P)h(1—- P = (11— P)TY - TV PTy + PP T
:(1 Pl)((q—q_l)T1+1)—T1P1T1—|—(q_1P2+
+(g—q¢ HP)T;, (by (A1) and (1.7))
=(q—¢ O +1=(¢g— ¢ HPTH — P —
— NPT +q ' PT+ (g — ¢~ )PTh

= (¢~

O 11— P —

T\ PTy + ¢ ' PTy
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is equal to
TX\ T X, = Ti(1 — POTy(1— P) = TX(1 — P) — VP\Ty + T\ Ty P,y
=((g—¢HN+)(1-P) =TT+
+Ti(¢" Pa+ (¢ —q~")P1) (by (A1) and (1.7))
=(@-¢ ) N+1-(¢—¢ P - P -T AT+
+q "N P+ (g —q )L P
=(q—¢ Y +1—-P T PTy + ¢ ' Ty Py,
(B3) is equivalent to (B3').

Expanding
(M-l =-X)=(Th -1 -NTX1N) =T —¢)(1 =Ty (1 = P)T1)
= (I —q)(1=(g—q )1 — 1+ T1ATy)  (by (A1)
= (T = q)Ti(~(¢ — ¢~ ")+ PT1)
=((q—¢ T +1)—¢T)(g™" — ¢+ PiT1) (by (AL))
= (1 —q¢ ") (¢ = g+ PiTh)
=¢'—q+ PN —¢ T+ Ty — ¢ 'L PTY
—(q—¢ N +a g—¢ YL+ Ty — ¢ 'Y P T,
gives

(I=X)(Th — q)(1 = Xo)(1 = Xy) = P (Th — ¢)(1 = X2) P

~(g—¢HPi+q g— ¢ HPT P+ PIT P —

— ¢ 'PTyPTI P, (by (B2))

=—(¢g—q¢HPi+2—-q¢ )PP —

—¢ (P P)? (by (B2)
—(q—qg P+ 2=q¢ ) g "Po+ (g—q ") P1)-

——¢ g ' Pa+ (¢ —q7")P1)?  (by (L7))

=(q—¢ )=14+2-¢ )P +q ' (2-q¢°)P

— ¢ N ¢PPi 27 (g ) Pa+ (g —q7 ) )
=(g—¢ ")V =YL+ (PP — 7P P)
=q (P - P3).

and so (1 —X1)(T1 —q)(1 = X2)(1 = X1) = 0 if and only if PZ = P5. Thus
(B4) is equivalent to (B4’). e
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Proposition 1.9. The algebra A(q) is generated by Ty, ..., Ty_1, P1,
..., P, and these elements satisfy the relations (Al), (A2), (A3), and
) PZ'T]'IT]'PZ',ICOI’1<Z'<_]'<]€,
) PZ'P]'IPjPiIPi,fOIa111<j<i<k,
) P2P=P;, for1 <i<k,
) PZ'T]'IT]'PZ'I(]PZ',ICOI’lgj<Z’<k,
(E5) Piy1 = qPT; P =q(PTiPi— (¢ —q ')P), for 1 <i< k-1
Proof. Since X7 = 1— Py, the elements 71, ..., T,,_1, P; generate Ag(q).
Relation (EB) is the definition of Pjy;.

We prove (E1) by induction on ¢. The case ¢ = 1 is (B1’). Assume that

J>1t+1>1, then T; commutes with F; by induction and 7; commutes
with 7; by (A3), so

TyPipr = q ' PT; P — (g — g~ )T P =
= ¢ ' PTiPTy = (¢ — ¢ )PT) = Pipa T,

proving (E1).
We now prove (E2)—(E4) collectively by induction on 7. The case i = 1
for (E2) follows from (B2') since

PPy = q(PITVPL—(q—q )PP = q(PIThPL—(g—q~ 1) P1) = Po. ()

The relation Py Py = P is similar. The first two cases of (E3) are (B2')
and (B4'). The ¢ =1 case of (E4) follows from (B4’) since

P} = Pog(PTi Py — (g — ¢~ 1) Py)
=q(PTiPr—(g—¢ )P)  (by (%)
=q(T1 PPy = (g— ¢~ )P2)  (by (B3))
=q(TiP— (g =g ")P2)  (by (%))
Since P} = P5, we have T} Py = ¢P>. The case PyT; = ¢Ps is similar.
Now fix ¢ > 1 and assume the following relations,

(EQ*) PZ'P]' = P]'PZ' =P, forall 1 <j<i,

(E3*) P? =P,

(E4) PT; =T; P = qP;, for 1 < j < i, We show each of these relations

for i+ 1.
For (E2) we use (E3*) to get

PP = q(PTPF —(q— ¢ )P?) = ¢(BT,P — (¢ — ¢ " )B) = Piya,
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and when j < ¢, we use (E2*) to get
Pip1 P = (BT PP —(¢—q " )PP) = ¢(PTiPi— (g =4~ )P) = Piyr.

The relations P;Pi41 = Piy1 and P;Pitq = P41 are similar, and so (E2)
1s established.
To establish (E3), let i > 2 (note that we have established ¢ = 1, 2),
PAy = 2(PTP — (¢ — ¢~ 1) Py)?
= *(PTi PP —2(¢ — ¢ )PTP + (g — g7 ')’ Pi)  (by (E3%))
= *(PTiqPiaTioa Py TP — q(¢ — ¢ P Py TPy
—2(¢— ¢ " YPTiPi+(¢g—q ")*P) (by (E5))
= " (¢PiPi AT Ti A TPy P — q(g — ¢~ )PPy 17 Py
—2(¢—q¢ " PTiPi+(g—q ')*P)  (by (E1))
= (¢P LT ATy P — q(q — ¢ ") PT}7 Pi—
—20¢—q¢ " PTiPi+(g—q ")*P)  (by (E2))
= (¢PTiATiT 1 P — q(q — ¢~ ") PT7 P
—20¢—q " )PTiPi+ (g —q")*P)  (by (A2))
=GP Ti TP —q(g— ¢~ VBT P —qlg— ¢~ )b
— 20— ¢ )PTPi+(q—q ")’ (by (A1)
= A (PP —qlq — ¢~ ) PP — qlg — ¢ )Py
—20¢—q¢ " PTiPi+(g—q ')*P)  (by (E4"))
=¢*((®—qlg—q ") =20 — ¢ ") PT Pi+
+ (= N=g+q—¢ " )P) =q(PTiPi = (g —q~ "))
= Fit1-
Finally, we prove (E4). First let j < 4. Then, by (E4*),
P Ty = (PP T —(q—q~ ) PT) = q(qPiT Pi—(q—q~ " )qPi) = qPiy1,

and T P41 = qF;41 1s similar. Now we consider the case where j = ¢,

P Ty = (BT P — (g — ¢~ )PT;)  (by (E5))
= q(PTiqPi 1 Tio1 P Ti — q(g — ¢~ P T Py Ty —
—(q— ¢ HPT) (by (E5))
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=q(qP P T, TPy — q(q — ¢~ )PPy T —
—(¢— ¢ HPT) (by (ED))
=q(qP T T\ T Picy — q(q — ¢~ ") PT7—

—(¢— ¢ HPT) (by (E2))

= q(qP T T T Pioy — qlq — ¢~ D PT -

—(g— ¢ HPT) (by (A2))

= (P T T Pioy — q(q — ¢ ") PTY -

—(q— ¢ HYPT;) (by (E4)

=q(¢*P LT Pica — q(g— ¢ )P — qlg— ¢~ 1) P
—(g— ¢ HPT) (by (A1)

=q(¢*P LT Pici — ¢* (¢ — ¢ )PTi — q(g— ¢ ') Pi)

=q(¢*PiPi A TiTi A Piy — ¢* (¢ — ¢ ") PTi—

—qlg—q~")P) (by (E2))

= (PP PATioa Py — ¢* (¢ — ¢~ Y PTi—

—q(q—q~")P) (by (E1))

=q(qP TP+ ¢*(¢— ¢ YPTiPicy — ¢° (¢ — ¢~ ) PTi—
—qlg—q~")P) (by (E5))

=q(Piy1 +¢* (¢ — ¢ )PTPo1 — ¢*(¢ — ¢ HPT;)  (by (E5))
= q(Pip1 + ¢*(¢ — " DR P T — ¢* (¢ — ¢ HBT)  (by (EL))
=P+ (¢—aHRT —¢*(¢— ¢ HRT;) (by (E2))

=qFiq.
The case T; P41 = ¢FPi41 1s similar. e
Propositions 1.5 and 1.9 give the following theorem.

Theorem 1.10. Rj(q) = Ay(q) and thus (1.6) is a new presentation of
Ry (q).

2. HECKE ALGEBRAS

The affine Hecke algebra I},.
Fix ¢ € C*. The affine Hecke algebra Hy is the algebra given by gen-
erators
Xl,...,Xk and T1,~~~,Tk—1
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with relations

() TT; =TT, li—j| > 1,
(2) TTnT = T TiTi4, 1<i<k—2,
() TP=(—¢HL+1, 1<i<k,
(4) XiX; = X; X, 1<i,j <k,

() XiTy = TiXip1 +(¢—q¢~H)Xi, 1<i<k—1
It follows from relations (3) and (5) that
Xo=Ti - YIY X s T, for 1 <<k,
and from (4) that
6) XiT1X\Th = TLX:T1 X, .

In fact, Hy can be presented as the algebra generated by X; and
Ty,...,Ty—1 with relations (1-3) and (6).
Let

[k]'=[1][2] - - - [K], where []=14¢>+ -4 ¢°0D.

When [k]! # 0 a large class of irreducible representations of the affine
Hecke algebra f]k(q), the integrally calibrated irreducible representa-
tions, have a simple combinatorial construction. An Hy-module M is
wntegrally calibrated if M has a basis of simultaneous eigenvectors for
X1, Xs,..., X, for which the eigenvalues are all of the form ¢/ with
j € Z. The construction of these Hp-modules is originally due to Chered-
nik [3] (see [13] for greater detail) and is a generalization of the classical
seminormal construction of the irreducible representations of the sym-
metric group by A. Young. Young’s construction had been generalized
to Twahori-Hecke algebras of classical type (see Theorem 2.8 below) by
Hoefsmit [7] in 1974.

To describe the construction we shall use the notations of [8] for parti-
tions so that a partition is identified with a collection of boxes in a corner,
£(X) is the number of rows of A, and |A] is the number of boxes in A. For
example, the partition

A=(5,5311)= has I(A\) = 5 and |A] = 15.
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If A is a partition that is obtained from p by adding k boxes let A/p be
the skew shape consisting of those boxes of A that are not in . A standard
tableau of shape A/p is a filling of the boxes of A/p with 1,2, ...k such
that

(a) the entries in the rows increase left to right, and
(b) the entries in the columns increase top to bottom. If b is a box in

A/ define
CT(b) = g>e=m), if b is in position (r,¢) of A. (2.1)

Theorem 2.2 ([3], see also [13, Theorem 4.1], and [12, Theorem
6.20a]). Assume that [k]! # 0. Then the calibrated irreducible represen-
tations HM " of the affine Hecke algebra Hy, are indexed by skew shapes
and can be given explicitly as the vector space

HM# = C-span{vy, | L is a standard tableau of shape \/u}
(so that the symbols vy form a basis of HA/“) with Hy-action given by
XZ'UL = CT(L(i))UL,

o CTLE+ 1) —q¢7Y)
Tive = (CT(L(i 1) - CT(L(i))) VLt

. CTLGE+D)(g—q7Y
+ (q T TG+ ) - CT(L(i))) o

where
s; L 1s the same as I except i and i + 1 are switched, and
vs,r = 0, if s; L is not a standard tableau.

Remark 2.3 In [12] it is explained how the basis vy of H*#* and the
action of Hj in Theorem 2.2 can be derived in a natural way from the
general mechanism of quantum groups (R-matrices, quantum Casimirs,
the tensor product rule in (3.1)) and a Schur-Weyl duality theorem (The-
orem 3.3 below) for the affine Hecke algebra.

The cyclotomic Hecke algebra Hj(ui, ..., up;q).

Let wy,...,u, € C and ¢ € C*. The cyclotomic Hecke algebra
Hi(u1, ..., ur;q) is the quotient of the affine Hecke algebra Hy, by the
ideal generated by the relation

(X1 - Ul)(Xl - Uz) o (X1 - UT) =0. (24)
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The algebra Hy(uy, ..., up;q) is a deformation of the group algebra of
the complex reflection group G(r, 1,k) = (Z/rZ)1 Sy, and is of dimension
dim(Hp(uy, ... ,ur;q)) = ¥kl These algebras were introduced by Ariki
and Koike [1]. Ariki has generalized the classical result of Gyoja and Uno
[5] and given precise conditions for the semisimplicity of the cyclotomic
Hecke algebras.

Theorem 2.5 ([2]). The algebra Hy(uy,, ..., u,;q) is semisimple if and
only if
quuigéuj forall -k <d <k, 1<i<j<r, and [k]! # 0,

where [k]' = [1][2]---[k] and [{] = 1 + ¢> + - - - 4+ ¢*C~ 1),

Proof. Let us only explain the conversion between the statement in [2]

and the statement here. This conversion is the same as in Remark 1.2. If

T, = T; then T2 = ¢*((g—q~ )T +1) = (¢~ DaTi +* = (¢°~ T +4%

which shows that our algebra is the same as Ariki’s except with parameter
2

qc. e
Ariki and Koike give a combinatorial construction of the irreducible
representations of the cyclotomic Hecke algebra Hy(uy, ..., ur;q) when

it 1s semisimple. Define

Hl(f) = {r-tuples A = (/\(1), . ,/\(T)) of partitions with k& boxes total}.
(2.6)
Let A € Hl(f). A standard tableau of shape X is a filling of the boxes of A
with 1,2, ...,k such that for each A(), 1 <i < r,
(a) the entries in the rows are increasing left to right, and
(b) the entries in the columns are increasing top to bottom. Let L(¢)
denote the the box of L containing ¢, and define

CT(b) = uiq>e="), if the box b is in position (r,¢) of A,
(2.7)

Theorem 2.8 [1, Theorem 3.7]. If Hy(uy, us,...,ur;q) is semisimple
(r)

its irreducible representations H*, A € f]k , are given by

H> = OO a0 - C-span{vr, | L is a standard tableau of shape A}

(so that the symbols vy form a basis of the vector space H?) with
Hi(u1, ..., ur; q)-action given by

Xsvp = CT(L(1))vg, and Tivp = (T rrvr + (¢ + (T pr)vs, 1,
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where
g, if L(i) and L(i+1)
are in the same row,
of M) for some fixed j,
(i) = -, if L(i) and L(i +1)

are in the same column,

of \U) for some fixed j,
CT(L(i+1))(g—q"")
CT(L(i+1))—CT(L(%)’
s; L 1s the same as I except i and i + 1 are switched, and
vs,r = 0, if s; L is not a standard tableau.

otherwise,

It is interesting to note that Theorem 2.8 is almost an immediate conse-
quence of Theorem 2.2.

The Iwahori-Hecke algebra Hj(uj, us;q) of type Bj.

The Twahori-Hecke algebra of type By is the cyclotomic Hecke alge-
bra Hp(uy, us;q). Thus, for u,us € C and ¢ € C°, Hp(u1,us;q) is the
quotient of the affine Hecke algebra by the 1deal generated by the relation

(X1 —Ul)(Xl —Uz) =0. (29)

The algebra Hp(1,—1;¢) is the group algebra of the Weyl group of type
By, (the hyperoctahedral group of signed permutations).

In the case of the Iwahori-Hecke algebra Hy(uy, us; ¢) of type By, The-
orem 2.8 is due to Hoefsmit [7]. When Hj(uq, uz; ¢) is semisimple Hoefs-
mit’s construction of the irreducible representations of Hy(uy,us;¢) im-
plies that, as Hy_1(u1, us; ¢)-modules

Resi*  H* =P H, (2.10)
e

where the sum runs over all pairs of partitions A~ which are obtained
from A by removing a single box, and

L is a standard tableau of shape A (2.11)
and L~ has shape A~ ’ ’

H*" = C-span {vL

where L~ is the standard tableau with £ — 1 boxes which is obtained by
removing the entry k from L. The restriction rules (2.10) can be encoded
in the Bratteli diagram for the sequence of algebras

Hi(ui,uz;q) C Ho(ur, uz;q) C Ha(ug, uz;q) C - - (2.12)
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i.e., the graph which has
vertices on level k indexed by A € Hl(cz) and edges A «—— A7

if A7 is obtained from A by removing a single box. The first few rows of
the Bratteli diagram for Hp(uy, us; ¢) are displayed in Figure 1.

0,0

e T
@, o) {8
Pl Iy b
Wy @ -y oy Dy -l
‘‘‘‘‘ R e '\w SN o \«Nm
- ’f > "’ Y o zl\’\ /’% /::, ::N:\.{‘:‘/\d;.m%:\% K NM\“

(£ €0 () (0

Fig 1. Bratteli Diagram for Hy (u1,u2;9)..

Fig 1. Bratteli Diagram for Hy(u1, us2;q)
If Hp(uy, ug; q) is semisimple then

Hy(u1,us59) = ) Ma, (0), (2.13)
)\EBk

where d) is the number of standard tableaux I of shape A, and My(C)
is the algebra of d x d matrices with entries from C.

The minimal ideals I* of Hy(uy,us;q) are in one-to-one correspon-
dence with the summandsin (2.13). Let m < k, let I* be a fixed minimal
ideal of Hp,(u1,uz;¢) and define

(I*)f, is the ideal of Hp(u1,ua; q) generated by I*
(IF C Hpp(u1,u2;9) € Hyp(ug, us;q)). The restriction rules (2.10) imply
that
(I =P 1, (2.14)
ADp

where the sum is over all pairs of partitions A = (/\(1), /\(2)) € H,(Cz) which
are obtained from p = (M), u(?) € J2pS by adding (k — m) boxes.

The ideal (1)),
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Lemma 2.15. Assume that Ha(uy,us;q) is semisimple. The minimal
ideal 1(1):9) of Hy(uy, us; q) is generated by the element

B (X1 — u2)(Xg — u2)( X2 — ¢?uy), ifuy #0,

a { (X1 —w2)(Th — (X1 —u2)(Xz2 —us),  ifur =0,
where Xo = 1T1X177.
Proof. Using the construction of the simple Hs(uy,us;q)-modules in
Theorem 2.8 it is not tedious to check that, when w; # 0,

(w1 — u2)(qg™%ur — u2)(q~%uy — ¢*uy)vg, if L has shape

pur = ((1%),0),

0, otherwise,
and, when u; =0,

(0 —u2)(—¢~t — ¢)(0 — u2)(0 — wa)vg, if L has shape
pur = ((1%),0),

0, otherwise.

Thus p is an element of the ideal I8 Since 1(*)19) is a minimal ideal
it is generated by any one of its (nonzero) elements. e

The algebra Aj(u1, us;q).

Let u; € C and ua, ¢ € C*. Let Ap(uy, us;q) be the algebra given by
generators

X1 and Tl,Tz,... ;Tk—l

and relations
) TiTip 1T = Tip1 1T, I<ig<n=-2,
) TP=(g—q¢"Ti+q, 1<ig<k—1,
) XihXaTh =T XaTh Xy,
) (X1 —ug)(Xy —u2) =0,
) (X1 — Uz)(Xz - Uz)(Xz - qzul) = 0, if U1 ;é 0,
(X1 — Uz)(Tl — q)(Xl - Uz)(Xz - Uz), if Uy = 0,

where X2 = TleTl.
Let

Ap = {(AW A®) ¢ f],(cz) | A has at most one row}. (2.16)
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Theorem 2.17. Assume Hp(u1,us;q) is semisimple.
(a) Ap(uy,us;q) is semisimple.
(b) As in (2.14) let <[((12)7@)>k be the ideal of Hy(uyi,uq;q) generated by
the minimal ideal 1(1*)9) of Hy(uy, us;q). Then

Hy(u1,u2;9)
(20,

o~

Ap(ur, uz;q)

(¢) As in (2.13) let d) denote the number of standard tableaux of shape
A= (A AR and My(C) the algebra of d x d matrices with entries
from C. Then

Ap(ur, us;q) = @ Mg, (C).

)\EAk

(d) The irreducible Ay (uy,us;q)-modules H*, X € Ay, are given by Hoef-
smit’s construction (Theorem 2.8).

(e) The Bratelli diagram for the sequence of algebras Aj(ui,us;q) C
Az(ur,uz;9) C -+ C Ap(ui,us;q) has vertices on level m indexed
by A € Ay, and edges A —— A~ if A~ is obtained from A by removing
a box. See Figure 2.

Proof. (a) follows from the fact that Ag(ui,us;¢) is a quotient of
Hp(uy,uz;q).

(b) By Lemma 2.15, the element p generates the ideal <I((12)’w)> in
Hi(u1, ug; ¢) and so this is a consequence of the definition of Ay (uy, us;q).

(c) By (2.14)
(1(*.0y, = @ I, (2.18)
A2((17),0)

and so, by (b) and (2.13), the simple components of Ap(uy,us;q) are
indexed by those elements of A € f],(cz) which do not contain ((1?), ).

These are exactly the elements of Ay

(d) and (e) are conquences of (b), (¢) and (2.18). O

By construction it is clear that the Bratteli diagram for Ag(u1,us;q)
is a subgraph of the Bratteli diagram for Hy(u1, us; q). It is the subgraph
which is obtained by removing all pairs of partitions A = (/\(1), /\(2)) which
appear in (2.18) (for all k). Thus, it is the subgraph which is obtained
by removing the vertex ((1?),0) and all its descendants, i.e., all pairs of
partitions A = (A(D) A(2)) which are obtained by adding boxes to ((1%), §).
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(®,8)

" R,
%, 0} (ol
e - % T e sl i
(hoomy (8 - (tuimy )
- e N, f,///
- /o ”’,Aw’, / \/// ™

€0 0,00 00 Co)ERDE) G
Fig. 2. Bratteli Diagram of Ay (u1,u2;q) and Rg(q)..

Theorem 2.19. The algebra Aj(u1,us;q) is semisimple if and only if
¢*%uy # us for all —k < d < k, and [k]! # 0,
where [k]' = [1][2]---[k] and [{] = 1 + ¢> + - - - 4+ ¢*C~ 1),

Proof. Since Ap(u1,us2;q) is a quotient of Hyp(u1,us;q), we know that
Ap(u1, uz; q) is semisimple when Hp(uy, ue;q) is. Thus Ag(uy, us;q) is
semisimple when (a) and (b) hold.

The Twahori-Hecke algebra i (q) of type Ag_1 is the cyclotomic Hecke
algebra Hy(1,1;¢). Thus, Hy(q) is the quotient Ag(u1,us;q) by the rela-
tion X7 = u;. By Theorem 2.5 (in this case orginally due to Gyoja and
Uno) Hp(gq) is semisimple if and only if [k]! # 0. Since Hy(¢) is a quotient
of Ap(ui,ua;q), the algebra Ap(ui, us;q) is not semisimple when Hp(q)
is not semisimple. Thus, Aj(u1, us; ¢) is not semisimple when [k]! = 0.

If w; = uy then the representation p: A (u1, us;q) — Mo(C) given by

setting
u 1 0
p(X1) = ( o ) and  p(I}) = (3 q)

1s an indecomposable representation which is not irreducible. Thus
Ap(u1, ui;q) is not semisimple.

The Tits deformation theorem (see [4, (68.17)]) says that the algebra
Ap(u1, us2;q) has the same structure for any choice of the parameters
uy, us for which it is semisimple. Assume that [k]! # 0 and us = ¢*%uy,
u1 # 0. Let A/p be the skew shape given by A = (k—1,d) and pp = (d—1)
and define

CT(b) = wp g2t if b is a box in position (r,¢) of A.
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With these definitions the formulas in Theorem 2.2 define an Hy(u;, ¢%¢
uy; q)-module HM#. A check that

(X1 — ¢*%up)(Xo — ¢*ui ) (X2 — ¢®ur)vp = 0,

for all standard tableaux L of shape A/u shows that that H** is an
Ag(u1,¢*%uy; g)-module. The standard proof (see [13, Theorem 4.1]) of
Theorem 2.5 applies in this case to show that H*/# is an irreducible
Ag(u1,¢*%uy; g)-module. It has dimension

dim(HM#) =
k
= (the number of standard tableaux of shape A/u) = e 1.

When we restrict this A (u1,¢?%us; ¢)-module to Hi(q), it is a direct sum
of irreducible Hy(¢)-modules indexed by partitions v F k& with multiplic-
ity given by the classical Littlewood-Richardson coefficient cf;,, (see [13,
Theorem 6.1]). Since A = (k—1,d) and p = (d — 1) we have cf;,, # 0 only
if v has < 2 rows and cf;v =0 when v = (k). So HM* is an irreducible
Ag(u1, ¢*dug; g)-module such that upon restriction to Hy(q) is a direct
sum of irreducible representations indexed by partitions with length < 2,
and which does not contain the “trivial” representation of Hy(q).

When Ay (uy,us; q) is semisimple its irreducible representations H* are
indexed by pairs of parititions A = (/\(1), /\(2)) such that A has at most
one row. If AV has length r, then, on restriction to Hyi(q), H is a direct
sum of irreducibles indexed by partitions v - k with multiplicites ¢ ;) (-
By the Pieri rule [8, (5.16)] the resulting v are those obtained by adding
a horizontal strip of length 7 to A(®). Only when A(® has a single row
will all the v have < 2 rows and, in this case, ¢} ), = Czjr),(k—r) =1
for v = (k). Thus, when Ap(uy, us;¢) is semisimple every irreducible
representation which, on restriction to Hy(g), decomposes as a direct
sum of components indexed by partitions with < 2 rows does contain the
“trivial” representation of Hy(q).

Thus, the Tits deformation theorem implies that Ag(uy,q?%uy;q) is
not semisimple. e

Remark 2.20. Tt is interesting to note that the blob algebras (see [9])
are also quotients of Ay (uy, ua;q).

The ¢-rook monoid algebras Ry (q).
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The new presentation of the g-rook monoid given in Section 1 shows
that

Ri(q) = Ax(0,1;q),

and thus Ry(q) is a quotient of Iwahori-Hecke algebra H,,(0, 1; ¢) of type
By.

Corollary 2.21.

(a) The g-rook monoid algebra Ry(q) is semisimple if and only if [k],! # 0.
(b) If Ry(q) is semisimple then the irreducible representations of Ry(q)
are indexed by A € Ay (see (2.16)) and are given explicitly by the con-
struction in Theorem 2.8.

Part (a) of Corollary 2.21 is Theorem 2.19 applied to Ri(¢) and (b)
is Theorem 2.17(e) for Ry(q). Part (a) was proved in a different way by
Solomon [17] and part (b) is the result of Halverson [6, Theorem 3.2]
which was the catalyst for the results of this paper.

As in (2.10) it follows that, as Ry_1(¢q)-modules

Resjr R = (PR,
et

where the sum runs over all pairs of partitions A~ which are obtained
from A by removing a single box, and

R = C-span{vz | L™ has shape A7},

where L~ is the standard tableau with £ — 1 boxes which is obtained by
removing the k from L. The first few rows of the Bratteli diagram for the
sequence of algebras

Ri(q) € Ra(q) € Ra(q) C -+

are as displayed in Figure 2.

3. SCHUR—WEYL DUALITIES

Let U,gl(n) be the quantum group corresponding to GL,(C). This is
the algebra given by generators

E;, F; (1<i<n), and gt (1<ign),
with relations

qa,qaj — qé'jqé';’ qalq—al — q—fzqu — 1’
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g ey, if j=i-1,

¢“lejqT =4 qey, if j =1,
€, otherwise,

¢ it =4y, i =1
1 otherwise ,

ei—egiq1 _ ,—(ei—€iq1)
q

q
eify — Jiei = bij

bl

g—q!
cixiel — (¢ +q Veierie; +efeirr =0,
fixrff — (g + ) fifixr fi + f7 fixr = 0,

eie; = eje;, fifi=fifi, ifi—jl>1

Part of the data of a quantum group i1s an R-matrix, which provides a
canonical U, gl(n)-module isomorphism

Ryn:M@N —NoM

for any two U,gl(n)-modules M and N.

The irreducible polynomial representations L(A) of U, gl(n) are indexed
by dominant integral weights A € LT where

L= Zei={X=XMe1+ 4 xen | N €Z},
i=1

and LT = {A e L | A1 = X2 > - 2= Ay}. The elements of LT can be
identified with partitions A with < n rows.
The irreducible representation

V=1L(1) has dim(V)=n, and L(p)oV = @L(u"') (3.1)

as U,gl(n)-modules, where the direct sum is over all partitions gt which

are obtained from u by adding a box. The U,gl(n)-module V' can be given
explicitly as the vector space

V = Cspan{ovy, ... ,v,}
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(so that the symbols v; form a basis of V') with U,gl(n)-action given by
Vi1, fj=4+1, Vj+1, if j =1,
e = . Jivy = .., . and
0, ifj£i+1, 0, if j # 4,
tei, . _ { qilvj’ if j =14,
NIy, A
With this notation the R-matrix for V ® V is given explicitly by
Ryv:VoV—=VayV, where
qu; © vy, ifi=j,
va(vi®1}]’)2 v; & vy, ifi> 7, (32)
v @ v+ (g —q (v @vy), i<y

A Schur—Weyl duality for affine and cyclotomic Hecke alge-
bras.

Theorem 3.3 (see [12, Theorem 6.17ab and Theorem 6.18]). .
(a) For any p € LT there is an action of the affine Hecke algebra H} on
L(p) @ VOF given by ®: H, — End(L(p) @ V*) where

q)(Xl) = RVVL(N)RL(M),V ® ldg(k—l) and
O(T) = idp @ idy T @ Ryy @idg T

(b) The Hy, action on L(p) @V ®* commutes with the U,gl(n)-action and
the map

O Hy — Endy,gin)(L(1) ® V®k) is surjective.
(c) As a (Uggl(n), ﬁ]k) bimodule
L(p) @ VO* = B L) @ HM*,
A
where the sum is over all partitions A which are obtained from p by
adding k boxes and H** is a simple Hy-module.

(d) The representation ® given in part (a) is a representation of the
cyclotomic Hecke algebra Hp(uy, ... ur;q), Le.

Q: Hy(uy, ... ur; q) — Endy, gin)(L(p) © V®k),
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for any (multi)set of parameters uy, ... ,u, containing the (multi)set of
values C'T(b) (defined in (2.1)) as b runs over the boxes which can be
added to u (to get a partition).

Remark 3.4 The affine Hecke algebra module H*# which appears in
Theorem 3.3(c) is the same as the module HM# constructed in Theorem

2.2.

A Schur—Weyl duality for Iwahori-Hecke algebras of type B.
Suppose that u s a partition with two addable boxes, i.e.

p:d{ =19 for some 0 < d < n,l € Zyo.

—_——
{

Proposition 3.5. Let p = ¢4, 0 < d < n, £ € Zso. Then Theorem
3.3(d) provides a Schur—Weyl duality for Hy(uy,us; q) with u; = ¢** and
us = ¢*

Proof. One only needs to note that if b, b, are the addable boxes of y
and CT(b) is as defined in (2.1) then

up = CT(b) = ¢, and ua = CT(be) = ¢*e. .
A Schur—Weyl duality for A, (uy,us;q).

Keeping the notation of Proposition 3.5, consider the special case £ =
n— 1 and d > k, so that

0= n—l{ =11 for some [ € Zyy.

—_——
{

Then, as a (U,gl(n), Hp(u1, uz; ¢) bimodule

p) @ VO = @L )@ H, (3.6)

A= [ A

A
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and H* is a simple Hg(uy,us;¢) module indexed by a pair of partitions
A= (AW A®) with k boxes total and such that A() has at most one
row. The following result shows that, in this case, the Schur—Weyl duality
in Theorem 3.3 becomes a Schur-Weyl duality for the algebra

Ap(ug, ug;q), where ur = ¢ and  ws, = ¢*.

Proposition 3.7. Let u = (n—1)%. Then the Hy action on L(p) ® V®*
which is given by Theorem 3.3 factors through the algebra Ap(u1,us;q),
where u1 = ¢~V and uy = ¢%-.

Proof. By Theorem 3.3(d), the Hy action on L(u)®V ®* factors through
the algebra Hp(u1, ua; ¢) where uy = ¢~ and uy = ¢%. It remains to
check that (X} —u2)(Xa—u2)Xs—q%u;) = 0 as operators on L(u) @V ®*.
To do this it is sufficient to show that (X1 —u2)(Xa—us) X2 —q?u1) = 0 as
operators on H* for each H* which appears in the decomposition (3.6).
The Hp(uy,usz; q)-module H* has basis indexed by the standard tableaux
L of shape A and

(X1 —u2)(Xa — u2)(Xo — ¢*up ) =
= (CT(L(1)) — us)(CT(L(2)) — ua)(CT(L(2)) — ¢*ur)vr.

For each of the possible positions of the first two boxes of L at least one of
the factors in the last product is 0. Thus (X7 —us)(Xz—us) X2 —q¢%uy) =0
as operators on H*. e

Another Schur—Weyl duality for cyclotomic Hecke algebras.

Let mq, ..., m, be positive integers such that m; 4+ ---m, = n. Then
gp = gl(m1) & - - - ® gl(m,) is a Lie subalgebra of gl(n), and correspond-
ingly

Up =Uggl(mi) @ ---@ Uygl(m,) is a subalgebra of U,gl(n).

There is a corresponding decomposition of the fundamental representa-
tion V of U,gl(n) as a Up-module:

V=Vie---oV,, where dim(V;) = m;,
and Vj; is the fundamental representation for U, gl(m; ).
If velv, we write deg(v) = j

and say that v is homogeneous of degree j.
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Let uq,...,u, € C and define

dV —V by d(v) = ujv, if deg(v) = j. (3.8)

Recall the action of Ryy:V @V — V @V as given in (3.2), define
Syv: VeV VeV by va(v®w):
B { Ryv(v@w), if deg(v) = deg(w),
we v, if deg(v) # deg(w),
(for homogeneous v, w € V), and define d;, R;, S; € End(V%*) by

d; =id2" Vg deidl 1<i <k,
Bi=id2 Ve Ryy 0idf Y 1<ig<k—1,  (3.9)
Sz’ :idg(i_1)®SVv®id§f—i_l), 1<ig<k—1.

Theorem 3.10 (Sakamoto-Shoji [18]).
(a) There is an action of Hp(uji,us,...,u.;q) on VO given by
Op: H(uy, ..., ur;q) — End(V®*) where

q)P(Tz):Rz and @P(Xl)IRI1~~~R;15k"'sld1.

(b) The action of Hy(uy, ..., u;q) commutes with the action of Up on
VOk e,

Op: H(uy, ..., ur;q) — Endy, (VEOF).
(c¢) As a (Up, Hi(uy,. .., ur;q))-bimodule

YOk = P Lp(N\) @ H*,
A=(AM) | A0)

where the sum is over all r-tuples A = (/\(1), . ,/\(’")) of partitions such
that £(AU)) < m;, Lp(A) is the simple Up-module given by

Lp(A) = L(l)(,\(l)) Q- ® L(’“)(/\(T))’

where LU)(AU)) is the simple U, (gl(m;))-module correspnding to the
partition A\U), and H» is a (not necessarily simple) Hp(u1,. .., ur;q)-
module.

Remark 3.11. The Hg(uy, ..., ug; q)-module H* appearing in Theorem
3.10(c) is simple whenever Hy(uy,...,ur;q) is semisimple. In that case
H?* coincides with the Hy(uy, ..., u,; q)-module constructed in Theorem

2.8.
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A Schur—Weyl duality for Rj(q).
Consider the case of Theorem 3.10 when

r =2, my = 1, ma = n, uy =0, us = 1.
Then
V=Viae where Vi =Cvp, and Vo = Cspan{oy,...,v,}.

Let us analyze the action of Hy(0, 1;¢) on V®* as given by Sakamoto and
Shoji. Since dvg = uivg = 0,

Pp(X1)(vg @ v, @ - @ v, ) =0,
and, for £ > 0,
Cp(X1)(ve ®@viy - @v5,) =
= Rl_l o 'R1;—11Sk—1 - 'Sld1(vz @ Vi, @@ vg,)
=Ryt R Sk Si(ve @i, @ @ vgy)
= Rl_l - 'R;;_lle—l - 'Rl(vz @ Vi, @@ vyy)
=0 Qu, @ Qv

and thus ®p(X;) = d;. This calculation shows that the Sakamoto-Shoji
action of Hy(0,1;¢) coincides exactly with action for the Schur-Weyl du-
ality for the g-rook monoid algebra Ry (q) in the form given by Halverson
[6, Corollary 6.3].
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