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Introduction


���� Goal of this survey

The theory of quantum groups began its development in about ���������� It is now
�� years since the ���� ICM address of V�G� Drinfel�d ignited a wild frenzy of research
activity in this area and things related to it� During this time quantum groups have
become a �household� term in Lie theory in much the same way that Kac�Moody Lie
algebras did in the �����s� Given that quantum groups are now a part of every day Lie
theory it seems desirable that there are treatments of the subject which are accessible to
graduate students�

It has been my goal to produce a survey which is accessible to graduate students� and
which contains the necessary background and the main results in the theory� I have chosen
to make this a compendium of motivation� de
nitions and results� A secondary goal has
been to write this in a relatively small space �long works are usually too daunting� and
with this in mind I have chosen not to include any proofs� In many cases� providing a full
proof would require introducing and developing some fairly sophisticated tools�

My main focus in these notes is to give a description of what the Drinfel�d�Jimbo
quantum groups are� how one arrives at them and why they are natural� In the last
chapter I shall explain how the Drinfel�d�Jimbo quantum groups are applied to get link
invariants such as the Jones polynomial�


���� References for quantum groups

Drinfel�d�s paper in the proceedings of the ICM ���� is a dense summary of many of
the amazing results that he had obtained� This paper still remains a basic reference�

�Dr� V�G� Drinfeld� Quantum Groups� in Proceedings of the International Congress of
Mathematicians� A�M� Gleason ed�� pp� �������� American Mathematical Society�
Providence �����

Between ���� and ���� literally thousands of papers on quantum groups have been
published� The book by V� Chari and A� Pressley which appeared in ���� has �� pages
of references in minuscule type
 Instead of wading through this mass of literature I have
decided to only refer you to the books on quantum groups which have begun to appear
recently� as follows�

�CP� V� Chari and A� Pressley� �A Guide to Quantum Groups�� Cambridge University
Press� Cambridge� �����

�Ja� J� Jantzen� �Lectures on Quantum Groups�� Graduate Studies in Mathematics
Vol� 	� American Mathematical Society� �����

�Jo� A� Joseph� �Quantum groups and their Primitive Ideals�� Ergebnisse der Math�
ematik und ihrer Grenzgebiete� � Folge� Bd� ��� Springer�Verlag� New York�
Berlin� �����
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�Ka� C� Kassel� �Quantum groups�� Graduate Texts in Mathematics ���� Springer�
Verlag� New York� �����

�Lu� G� Lusztig� �Introduction to Quantum Groups�� Progress in Mathematics ����
Birkhauser� Boston� ���	�

�Ma� S� Majid� �Foundations of quantum group theory�� Cambridge University Press�
�����

�SS� S� Shnider and S� Sternberg� �Quantum groups� From Coalgebras to Drinfel�d
Algebras�� Graduate Texts in Mathematical Physics Vol� �� International Press�
Cambridge� MA �����

I recommend �CP� for obtaining a basic understanding of what quantum groups are�
where they came from� what the main results are� and what was known as of about the
end of ���	� It contains only easy proofs and sketches of more involved proofs� very
often referring the reader to the original papers for the full details of proofs� This book�
however� is very useful for understanding what is going on� The recent book �Ja� is written
speci
cally for graduate students� It has an excellent choice of topics� thorough descriptions
of the motivations at each stage and detailed proofs� The book �SS� treats the deformation
theory aspect of quantum groups in detail and the book �Lu� is the only one that covers
the connection between the quantum group and perverse sheaves�


���� Some missing topics and where to �nd them

There are many beautiful things in the theory of quantum groups that we won�t even have
time to mention� A few of these are�

�a� Canonical and crystal bases and the Littelmann path model for representations�
see �Jo� Chapt� ��� and �Ja� Chapt� �����

�b� Yangians� see �CP� Chapt� ���

�c� Quasi�Hopf algebras and twisting� see �CP� Chapt� �� and �SS� Chapt� ��

�d� The Knizhnik�Zamalodchikov equation and hypergeometric functions� see �CP�
Chapt� ��� �Ka� Chapt� �� and �SS� Chapt� ���

�e� Lie bialgebras� Poisson Lie groups� and symplectic leaves� see �CP� Chapt� ��

�f� Representations at roots of unity and the connection to representations of alge�
braic groups over a 
nite 
eld� see �CP� Chapt� �� and �AJS��

�g� The connection between representations of quantum groups at roots of unity and
representations of a�ne Lie algebras at negative level� see �CP� Chapt� �� and
Chapt� �� and �KL��


���� Further references for the background topics

Chapters I�IV consist of background material needed for the material on quantum
groups� These chapters are�
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I� Hopf algebras and braided tensor categories

II� Lie algebras and enveloping algebras

III� Deformations of Hopf algebras

IV� Perverse Sheaves

The following book contains a very nice up�to�date account of the theory of Hopf algebras�
and it also includes some useful things on quantum groups�

�Mo� S� Montgomery� �Hopf Algebras and their Actions on Rings�� Regional Conference
Series in Mathematics ��� American Mathematical Society� �����

The book by Chari and Pressley �CP� contains a nice introduction to monoidal categories
and braided monoidal categories�

The following little book is a beautiful summary of the main results in semisimple Lie
theory�

�Se� J��P� Serre� �Complex Semisimple Lie algebras�� Springer�Verlag� New York�
�����

Comprehensive accounts of the theory of Lie algebras and enveloping algebras can be found
in Bourbaki and in the book by Dixmier�

�Bou� N� Bourbaki� �Groupes et Alg�ebres de Lie� Chapitres I�VIII�� Masson� Paris�
�����

�Dix� J� Dixmier� �Enveloping algebras�� Amer� Math� Soc� ������� originally pub�
lished in French by Gauthier�Villars� Paris ���� and in English by North Holland�
Amsterdam �����

The following are standard �and very useful� texts in Lie theory�

�Hu� J� Humphreys� �Introduction to Lie algebras and representation theory�� Grad�
uate Texts in Mathematics �� Springer�Verlag� New York�Berlin� �	rd printing�
�����

�K� V� Kac� �In
nite dimensional Lie algebras�� Birkhauser� Boston� ���	�

The most comprehensive reference for modern deformation theory� especially in regard to
deformations of Hopf algebras� is the book by Shnider and Sternberg �SS� listed above�
The book �CP� also contains a very informative chapter on deformation theory�

Unfortunately� to my knowledge� there is no good introductory text on the theory of
perverse sheaves� The classical reference is the following monograph�

�BBD� A� Beilinson� J� Bernstein� and P� Deligne� Faisceaux pervers� Ast�erisque ���
������� Soc� Math� France�

On the other hand� much of the background material to perverse sheaves� such as homo�
logical algebra and sheaf theory is classical and appears in many books� The 
rst few
chapters of the following book contain an introduction to these topics�
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�KS� M� Kashiwara and P� Schapira� �Sheaves on Manifolds�� Grundlehren der math�
ematischen Wissenschaften ���� Springer�Verlag� New York�Berlin� �����


���� On reading these notes

I advise the reader to begin immediately with Chapter V and 
nd out what a quantum
group is� One can always peek back at the earlier chapters and 
nd out the de
nitions later�
This makes it more fun and provides good motivation for learning the earlier background
material� It also avoids getting bogged down before one even gets to the quantum group�

In a number of places I have chosen to make these notes �nonlinear�� There have been
some occasions when I have decided to repeat some de
nition or some statement� Also in
a few places� I have used some terms and notations that have not been de
ned yet� with
an appropriate reference to the place later in the text where the de
nitions and notations
can be found� I have done this with the intention of making each section a somewhat
complete set of ideas without disrupting any particular section with a myriad of lengthy
de
nitions� Even though we may wish it so� ideas in mathematics are not really linear and
this has been re�ected in these notes� The reader should feel free to skip around in the

notes whenever the inclination arises�

I have included a complete table of contents in the hope that it will be helpful to the
reader as a tool for 
nding de
nitions and for organizing and motivating the structures�
For the same reason I have given every small section a title� This way the reader can follow
the process of the development� as well as the details� Think of the table of contents as a
�ow chart for the mathematics�


��	� Disclaimer

Even though the theory of quantum groups is less than �� years old I shall not un�
dertake the complicated task of giving appropriate references and credits concerning the
sources of the theorems and their 
rst proofs� I refer the reader to the above books on
quantum groups for this information�

Let me stress that none of the theorems stated in this manuscript are due to me with
two possible exceptions� Chapt� I Proposition ����� and Chapt� VII Theorem ����� are
more general than I know of in the existing literature� Chapt� I Proposition ����� is well
known in the context of the quantum group and I am only pointing out here that the well
known proof� see �Ta� Prop� ������ works for any quantum double� Chapt� VII Theorem
����� is a nontrivial� but very natural� extension of well known results which appear� for
example� in �Ja� Chapt� �� The crucial part of the proof is similar to the proof of �Ja�
Lemma ��	�

I have tried to indicate� at the beginning of each chapter� where one can 
nd proofs of
the theorems stated in that chapter� In many instances I have had to make minor changes
in notations and statements in order to be consistent with the de
nitions that I have given�
Especially since I have not included proofs the reader should be watchful and open to the
possibility that there may be some minor errors�
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I� Hopf algebras and quasitriangular Hopf algebras

Let k be a 
eld� Unless otherwise speci
ed all maps between vector spaces over k are
assumed to be k�linear and� if V is a vector space over k� then idV �V � V denotes the
identity map from V to V �

The proofs of most of the statements in this chapter can be found in �Mo�� The proof
that the antipode is an antihomomorphism ����� is given in �Sw� ������ The statement of
Theorem ���	�� giving the construction of the quantum double� is given explicitly in �D��
x�	� and the proof can be found in �Ma� p� �������� A statement similar to Proposition
����� is in �Ta� Prop� ����� and the proof is similar to the proof given there�

�� SRMCwMFFs


���� De�nition of an algebra

An algebra over k is a vector space A over k with a multiplication

m� A� A �� A
a� b ��� a � b � ab

and an identity element �A � A such that

�a� m is associative� i�e� �ab�c � a�bc�� for all a� b� c � A� and

�b� �A � a � a � �A � a� for all a � A�

Equivalently� an algebra over k is a vector space A over k with amultiplicationm�A�A� A
and a unit �� k� A such that

�a� m is associative� i�e� m � �m� idA� � m � �idA �m�� and

�b� �unit condition� m � ��� idA� � m � �idA � �� � idA�

The relationship between the identity �A � A and the unit �� k� A is ���� � �A� If we are
being precise we should denote an algebra over k by a triple �A�m� �� or �A�m� �A� but we
shall usually be lazy and simply write A�


���� De�nition of a module

Let A be an algebra over k� An A�module is a vector space M over k with an A�action

A�M �� M
a�m ��� a �m � am

such that

�a� �ab�m � a�bm�� for all a� b � A and m �M � and

�b� �Am � m� for all m �M �
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Let M and N be A�modules� An A�module morphism from M to N is a map 	�M � N
such that

	�am� � a	�m�� for all a � A and m �M �

The set of A�module morphisms from M to N is denoted HomA�M�N�� An A�module is
�nite dimensional if it is 
nite dimensional as a vector space over k�


���� Motivation for SRMCwMFFs

Our interest will be in special algebras for which the category of 
nite dimensional A�
modules has a lot of nice structure� We want to be able to take the tensor product of two
A�modules and get a new A�module� we want to be able to take the dual of an A�module
and get a new A�module and we want to have a ��dimensional �trivial� A�module�


���� De�nition of SRMCwMFFs

Let A be an algebra over k� The category of 
nite dimensional A�modules is a strict rigid
monoidal category such that the forgetful functor is monoidal �a SRMCwMFF for short� if

�a� For every pair M�N of 
nite dimensional A�modules there is a given A�module
structure on M �N �

�b� For every 
nite dimensional A�module M there is a given A�module structure on
M� � Homk�M�k��

�c� There is a distinguished one�dimensional A�module � with a distinguished basis
element � � ��

and the following conditions are satis
ed�

��� For all 
nite dimensional A�modules M � N � and P �

�M �N�� P � M � �N � P �

as A�modules��

��� The maps
��M

�
�� M

��m ��� m
and

M � �
�
�� M

m� � ��� m

are A�module isomorphisms�

�	� For each 
nite dimensional A�module M � the maps

M� �M
�
�� �

	�m ��� 	�m� � �
and

�
�
�� M �M�

� ���
P

i mi � 	i

are A�module morphisms�

� Strictly speaking we can only identify �M �N��P and M � �N �P � up to coherent
natural isomorphisms� If we are being precise this is crucial� but conceptually these two
spaces are �equal��
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In condition �	� the set fmig is a basis of M and the set f	ig is the dual basis in M
�� i�e�

	i �M� is such that 	i�mj� � �ij for all i� j�

The distinguished one�dimensional A�module � is called the trivial A module�

�� Hopf algebras


���� De�nition of Hopf algebras

A Hopf algebra is a vector space A over k with

a multiplication� m�A� A �� A�
a comultiplication�  �A �� A� A�
a unit� �� k �� A�
a counit� 
�A �� k� and
an antipode� S�A �� A�

such that

��� m is associative�

m � �idA �m� � m � �m� idA��

���  is coassociative�

�idA � � � � � � idA� � �

�	� �unit condition��

m � �idA � �� � m � ��� idA� � idA�

��� �counit condition��

�idA � 
� � � �
� idA� � � idA�

���  is an algebra homomorphism�

 �m � �m�m� � �idA � � � idA� � � � ��

��� 
 is an algebra homomorphism�


 �m � 
� 
�

��� �antipode condition��
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m � �idA � S� � � m � �S � idA� � � � � 
�

In condition ��� the algebra structure on A� A is given by

�a� b��c� d� � ac� bd� for all a� b� c� d � A�

and the map � is given by
� � A�A �� A�A

a� b ��� b� a�

In condition ��� we have identi
ed the vector space k � k with k� One can show that the
antipode S�A� A is always an anti�homomorphism�

S�ab� � S�b�S�a�� for all a� b � A�


���� Sweedler notation for the comultiplication

Let A be a Hopf algebra over k� If a � A we write

 �a� �
X
a

a��� � a���

to express  �a� as an element of A�A� This unusual notation is called Sweedler notation
and is a standard notation for working with Hopf algebras� Don�t let it bother you� we are
simply trying to write  �a� so that it looks like an element of A � A� without having to
go through the rigmarole of actually choosing a basis in A�


���� Hopf algebras give us SRMCwMFFs�

Let �A�m� � �� 
� S� be a Hopf algebra over k�

�a� If M� and M� are A�modules de
ne an A�module structure on M� �M� by

a�m� �m�� �  �a��m� �m�� �
X
a

a���m� � a���m� �

for each a � A� m� �M�� and m� �M��

�b� De
ne � to be the vector space � � k � � and de
ne an action of A on � by

a � � � 
�a� � �� for each a � A�

�c� If M is a 
nite dimensional A�module de
ne an A�module structure on M� �
Homk�M�k� by

�a	��m� � 	�S�a�m�� for each a � A� 	 �M�� and m �M �
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The point is that if A is a Hopf algebra then� with the de
nitions in �a���c� above� the
category of 
nite dimensional A�modules is very nice� it is a strict rigid monoidal category
such that the forgetful functor is monoidal�


���� Group algebras are Hopf algebras

Let G be a group� The group algebra of G over k is the vector space kG of 
nite k�linear
combinations of elements of G�

kG �

�X
g

cgg
�� cg � k and all but a 
nite number of cg � �

�
�

with multiplication given by the k�linear extension of the multiplication in G� A G�module
is a kG�module�

�a� If M� and M� are G�modules de
ne a G�module structure on M� �M� by

g�m� �m�� � gm� � gm�� for all g � G� m� �M�� and m� �M��

�b� The trivial G�module is the ��dimensional vector space � with G�action given by

g � v � v� for all g � G� v � ��

�c� If M is a 
nite dimensional G�module de
ne a G�module structure on M� �
Homk�M�k� by

�g	��m� � 	�g��m� � for all g � G� m �M � and 	 �M��

With these de
nitions the category of 
nite dimensional G�modules is a strict monoidal
category such that the forgetful functor is monoidal�

The group algebra kG is a Hopf algebra if we de
ne

�a� a comultiplication�  � kG� kG� kG� by

 �g� � g � g� for all g � G�

�b� a counit� 
� kG� k� by


�g� � �� for all g � G�

�c� and an antipode� S� kG� kG� by

S�g� � g��� for all g � G�
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���� Enveloping algebras of Lie algebras are Hopf algebras

Let g be a Lie algebra over k and let Ug be its enveloping algebra� �See II ����� and II
����� for de
nitions of Lie algebras and enveloping algebras��

�a� If M� and M� are g�modules we de
ne a g�module structure on M� �M� by

x�m� �m�� � xm� �m� !m� � xm�� for all x � g� m� �M�� and m� �M��

�b� The trivial g�module is the ��dimensional vector space � with g�action given by

xv � � � for all x � g� v � ��

�c� If M is a 
nite dimensional g�module we de
ne a g�module structure on M� �
Homk�M�k� by

�x	��m� � 	��xm�� for all x � g� 	 �M�� and m �M �

With these de
nitions the category of 
nite dimensional g�modules is a strict rigid monoidal
category such that the forgetful functor is monoidal�

The enveloping algebra Ug of g is a Hopf algebra if we de
ne

�a� a comultiplication�  �Ug� Ug� Ug� by

 �x� � x� � ! �� x� for all x � g�

�b� a counit� 
�Ug� k� by


�x� � �� for all x � g�

�c� and an antipode� S�Ug� Ug� by

S�x� � �x� for all x � g�


��	� De�nition of the adjoint action of a Hopf algebra on itself

Let �A�m� � �� 
� S� be a Hopf algebra� The vector space A is an A�module where the
action of A on A is given by

A� A �� A
a� b ���

P
a a���bS�a����

� where  �a� �
X
a

a��� � a����

The linear transformation of A determined by the action of an element a � A is denoted
ada� Thus�

ada�b� �
X
a

a���bS�a����� for all b � A�
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���� Motivation for the de�nition of the adjoint action

Let M be an A�module and let ��A� End�M� be the corresponding representation of A�
i�e� the map

�� A �� End�M�
a ��� ��a�

where ��a� is the linear transformation of M determined by the action of a� Note that
End�M� ��M �M� as a vector space� On the other hand M �M� is an A�module� If we
view A as an A�module under the adjoint action then the composite map

��A� End�M� ��M �M�

is a homomorphism of A�modules�


���� De�nition of an ad�invariant bilinear form on a Hopf algebra

Let A be a Hopf algebra with antipode S and let M be an A�module� A bilinear form

�� �� M �M � k
m� n �� �m�n�

is invariant if �am��m�� � �m�� S�a�m���

for all a � A� m��m� � M � This is equivalent to the condition that the map �� � is a
homomorphism of A�modules when we identify k with the trivial A�module ���

A bilinear form

�� ��A�A� k is ad�invariant if �ada�b��� b�� � �b�� adS�a��b����

for all a� b�� b� � A� In other words� the bilinear form is invariant if we view A as an
A�module via the adjoint action�

�� Braided SRMCwMFFs


���� Motivation for braided SRMCwMFFs

Our interest here will be in even more special algebras for which the category of 
nite
dimensional A�modules is �braided�� Speci
cally� we want the two tensor product modules
M �N and N �M to be isomorphic�


���� De�nition of braided SRMCwMFFs

Let A be an algebra over k� The category of 
nite dimensional A�modules is a braided strict
rigid monoidal category such that the forgetful functor is monoidal �a braided SRMCwMFF
for short� if it is a strict rigid monoidal category such that the forgetful functor is monoidal
and
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�a� There is a family of braiding isomorphisms

"RM�N �M �N �� N �M�

which are natural isomorphisms �in the sense of the theory of categories��

�b� For all 
nite dimensional A�modules M�N�P

"RM�N�P � � "RM�P � idN � � �idM � "RN�P ��

"RM�N�P � �idN � "RM�P � � � "RM�N � idP �� and

"R��M � idM � "RM���

where � denotes the trivial module and we identify M � ��M � and M � ��


���� Pictorial representation of braiding isomorphisms

Sometimes it is convenient to denote the isomorphism "RM�N �M �N �� N �M by the
picture

M � N

N � M

With this notation the relations de
ning a braided SRMCwMFF can be written in the
form

�M �N� � P

P � �M �N�

�

M � N � P

P � M � N

M � �N � P �

�N � P � � M

�

M � N � P

N � P � M
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� � M

M � �

�

M

M

�

M � �

� � M


���� What �natural isomorphism� means

Let M�M �� N�N � be A�modules and let � �M � M � and ��N � N � be A�module iso�
morphisms� Then the naturality condition on the isomorphisms "RM�N means that the
following diagrams commute�

M �N
��idN�� M � �N

�RM�N

��y ��y �RM��N

N �M
idN���� N �M �

M �N
idM���� M �N �

�RM�N

��y ��y �RM�N�

N �M
��idM�� N � �M

Pictorially we have

M � N

�

M � � N

N � M �

�

M � N

N � M

�

N � M �

and

M � N

�

M � N �

N � � M

�

M � N

N � M

�

N � � M


���� The braid relation

The relations in �	�	� imply the following relation which is usually called the braid relation�

M � N � P

P � N � M

�

M �N � P

M � �P � N�

�P �N��M

�

M � �N � P �

�N � P ��M

P � N �M

�

M � N � P

P � N � M
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where the middle equality is a consequence of the naturality property and the fact that
the map "RN�P is an isomorphism�

�� Quasitriangular Hopf algebras


���� Motivation for quasitriangular Hopf algebras

In addition to the de
nition of a braided SRMCwMFF the following observations help to
motivate the de
nition of a quasitriangular Hopf algebra�

Let �A�m� � 
� �� S� be a Hopf algebra and let � be the k�linear map

� � A�A �� A�A
a� b ��� b� a�

Let  op � � � so that� if a � A and

 �a� �
X
a

a��� � a���� then  op�a� �
X
a

a��� � a����

Then �A�m� op� �� 
� S��� is a Hopf algebra�
The map � � A � A � A � A is an algebra automorphism of A � A �the algebra

structure on A�A is as given in ������ and the following diagram commutes

A
�
�� A�A

idA

��y ��y�
A

�op

�� A�A

Sometimes we are lucky and we can replace � by an inner automorphism�


���� De�nition of quasitriangular Hopf algebras

A quasitriangular Hopf algebra is a pair �A�R� where A is a Hopf algebra and R is an
invertible element of A�A such that

 op�a� � R �a�R��� for all a � A� and

� � idA��R� � R�	R�	� and �idA � ��R� � R�	R���

where� if R �
P

ai � bi� then

R�� �
X

ai � bi � �� R�	 �
X

ai � �� bi� and R�	 �
X
�� ai � bi�
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���� Quasitriangular Hopf algebras give braided SRMCwMFFs

Let �A�R� be a quasitriangular Hopf algebra� For each pair of 
nite dimensional A�modules
M�N de
ne

"RM�N � M �N �� N �M
m� n ���

P
bin� aim�

where R �
P

ai � bi � A � A� Then the category of 
nite dimensional A�modules is a
braided strict rigid monoidal category such that the forgetful functor is monoidal�

�� The quantum double


���� Motivation for the quantum double

In general it can be very di�cult to 
nd quasitriangular Hopf algebras� especially ones
where the element R is di�erent from � � �� The construction in ���	� says that� given a
Hopf algebra A� we can sort of paste it and its dual A� together to get a quasitriangular
Hopf algebra D�A� and that the R for this new quasitriangular Hopf algebra is both a
natural one and is nontrivial�


���� Construction of the Hopf algebra A�coop

Let �A�m� � �� 
� S� be a 
nite dimensional Hopf algebra over k� Let A� � Homk�A� k�
be the dual of A� There is a natural bilinear pairing h� i�A� � A �� k between A and A�

given by
h
� ai � 
�a�� for all 
 � A� and a � A�

Extend this notation so that if 
�� 
� � A� and a�� a� � A then

h
� � 
�� a� � a�i � h
�� a�ih
�� a�i�

We make A� into a Hopf algebra� which is denoted A�coop� by de
ning a multiplication
and a comultiplication  on A� via the equations

h
�
�� ai � h
� � 
�� �a�i and h op�
�� a� � a�i � h
� a�a�i�

for all 
� 
�� 
� � A� and a� a�� a� � A� The de
nition of  op is in ������

�a� The identity in A�coop is the counit 
�A� k of A�

�b� The counit of A�coop is the map


� A� � k

 �� 
����

where � is the identity in A�

�c� The antipode of A�coop is given by the identity hS�
�� ai � h
� S���a�i� for all

 � A� and all a � A�
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���� Construction of the quantum double

We want to paste the algebras A and A�coop together in order to make a quasitriangular
Hopf algebra D�A�� There are three main steps�

��� We paste A and A�coop together by letting

D�A� � A�A�coop�

Write elements of D�A� as a
 instead of as a� 
�

��� We want the multiplication in D�A� to re�ect the multiplication in A and the multi�
plication in A�coop� Similarly for the comultiplication�

�	� We want the R�matrix to be

R �
X
i

bi � bi�

where fbig is a basis of A and fb
ig is the dual basis in A��

The condition in ��� determines the comultiplication in D�A��

 �
a� �  �
� �a� �
X
a��

a���
��� � a���
����

where  �a� �
P

a a��� � a��� and  �
� �
P

� 
��� � 
���� The condition in ��� doesn�t
quite determine the multiplication in D�A�� We need to be able to expand products like
�a�
���a�
��� If we knew


�a� �
X
j

bj�j � for some elements �j � A�coop and bj � A�

then we would have

�a�
���a�
�� �
X
j

�a�bj���j
��

which is a well de
ned element ofD�A�� Miraculously� the condition in �	� and the equation

R �a�R�� �  op�a�� for all a � A�

force that if 
 � A�coop and a � A then� in D�A��


a �
X
��a

h
���� S
���a����ih
�	�� a�	�ia���
���� and

a
 �
X
��a

h
���� a���ih
�	�� S
���a�	��i
���a����
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where� if  is the comultiplication in D�A��

� � id� � �a� �
X
a

a��� � a��� � a�	�� and � � id� � �
� �
X
�


��� � 
��� � 
�	��

These relations completely determine the multiplication in D�A�� This construction is
summarized in the following theorem�

Theorem� Let A be a �nite dimensional Hopf algebra over k and let A�coop be the Hopf
algebra A� � Homk�A� k� except with opposite comultiplication� Then there exists a
unique quasitriangular Hopf algebra �D�A��R� given by

��� The k�linear map
A� A�coop �� D�A�

a� 
 ��� a


is bijective�

��� D�A� contains A and A�coop as Hopf subalgebras�

��� The element R � D�A��D�A� is given by

R �
X
i

bi � bi �

where fbig is a basis of A and fbig is dual basis in A�coop�

In condition ���� A is identi
ed with the image of A� � under the map in ��� and A�coop

is identi
ed with the image of �� A�coop under the map in ����


���� If A is an in�nite dimensional Hopf algebra

It is sometimes possible to do an analogous construction when A is in
nite dimensional
if one is careful about what the dual of A is and how to express the �now in
nite� sum
R �

P
i bi � bi� To get an idea of how this is done see VII ����� and �Lu� Chapt� ��


���� An ad�invariant pairing on the quantum double

Proposition� Let �A�m� � �� 
� S� be a Hopf algebra� The bilinear form on the quantum
double D�A� of A which is de�ned by

ha
� b�i � h�� S�a�ih
� S���b�i� for all a� b � A and all 
� � � A�coop�

satis�es
hadu�x�� yi � hx� adS�u��y�i� for all u� x� y � D�A��

The proposition says that the bilinear form is ad�invariant� as de
ned in ������ This bilinear
form is not necessarily symmetric�

hy� xi � hx� S��y�i� for all x� y � D�A��
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II� Lie algebras and enveloping algebras

All of the statements in x� are proved in �Se� Chapts� I�III� The statements in x	�
except possibly �	���� are proved in �Dix� Chapt� �� The proof that the Lie algebra can be
recovered from its enveloping algebra �	��� can be found in �Bou� II x���� The classi
cation
theorem for semisimple Lie algebras� Theorem ������ is proved in �Se� VI x� Theorem ��
The results in ����� and ����� on the classi
cation of 
nite dimensional modules for simple
Lie algebras are proved in �Se� VII x���� Theorem ����� is proved in �Bou� Chapt � x��	
and Proposition ����� is proved in �Bou� Chapt � x��� Cor� � and Cor� 	�

�� Semisimple Lie algebras


���� De�nition of a Lie algebra

Let k be a 
eld� A Lie algebra over k is a vector space g over k with a bracket �� � � g�g � g

which satis
es

�x� x� � �� for all x � g�

�x� �y� z�� ! �z� �x� y�� ! �y� �z� x�� � �� for all x� y� z � g�

The 
rst relation is the skew�symmetric relation and is equivalent to �x� y� � ��y� x�� for
all x� y � g� provided that char k �� �� The second relation is the Jacobi identity� A Lie
algebra g over k is �nite dimensional if it is 
nite dimensional as a vector space over k�
and it is complex if k � C �


���� De�nition of a simple Lie algebra

An ideal of g is a subspace a 	 g such that

�x� a� � a� for all x � g� and a � a �

A Lie algebra g is abelian if �x� y� � � for all x� y � g� A 
nite dimensional Lie algebra g

over a 
eld k of characteristic � is simple if

��� g is not the one dimensional abelian Lie algebra�

��� The only ideals of g are � and g�


���� De�nition of the radical of a Lie algebra

Let g be a 
nite dimensional Lie algebra over a 
eld k of characteristic �� If a 	 g is an
ideal of g de
ne

D�a � a� and Dna � �Dn��a� Dn��a�� for n 
 ��
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An ideal a of g is solvable if there exists a positive integer n such that Dna � �� The
radical of g is the largest solvable ideal of g� A 
nite dimensional Lie algebra is semisimple
if its radical is ��


���� De�nition of simple modules for a Lie algebra

Let g be a Lie algebra over a 
eld k� A g�module is a vector space V over k with a g�action

g� V �� V
x� v ��� x � v � xv

such that

�x� y� � v � x�yv�� y�xv�� for all x� y � g� and v � V �

A representation of g on a vector space V is a map

� � g �� End�V �
x ��� ��x�

such that ���x� y�� � ��x���y�� ��y���x��

for all x� y � g� Every g�module V determines a representation of g on V �and vice versa�
by the formula

��x�v � xv� for all x � g� and v � V �

A submodule of a g�module V is subspace W 	 V such that xw � W for all x � g and
w � W � A simple or irreducible g�module is a g�module V such that the only submodules
of V are � and V � A g�module V is completely decomposable if V is a direct sum of simple
submodules�


���� De�nition of the adjoint representation of a Lie algebra

Let g be a 
nite dimensional Lie algebra over a 
eld k� The vector space g is a g�module
where the action of g on g is given by

g� g �� g

x� y ��� �x� y��

The linear transformation of g determined by the action of an element x � g is denoted
adx� Thus�

adx�y� � �x� y�� for all y � g�

The representation
ad� g �� End�g�

x ��� adx

is the adjoint representation of g�


��	� De�nition of the Killing form
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Let g be a 
nite dimensional Lie algebra over a 
eld k� The Killing form on g is the
symmetric bilinear form h� i � g� g� k given by

hx� yi � Tr�adxady�� for all x� y � g�

The Killing form h� i is invariant� i�e�

h�x� y�� zi! hy� �x� z�i � �� for all x� y� z � g�


���� Characterizations of semisimple Lie algebras

Theorem� A �nite dimensional Lie algebra g over a �eld k of characteristic � is semisimple
if any of the following equivalent conditions holds	

��� g is a direct sum of simple Lie subalgebras�

��� The radical of g is ��

��� Every �nite dimensional g module is completely decomposable and g � �g� g��

�
� The Killing form on g is non�degenerate�

�� Finite dimensional complex simple Lie algebras


���� Dynkin diagrams and Cartan matrices

A Dynkin diagram is one of the graphs in Table �� A Cartan matrix is one of the matrices
in Table �� The �i� j� entry of a Cartan matrix is denoted 
j�Hi�� Notice that every
Cartan matrix satis
es the conditions�

��� 
i�Hi� � �� for all � � i � r�

��� 
j�Hi� is a non positive integer� for all i �� j�

�	� 
i�Hj� � � if and only if 
j�Hi� � ��

If C is a Cartan matrix the vertices of the corresponding Dynkin diagram are labeled by

i� � � i � r� such that 
i�Hj�
j�Hi� is the number of lines connecting vertex 
i to vertex

j � If 
j�Hi� � 
i�Hj� then there is a � sign on the edge connecting vertex 
j to vertex

i� with the point towards 
i� With these conventions it is clear that the Cartan matrix
contains exactly the same information as the Dynkin diagram� each can be constructed
from the other�


���� Classi�cation of �nite dimensional complex simple Lie algebras

Fix a Cartan matrix C � �
j�Hi����i�j�r� Let gC be the Lie algebra over C given by
generators

X�
� � X

�
� � � � � � X

�
r � H�� H�� � � � � Hr� X�

� � X
�
� � � � � � X

�
r �
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and relations

�Hi� Hj� � �� for all � � i� j � r�

�Hi� X
�
j � � 
j�Hi�X

�
j �

for all � � i� j � r�
�Hi� X

�
j � � �
j�Hi�X

�
j �

�X�
i � X

�
j � � �ijHi� for � � i� j � r�

�X�
i � �X

�
i � � � � �X

�
i �� �z �

��j�Hi��� brackets

X�
j �� � � �� � ��

for i �� j�
�X�

i � �X
�
i � � � � �X

�
i �� �z �

��j�Hi��� brackets

X�
j �� � � �� � ��

Theorem� Let C be a Cartan matrix and let gC be the Lie algebra de�ned above�
��� The Lie algebra gC is a �nite dimensional complex simple Lie algebra�

��� Every �nite dimensional complex simple Lie algebra is isomorphic to gC for some
Cartan matrix C�

��� If C�C � are Cartan matrices then

gC 
 gC� if and only if C � C ��


���� Triangular decomposition

Fix a Cartan matrix C � �
i�Hj����i�j�r and let g � gC � De
ne

n� � Lie subalgebra of g generated by X�
� � X

�
� � � � � � X

�
r �

h � C �span fH�� H�� � � � � Hrg�

n� � Lie subalgebra of g generated by X�
� � X

�
� � � � � � X

�
r �

The elements X�
� � X

�
� � � � � X�

r � H�� � � � � Hr� X
�
� � X

�
� � � � � � X

�
r are linearly independent in g

and

g � n� � h� n��
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The Lie subalgebra h 	 g is a Cartan subalgebra of g and the Lie subalgebra b � h� n� is
a Borel subalgebra of g� The rank of g is r � dim h�


���� Weights and weight spaces

Fix a Cartan matrix C � �
j�Hi����i�j�r and let g � gC � Let h
� � HomC �h� C � and de
ne

the fundamental weights ��� � � � � �r � h� by

�i�Hj� � �ij � for � � i� j � r�

Let V be a g�module and let � �
Pr

i
� �i�i � h�� The subspace

V� � fv � V j hv � ��h�v� for h � hg

� fv � V j Hiv � �iv� for � � i � rg

is the ��weight space of V � Vectors v � V� are weight vectors of V of weight �� wt�v� � ��
The weights of the g�module V are the elements � � h� such that V� �� �� If � is a weight
of V � the multiplicity of � in V is dim�V��� A highest weight vector in a g�module V is a
weight vector v � V such that n�v � � or� equivalently� a weight vector v � V such that
X�
i v � �� for � � i � r�

The set of dominant integral weights P� and the weight lattice P are the subsets of
h� given by

P� �
rX
i
�

N�i and P �
rX
i
�

Z�i� respectively�

where N � Z���


���� Classi�cation of simple g�modules

Theorem� Let g be a �nite dimensional complex simple Lie algebra� Every �nite dimen�
sional g�module V is a direct sum of its weight spaces and all weights of V are elements of
P �

V �
M
��P

V��

Theorem� Let g be a �nite dimensional complex simple Lie algebra�

��� Every �nite dimensional irreducible g�module V contains a unique� up to constant
multiples� highest weight vector v� � V and wt�v�� � P��

��� Conversely� if � � P�� then there is a unique �up to isomorphism� �nite dimensional
irreducible g�module� V �� with highest weight vector of weight ��


��	� Roots and the root lattice
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Fix a Cartan matrix C � �
j�Hi����i�j�r and let g � gC � The adjoint action of g on g

�see ������ makes g into a 
nite dimensional g�module� An element 
 � P � 
 �� � is a root
if the weight space g� �� �� A root is positive� 
 � �� if g� 	 n� and negative� 
 � �� if
g� 	 n�� We have

dim g� � � for all roots 
�

n� �
M
�	�

g�� h � g�� n� �
M
�
�

g�� and g � n� � h� n��

The roots 
i� � � i � r� given by g�i � CX�
i are the simple roots� The Cartan matrix is

the transition matrix between the simple roots and the fundamental weights�


i �

rX
j
�


i�Hj��j � for � � i � r�

The root lattice is the lattice Q 	 P 	 h� given by Q �
rX
i
�

Z
i�


���� The inner product on h�
R

Let g be a 
nite dimensional complex simple Lie algebra and let C � �
j�Hi����i�j�r
be the corresponding Cartan matrix� There exist unique positive integers d�� d�� � � � � dr
such that gcd�d�� � � � � dr� � � and the matrix �di
j�Hi����i�j�r is symmetric� The integers
d�� d�� � � � � dr are given explicitly by

Ar� Dr�
E�� E
� E� �

di � � for all � � i � r�

Br � di � � for � � i � r � �� and dr � ��
Cr � di � �� for � � i � r � �� and dr � ��
F� � d� � d� � �� and d	 � d� � ��
G�� d� � 	� and d� � ��

Let 
�� � � � � 
r be the simple roots for g� De
ne

h�R �
rX
i
�

R
i �

so that h�
R
is a real vector space of dimension r� De
ne an symmetric inner product on h�

R

by

�
i� 
j� � di
i�Hj�� for � i� j � r�

where the values 
j�Hi� are the entries of the Cartan matrix corresponding to g�


���� The Weyl group corresponding to g
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Let g be a 
nite dimensional complex simple Lie algebra and let R be the set of roots of g
and let 
�� � � � � 
r be the simple roots� For each root 
 � R de
ne a linear transformation
of h�

R
by

s���� � �� ��� 
	�
� where 
	 �
�


�
� 
�
�

The Weyl group corresponding to g is the group of linear transformations of h�
R
generated

by the re�ections s�� 
 � R�
W � � s� j 
 � R � �

The simple re�ections in W are the elements si � s�i � � � i � r�

Theorem� Let g be a �nite dimensional complex simple Lie algebra and let W be the
Weyl group corresponding to g�

�a� The Weyl group W is a �nite group�

�b� The Weyl group W can be presented by generators s�� � � � � sr and relations

s�i � ��

sisjsisj � � �� �z �
mij factors

� sjsisjsi � � �� �z �
mij factors

� � i � r�

for i �� j�

where

mij �

��	�

�� if 
i�Hj�
j�Hi� � ��
	� if 
i�Hj�
j�Hi� � ��
�� if 
i�Hj�
j�Hi� � ��
�� if 
i�Hj�
j�Hi� � 	�

Let w � W � A reduced decomposition for w is an expression

w � si�si� � � � si��w�

of w as a product of generators which is as short as possible� The length ��w� of this
expression is the length of w�

Proposition� Let g be a �nite dimensional complex simple Lie algebra and let W be
the Weyl group corresponding to g�

�a� There is a unique longest element w� in W �

�b� Let w� � si� � � � siN be a reduced decomposition for the longest element of W � Then
the elements

�� � 
i� � �� � si��
i��� � � � � �N � si�si� � � � siN��
�
iN ��

are the positive roots of g�
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�� Enveloping algebras


���� Motivation for the enveloping algebra

A Lie algebra g is not an algebra� at least as de
ned in I ������ because the bracket is not
associative� We would like to 
nd an algebra� or even better a Hopf algebra� Ug� for which
the category of modules for Ug is the same as the category of modules for g� In other
words we want Ug to carry all the information that g does and to be a Hopf algebra�


���� De�nition of the enveloping algebra

Let g be a Lie algebra over k� Let T �g� �
L

k�� g
�k be the tensor algebra of g and let J

be the ideal of T �g� generated by the tensors

x� y � y � x� �x� y�� where x� y � g�

The enveloping algebra of g� Ug� is the associative algebra

Ug �
T �g�

J
�

There is a canonical map

�� g �� Ug

x ��� x! J �

The algebra Ug can be given by the following universal property�

Let 
 � g � A be a mapping of g into an associative algebra A over k
such that


��x� y�� � 
�x�
�y�� 
�y�
�x��

for all x� y � g� and let � and �A denote the identities in Ug and A
respectively� Then there exists a unique algebra homomorphism � �
Ug� A such that ���� � �A and 
 � � � 
�� i�e� the following diagram
commutes�

g
���� Ug

� �
��y�
A


���� A functorial way of realising the enveloping algebra

If A is an algebra over k� as de
ned in I ������ then de
ne a bracket on A by

�x� y� � xy � yx� for all x� y � A�

This de
nes a Lie algebra structure on A and we denote the resulting Lie algebra by L�A�
to distinguish it from A� L is a functor from the category of algebras to the category of
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Lie algebras� U is a functor from the category of Lie algebras to the category of algebras�
In fact U is the left adjoint of the functor L since

Homalg�Ug� A� � HomLie�g� L�A��

for all Lie algebras g and all algebras A�


���� The enveloping algebra is a Hopf algebra

The enveloping algebra Ug of g is a Hopf algebra if we de
ne

�a� a comultiplication�  �Ug� Ug� Ug� by

 �x� � x� � ! �� x� for all x � g�

�b� a counit� 
�Ug� k� by


�x� � �� for all x � g�

�c� and an antipode� S�Ug� Ug� by

S�x� � �x� for all x � g�


���� Modules for the enveloping algebra and the Lie algebra are the same�

Every g�module M is a Ug�module and vice versa� since there is a unique extension of the
action of g on M to a Ug�action on M �


��	� The Lie algebra can be recovered from its enveloping algebra�

An element x of a Hopf algebra A is primitive if

 �x� � �� x! x� ��

It can be shown that if char k � � then the subspace g of Ug is the set of primitive elements
of Ug� Thus� if char k � �� we can �determine� the Lie algebra g from the algebra Ug and
the Hopf algebra structure on it�


���� A basis for the enveloping algebra

The following statement is the Poincar�e�Birkho��Witt theorem�

Suppose that g has a totally ordered basis �xi�i��� Then the elements

xi�xi� � � �xin

in the enveloping algebra Ug� where i� � i� � � � � � in is an arbitrary
increasing 
nite sequence of elements of #� form a basis a Ug�
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�� The enveloping algebra of a complex simple Lie algebra


���� A presentation by generators and relations

Let g be a 
nite dimensional complex simple Lie algebra and let C � �
j�Hi����i�j�r be
the corresponding Cartan matrix� Then the enveloping algebra Ug of g can be presented
as the algebra over C generated by

X�
� � X

�
� � � � � � X

�
r � H�� H�� � � � � Hr� X�

� � X
�
� � � � � � X

�
r �

with relations

�Hi� Hj� � �� for all � � i� j � r�

�Hi� X
�
j � � 
j�Hi�X

�
j �

for all � � i� j � r�
�Hi� X

�
j � � �
j�Hi�X

�
j �

�X�
i � X

�
j � � �ijHi� for � � i� j � r�

X
s�t
���j�Hi�

����s
�
�� 
j�Hi�

s

�
�X�

i �
sX�

j �X
�
i �

t � �� for i �� j�

where� if a� b � Ug� we use the notation �a� b� � ab� ba� Note that since

�a� �a� � � � �a�� �z �
� brackets

b�� � � �� �
X
s�t
�

����s
�
�

s

�
asbat�

for any two elements a� b � Ug and any positive integer �� the relations for Ug are exactly
the same as the relations for g given in ������


���� Triangular decomposition

Let g be a 
nite dimensional complex simple Lie algebra as presented in ������ Recall from
���	� that g has a decomposition

g � n� � h� n��

where
n� � Lie subalgebra of g generated by X�

� � X
�
� � � � � � X

�
r �

h � C �span fH�� H�� � � � � Hrg�

n� � Lie subalgebra of g generated by X�
� � X

�
� � � � � � X

�
r
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It follows from this and the Poincar�e�Birkho��Witt theorem that

Ug �� Un� � Uh� Un�� as vector spaces�


���� Grading on Un� and Un�

Let g be a 
nite dimensional complex simple Lie algebra as presented in ������ Let

�� � � � � 
r be the simple roots for g and let

Q� �
X
i

N
i � where N � Z���

For each element � �
Pr

i
� �i
i � Q� de
ne

�Un��� � span�fX
�
i�
� � �X�

ip
j X�

i�
� � �X�

ip
has �j �factors of type X

�
j g

�Un��� � span�fX
�
i�
� � �X�

ip
j X�

i�
� � �X�

ip
has �j�factors of type X

�
j g�

Then
Un� �

M
��Q�

�Un��� � and Un� �
M
��Q�

�Un��� �

as vector spaces�


���� Poincar
e�Birkho��Witt bases of Un�� Uh� and Un�

Let g be a 
nite dimensional complex simple Lie algebra as presented in ������ let n��
n� and h be as in ���	� and recall the root spaces g� from ������ Let W be the Weyl
group corresponding to g� Fix a reduced decomposition of the longest element w� � W �
w� � si� � � � siN � and de
ne

�� � 
i� � �� � si��
i��� � � � � �N � si�si� � � �siN��
�
iN ��

The elements ��� � � � � �N are the positive roots g and the elements ���� � � � ���N are the
negative roots of g�

For each root 
� 
x an element X� � g��

Since g� is ��dimensional X� is uniquely de
ned� up to multiplication by a constant� Since

n� �
M
�	�

g�� n� �
M
�
�

g�� h � span�fH�� H�� � � �Hrg and g � n� � h� n��

it follows that
fX�� � � � � � X�Ng is a basis of n��

fX��� � � � � � X��Ng is a basis of n�� and

fH�� H�� � � � � Hrg is a basis of h�
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Then� by the Poincar�e�Birkho��Witt theorem�

fXp�
��
Xp�
��
� � �XpN

�N
j p�� � � � � pN � Z��g is a basis of Un��

fXnN
���

Xn�
���

� � �Xn�
���

j n�� � � � � nN � Z��g is a basis of Un�� and

fHs�
� Hs�

� � � �Hsr
� j s�� � � � � sN � Z��g is a basis of Uh�


���� The Casimir element in Ug

Let g be a 
nite dimensional simple complex Lie algebra and let h� i be the Killing form
on g �see ������� Let fbig be a basis of g and let fb

ig be the dual basis of g with respect
to the Killing form� Let c be the element of the enveloping algebra Ug of g given by

c �
X
i

bib
i�

Then

c is in the center of Ug�

Any central element of Ugmust act on each 
nite dimensional simple module by a constant�
For each dominant integral weight � let V � be the 
nite dimensional simple Ug�module
indexed by � �see ������� Let � be the element of h�

R
given by

� � �
�

X
�
�


�

where the sum is over all positive roots for g� Then the element

c acts on V � by the constant ��! �� �! ��� ��� ���

where inner product on h�
R
is as given in ������
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Ar���

� 
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r�� 
r��

Br�

� 
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r�� 
r

Cr�

� 
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r
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Dr�


� 
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r
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�


�
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Table �� Dynkin diagrams corresponding to 
nite dimensional complex simple Lie algebras
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Ar���


BBBBBB�

� �� � � � � �
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���

� � �
���

� � � � �� � ��
� � � � � �� �

�CCCCCCA Br�


BBBBBB�

� �� � � � � �
�� � �� � � � �
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���

� � �
���
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�CCCCCCA

Cr�


BBBBBB�
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���
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���
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�CCCCCCA Dr�


BBBBBB�
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���
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���
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� � � � � �� � �
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E��


BBBBB�
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� �� �� � �� �
� � � �� � ��
� � � � �� �

�CCCCCA E
�


BBBBBBB�

� � �� � � � �
� � � �� � � �
�� � � �� � � �
� �� �� � �� � �
� � � �� � �� �
� � � � �� � ��
� � � � � �� �

�CCCCCCCA

E��


BBBBBBBBB�

� � �� � � � � �
� � � �� � � � �
�� � � �� � � � �
� �� �� � �� � � �
� � � �� � �� � �
� � � � �� � �� �
� � � � � �� � ��
� � � � � � �� �

�CCCCCCCCCA

F��


B�
� �� � �
�� � �� �
� �� � ��
� � �� �

�CA G��

�
� ��
�	 �

�

Table �� Cartan matrices corresponding to 
nite dimensional complex simple Lie algebras
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III� Deformations of Hopf algebras

The basic material on completions given in x� can be found in many books� in partic�
ular� �AM� Chapt ��� The book �SS� has a comprehensive treatment of deformation theory�
Theorem ����� is stated and proved in �SS� Prop� ���	���

�� h�adic completions


���� Motivation for h�adic completions

We will be working with algebras over C ��h��� the ring of formal power series in a variable
h with coe�cients in C � A typical element of C ��h�� which is not in C �h� is the element

eh � � ! h!
h�

�

!
h	

	

! � � � �

The ring C ��h�� is just C �h� extended a little bit so that some nice elements that we want
to write down� like eh� are in C ��h���

An algebra over C ��h�� is a vector space over C ��h��� i�e� a free C ��h���module� which has
a multiplication and an identity which satisfy the conditions in I ������ If A is an algebra
over C then we can extend coe�cients and get a new algebra A �C C ��h�� which is over
C ��h��� But sometimes this new algebra is not quite big enough so we need to extend it a
little bit and work with the h�adic completion A��h�� which contains all the nice elements
that we want to write down�

Continuing in this vein we will want to consider the tensor product A��h�� � A��h���
Again� this algebra is not quite big enough and we extend it to get a slightly bigger object
A��h�� $�A��h�� so that all the elements we want are available�


���� The algebra A��h��� an example of an h�adic completion

If A is an algebra over k then the set

A��h�� � fa� ! a�h! a�h
� ! � � � j ai � Ag

of formal power series with coe�cients in A is the completion of the k��h���module k��h���kA
in the h�adic topology� The k��h���linear extension of the multiplication in A gives A��h��
the structure of a k��h���algebra� The ring A��h�� is� in general� larger than k��h���k A� For
each element a �

P
j�� ajh

j � A��h�� the element

eha �
X
���

�ha�

�


�

� � ! a�h! �a
�
� ! �a��

�
h�

�

�
! �a	� ! 	�a�a� ! a�a�� ! �a��

�
h	

	


�
! � � �

is a well de
ned element of A��h���
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���� De�nition of the h�adic topology

Let k be a 
eld and let h be an indeterminate� The ring k��h�� is a local ring with unique
maximal ideal �h�� Let M be a k��h���module� The sets

m! hnM� m �M � n � N �

form a basis for a topology on M called the h�adic topology� De
ne a map d�M �M � R

by
d�x� y� � e�v�x�y�� for all x� y �M �

where e is a real number e � � and v�x� is the largest nonnegative integer n such that
x � hnM � Then d is a metric on M which generates the h�adic topology�


���� De�nition of an h�adic completion

Let M be a k��h���module� The completion of the metric space M is a metric space $M
which contains M in a natural way and which has a natural k��h���module structure� The
completion $M of M is de
ned in the usual way� as a set of equivalence classes of Cauchy
sequences of elements of M � Let us review this construction�

A sequence of elements fpng in M is a Cauchy sequence in the h�adic topology if for
every positive integer � � � there exists a positive integer N such that

pn � pm � h�M� for all m�n � N �

i�e� pn � pm is �divisible� by h
� for all n�m � N � Two Cauchy sequences P � fpng and

Q � fqng are equivalent if the sequence fpn � qng converges to �� i�e�

P � Q if for every � there exists an N such that pn � qn � h�M for all n � N �

The set of all equivalence classes of Cauchy sequences in M is the completion $M of M �

The completion $M is a k��h���module where the operations are determined by

P !Q � fpn ! qng� and aP � fapng�

where P � fpng and Q � fqng are Cauchy sequences with elements in M and a � k��h���
De
ne a map

�� M �� $M
m ��� ��m�m�m� � � ����

i�e� ��m� is the equivalence class of the sequence fpng such that pn � m for all n� This
map is injective and thus we can view M as a submodule of $M �

�� Deformations
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���� Motivation for deformations

We are going to make the quantum group by deforming the enveloping algebra Ug of a
complex simple Lie algebra g as a Hopf algebra� This last condition is important because
the enveloping algebra Ug does not have any deformations as an algebra�


���� Deformation as a Hopf algebra

Assume that �A�m� �� � 
� S� is a Hopf algebra over k� Let A��h�� $�A��h�� denote the com�
pletion of A��h���k��h��A��h�� in the h�adic topology� A deformation of A as a Hopf algebra

is a tuple �A��h���mh� �h� h� 
h� Sh� where

mh�A��h�� $�A��h�� �� A��h���  h�A��h�� �� A��h�� $�A��h���

�h� k��h�� �� A��h��� 
h�A��h�� �� k��h��� and Sh�A��h�� �� A��h���

are k��h���linear maps which are continuous in the h�adic topology� satisfy axioms ��� � ���
in the de
nition of a Hopf algebra� and can be written in the form

mh � m!m�h!m�h
� ! � � �

 h �  ! �h! �h
� ! � � �

�h � �! ��h! ��h
� ! � � �


h � 
! 
�h! 
�h
� ! � � �

Sh � S ! S�h! S�h
� ! � � �

where� for each positive integer i�

mi�A�A �� A�  i�A �� A� A�

�i� k �� A� 
i�A �� k� and Si�A �� A�

are k�linear maps which are extended 
rst k��h���linearly and then to the h�adic completion�
We shall abuse language �only slightly� and call �A��h���mh� �h� 
h� h� Sh� a Hopf algebra
over k��h���


���� De�nition of equivalent deformations

Two Hopf algebra deformations �A��h���mh� �h� h� 
h� Sh� and �A��h���m
�
h� �

�
h� 

�
h� S

�
h� of a

Hopf algebra �A�m� �� � 
� S� are equivalent if there is an isomorphism

fh � �A��h���mh� �h� h� 
h� Sh� �� �A��h���m�
h� �

�
h� 

�
h� 


�
h� S

�
h�

of h�adically complete Hopf algebras over k��h�� which can be written in the form

fh � idA ! f�h! f�h
� ! � � �

such that� for each positive integer i� fi � A � A is a k�linear map which is extended
k��h���linearly to k��h���k A and then to the h�adic completion A��h���
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���� De�nition of the trivial deformation as a Hopf algebra

Let �A�m� �� � 
� S� be a Hopf algebra� The trivial deformation of A as a Hopf algebra is
the Hopf algebra �A��h���mh� �h� h� 
h� Sh� over k��h�� such that mh � m� �h � ��  h �  �

h � 
 and Sh � S �extended to A��h����


���� Deformation as an algebra

Assume that �A�m� �� is an algebra over k� Let A��h�� $�A��h�� denote the completion of
A��h�� �k��h�� A��h�� in the h�adic topology� A deformation of A as an algebra is a tuple
�A��h���mh� �h� where

mh�A��h�� $�A��h�� �� A��h��� �h� k��h�� �� A��h���

are k��h���linear maps which are continuous in the h�adic topology� satisfy the axioms the
de
nition of an algebra �see I ������ and can be written in the form

mh � m!m�h!m�h
� ! � � �

�h � �! ��h! ��h
� ! � � �

where� for each positive integer i�

mi�A�A �� A� �i� k �� A�

are k�linear maps which are extended 
rst k��h���linearly and then to the h�adic completion�
We shall abuse language �only slightly� and call �A��h���mh� �h� an algebra over k��h���

This de
nition is exactly like the de
nition of a deformation as a Hopf algebra in �����
above except that we only need to start with an algebra and we only require the result to
be an algebra� We can de
ne equivalence of deformations as algebras in exactly the same
way that we de
ned them for deformations as Hopf algebras except that we only require
the isomorphism fh to be an algebra isomorphism instead of a Hopf algebra isomorphism�


��	� The trivial deformation as an algebra

Let �A�m� �� be an algebra� The trivial deformation of A as an algebra is the algebra
�A��h���mh� �h� over k��h�� such that mh � m and �h � � �extended to A��h���� The de�
formation of the quantum group given in V ���	� is even more incredible if one keeps the
following theorem in mind�

Theorem� Let g be a �nite dimensional complex simple Lie algebra and let Ug be the
enveloping algebra of g� Then Ug has no deformations as an algebra �up to equivalence of
deformations��

In other words� all deformations of Ug as an algebra are equivalent to the trivial deformation
of Ug�
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IV� Perverse sheaves

To any reader that has not met sheaves before� I suggest that you don�t read this
section� only refer to it a few times while you are reading Chapter VIII of these notes� The
most important thing� from the point of view of these notes� is to understand the basic
structures given in Chapter VIII� anyone who is going to study these topics in more depth
can always come back and learn these de
nitions later�

A large part of the material in this section is basic material about derived categories�
This material can usually be found in texts which treat homological algebra� Everything
in this section� except the de
nition and properties of perverse sheaves given in x	 can be
found in �KS� Chapt� I�III� The de
nition of a perverse sheaf is in �BBD� ��� and the proof
of Theorem �	��� is in �BBD� Theorem ��	��� The Theorems in �	��� are proved in �BBD�
������������ and Theorem ��	��� respectively� We shall not review the de
nition of sheaves�
it can be found in many textbooks� see �KS� Chapt� II�

�� The category Db
c�X�


���� Complexes of sheaves

Let X be an algebraic variety� A complex of sheaves on X is a sequence of sheaves Ai on
X and morphisms of sheaves di�A

i � Ai���

A �
�
� � �

d��
�� A��

d��
�� A� d��� A� d��� � � �

�
such that di��di � ��

The morphisms di�A
i � Ai�� are called the di�erentials of the complex A� Let A and B

be complexes of sheaves� A morphism f �A� B is a set of maps fn�A
n � Bn such that

the diagram
� � �

d��
�� A��

d��
�� A� d��� A� d��� � � ���yf��

��yf� ��yf�
� � �

d��
�� B��

d��
�� B� d��� B� d���� � �

commutes�
The ith cohomology sheaf of a complex A is the sheaf

Hi�A� �
ker�Ai � Ai���

im�Ai�� � Ai�

We have a well de
ned complex of sheaves H�A� given by

� � �
d��
�� H���A�

d��
�� H��A�

d��� H��A�
d��� � � �
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A quasi�isomorphism f �A
�
��B is a morphism f �A � B such that the induced mor�

phism H�f��H�A� � H�B� is an isomorphism� Note that every isomorphism is a quasi�
isomorphism but not the other way around �even though the notation may be confusing��


���� The category K�X� and derived functors

Let X be an algebraic variety� Let A and B be complexes of sheaves on X� Two morphisms
f �A� B and g�A� B are homotopic if there is a collection of morphisms ki�A

i � Bi��

such that
fn � gn � kn��dn ! dn��kn�

The motivation for this de
nition is that if f and g are homotopic then H�f� � H�g��
De
ne K�X� to be the category given by

Objects� Complexes of sheaves on X�

Morphisms� AK�X��morphism from a complex A to a complex B is an homotopy
equivalence class of morphisms from A to B�

This just means that� in the category K�X�� we identify homotopic morphisms�
Let A be a complex of sheaves on X� An injective resolution of A is a quasi�

isomorphismA
�
�� J such that J i is injective �an injective object in the category of sheaves

on X� for all i� Let Sh�X� denote the category of sheaves on X and let F �Sh�X�� Sh�X�
be a functor� The right derived functor of F is the functor RF �K�X�� K�X� given by

RF �A� � F �J� �
�
� � �

F �d���
�� F �J���

F �d���
�� F �J��

F �d��
�� F �J��

F �d��
�� � � �

�
where J is an injective resolution of A� The ith derived functor of F is the functor
RiF �K�X�� Sh�X� given by

RiF �A� � Hi�F �J���

where J is an injective resolution of A� In other words RiF �A� is the ith cohomology sheaf
of the complex RF �A��


���� Bounded complexes and constructible complexes

A complex of sheaves A is bounded if there exists a positive integer n such that Am � �
and A�m � � for all m � n�

An algebraic strati�cation of an algebraic variety X is a 
nite partition X �
F
�X�

of X into strata such that

�a� For each 
� the stratum X� is a smooth locally closed algebraic subvariety in X�

�b� The closure of each stratum is a union of strata� and

�c� The Whitney condition holds �see Verdier �Ver���

Let l be a prime number and let Q l be the algebraic closure of the 
eld Q l of l�adic numbers�
A sheaf F on X is Q l �constructible if there is an algebraic strati
cation X �

F
�X� such

that� for each 
� the restriction of F to X� is a locally constant sheaf of 
nite dimensional
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vector spaces over Q l � A complex A � K�X� is Q l �constructible ifH
i�A� is Q l �constructible

for all i�


���� De�nition of the category Db
c�X�

Let X be a variety� Let A and B be complexes of sheaves on X� De
ne an equivalence
relation on diagrams

A
�
�� C �� B

in K�X� which have A and B as end points by saying that the diagram A
�
�� C �� B�

is equivalent to the diagram A
�
�� C � �� B� if there exists a commutative diagram

C

�
x�� �

A
�
�� D �� B

�
��y �

C �

The notation C
�
�� A denotes that the map is a quasi�isomorphism� The bounded derived

category of Q l�constructible sheaves on X is the category Db
c�X� given by

Objects� Bounded� Q l �constructible complexes of sheaves on X�

Morphisms� A morphism from A to B is an equivalence class of diagrams
A

�
�� C �� B�

This de
nition of morphisms is a formal mechanism that inverts all quasi�isomorphisms�
It ensures �in a coherent way� that �inverses� of quasi�isomorphisms are morphisms� i�e�
that A

�
�� B is a morphism from A to B�

Given two morphisms A
�
�� D �� B and B

�
�� E �� C in Db

c�X� one can show
that there always exists a commutative diagram

F
� �

D E
� � � �

A B C

and one de
nes the composition of the two morphisms A
�
�� D �� B and B

�
�� E ��

C to be the morphism de
ned by the diagram A
�
�� F �� C�

�� Functors
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���� The direct image with compact support functor f�

A map g�X � Y between locally compact algebraic varieties is compact if the inverse
image of every compact subset of Y is a compact subset of X�

Let f �X � Y be a morphism of locally compact algebraic varieties� Let F be a sheaf
on X� The support� supp s� of a section s of F on an open set V is the complement in V
of the union of open sets U 	 V such that sjU � ��

The direct image with compact support sheaf f�F � is the sheaf on Y de
ned by setting

��U � f�F � � fs � ��f
���U��F � j f � supp s� U is compactg�

for every open set U in Y � �For a sheaf F on X and an open set U in X� ��U �F � � F �U���
This de
nes a functor f� � Sh�X�� Sh�Y �� where Sh�X� denotes the category of sheaves
on X�

Let f �X � Y be a morphism of locally compact algebraic varieties� The direct image
with compact support functor f��D

b
c�X�� Db

c�Y � is given by

f� � Rf��

so that f� is the right derived functor of the functor f��Sh�X�� Sh�Y ��


���� The inverse image functor f�

Let f �X � Y be a morphism of algebraic varieties� Let F be a sheaf on Y � The inverse
image sheaf f�F is the sheaf on X associated to the presheaf

V ��� lim
U
f�V �

F �U�� for all V open in X�

where the limit is over all open sets U in Y which contain f�V �� This de
nes a functor
f��Sh�Y � � Sh�X�� where Sh�X� denotes the category of sheaves on X� It is very
common to denote this functor by f�� but we shall follow �BBD� and �Lu� and use the
notation f��

The inverse image functor f��Db
c�Y �� Db

c�X� is given by

f� � Rf��

so that f� is the right derived functor of the functor f��Sh�Y �� Sh�X��


���� The functor f�

Let f �X � Y be a morphism of algebraic varieties� Let A � Db
c�X�� Then f�A is the

unique �up to isomorphism� complex on Y such that

A �� f��f�A��

Actually� I have cheated here� We can only be sure that the complex f�A is well de
ned if
f is a locally trivial principal G�bundle� A is a semisimple G�equivariant complex on X and
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we require f�A to be a semisimple complex on Y � see �Lu� ����� and ����� for de
nitions
and details�


���� The shift functor �n�

Let A be a complex of sheaves on X� For each integer n de
ne a new complex A�n� � with
di�erentials d�n�i� by

�A�n��i � An�i� and �d�n��i � ����
ndn�i�

The shift functor is the functor

Db
c�X�

�n�
�� Db

c�X�

A �� A�n��


���� The Verdier duality functor D

This de
nition is too involved for us to take the energy to repeat it here� we shall refer the
reader to �KS� x	��� The main thing that we will need to know is that this functor exists�

�� Perverse sheaves


���� De�nition of perverse sheaves

Let X be an algebraic variety� The support� supp F � of a sheaf F on X is the complement
of the union of open sets U 	 X such that F

��
U
� ��

A complex A � Db
c�X� is a perverse sheaf if

�a� dim supp Hi�A� � � for i 
 � and dim supp Hi�A� � �i for i � �� and

�b� dim supp Hi�D�A�� � � for i 
 � and dim supp Hi�D�A�� � �i for i � ��

where D�A� is the Verdier dual of A�
An abelian category is a category which has a direct sum operation and for which

every morphism has a kernel and a cokernel� See �KS� I x��� for a precise de
nition�

Theorem� The full subcategory of Db
c�X� whose objects are perverse sheaves on X is an

abelian category�


���� Intersection cohomology complexes

Theorem� Let Y 	 X be a smooth locally closed subvariety of complex dimension d � �
and let L be a locally constant sheaf on Y � There is a unique complex IC�Y�L� in Db

c�X�
such that

��� Hi�IC�Y�L�� � �� if i � �d�
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��� H�d�IC�Y�L�� jY� L�
��� dim supp Hi�IC�Y�L�� � �i� if i � �d�
�
� dim supp Hi�D�IC�Y�L��� � �i� if i � �d�

The complexes IC�Y�L� are the intersection cohomology complexes and an explicit con�
struction of these complexes is given in �BBD� Prop� �������

Theorem� The simple objects of the category of perverse sheaves are the intersection
complexes IC�Y�L� as L runs through the irreducible locally constant sheaves on various
smooth locally closed subvarieties Y 	 X�
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V� Quantum groups

The de
nition of the quantum group and the uniqueness theorem� Theorem ������ are
stated in �D�� x� Example ���� Theorem ����� appears with proof in �SS� Theorem �������
The statements in �	�	� and �	��� can be found in �CP� ����� and ��	�� and the treatment
there gives references for where to 
nd the proofs�

�� De�nition� uniqueness� and existence


���� Making the Cartan matrix symmetric

Let g be a 
nite dimensional complex simple Lie algebra and let C � �
j�Hi����i�j�r
be the corresponding Cartan matrix� There exist unique positive integers d�� d�� � � � � dr
such that gcd�d�� � � � � dr� � � and the matrix �di
j�Hi����i�j�r is symmetric� The integers
d�� d�� � � � � dr are given explicitly by

Ar� Dr�
E�� E
� E� �

di � � for all � � i � r�

Br � di � � for � � i � r � �� and dr � ��
Cr � di � �� for � � i � r � �� and dr � ��
F� � d� � d� � �� and d	 � d� � ��
G�� d� � 	� and d� � ��


���� The Poisson homomorphism �

Let � � g� g� g be the C �linear map given by

��Hi� � �� ��X�
i � � di�X

�
i �Hi �Hi �X�

i �� � � i � r�

There is a unique extension of the map � � g� g� g to a C �linear map � � Ug� Ug� Ug

such that
��xy� �  �x���y� ! ��x� �y�� for all x� y � Ug�


���� The de�nition of the quantum group

A Drinfel�d�Jimbo quantum group Uhg corresponding to g is a deformation of Ug as a Hopf
algebra over C such that

��� Poisson condition �

 h�a�� 
op
h �a�

h
�mod h� � ��a mod h�� for all a � Uhg�

�If  h�a� �
P

a a��� � a��� then  
op
h �a� �

P
a a��� � a�����

��� Cartan subalgebra condition�
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There is a subalgebra Uhh 	 Uhg such that

�a� Uhh is cocommutative� i�e�  h�a� �  
op
h �a�� for all a � Uhh�

�b� The mapping Uhh�hUhh� Ug is injective with image Uh�

�	� Cartan involution condition�

There is a mapping � � Uhg� Uhg such that

�a� �� � idUhg�

�b� ��Uhh� � Uhh�

�c� � is an algebra homomorphism and a coalgebra antihomomorphism� i�e�

��ab� � ��a���b�� for all a� b � Uhg� and

 h���a�� � �� � �� op
h �a�� for all a � Uhg�

�d� � mod h is the Cartan involution�


���� Uniqueness of the quantum group

Theorem� Let g be a �nite dimensional complex simple Lie algebra� The Drinfel�d�Jimbo
quantum group Uhg corresponding to g is unique �up to equivalence of deformations��


���� De�nition of q�integers and q�factorials

For any symbol q de
ne

�n�q �
qn � q�n

q � q��
� �n�q
 � �n�q�n� ��q � � � ���q���q� and

�
m
n

�
q

�
�m�q


�n�q
�m� n�q

� for all positive integers m 
 n�


��	� Presentation of the quantum group by generators and relations

Note the similarities �and the di�erences� between the following presentation of the quan�
tum group by generators and relations and the presentation of the enveloping algebra of g
given in II ������

Theorem� Let g be a �nite dimensional complex simple Lie algebra and let C �
�
j�Hi����i�j�r be the corresponding Cartan matrix� The Drinfel�d�Jimbo quantum group
Uhg corresponding to g can be presented as the algebra over C ��h�� generated �as a complete
C ��h���algebra in the h�adic topology� by

X�
� � X

�
� � � � � � X

�
r � H�� H�� � � � � Hr� X�

� � X
�
� � � � � � X

�
r �
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with relations

�Hi� Hj� � �� for all � � i� j � r�

�Hi� X
�
j � � 
j�Hi�X

�
j �

for all � � i� j � r�
�Hi� X

�
j � � �
j�Hi�X

�
j �

�X�
i � X

�
j � � �ij

edihHi � e�dihHi

edih � e�dih
� for � � i� j � r�

X
s�t
���j�Hi�

����s
�
�� 
j�Hi�

s

�
edih

�X�
i �

sX�
j �X

�
i �

t � �� for i �� j�

and with Hopf algebra structure given by

 h�Hi� � Hi � � ! ��Hi�

 h�X
�
i � � X�

i � edihHi ! ��X�
i �  h�X

�
i � � X�

i � � ! e�dihHi �X�
i �

Sh�Hi� � �Hi� Sh�X
�
i � � �X

�
i e

�dihHi � Sh�X
�
i � � �e

dihHiX�
i �


h�Hi� � 
h�X
�
i � � 
h�X

�
i � � ��

Cartan subalgebra Uh��h�� 	 Uhg� and Cartan involution ��Uhg �� Uhg determined by

��X�
i � � �X

�
i � ��X�

i � � �X
�
i � ��Hi� � �Hi�

�� The rational form of the quantum group

The rational form of the quantum group is an algebra which is similar to the algebra
Uhg except that it is over an arbitrary 
eld k� There are two reasons for introducing this
algebra�

��� In the case when k � C �q� is the 
eld this new algebra Uqg has �integral forms�
which can be used to specialize q to special values�

��� In the case when k � C and q is a power of a prime then part of this algebra
appears naturally as a Hall algebra of representations of quivers or� equivalently�
as a Grothendieck ring of G�equivariant perverse sheaves on certain varieties EV �


���� De�nition of the rational form of the quantum group
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Many authors use the following form Uqg of the quantum group as the de�nition of the
quantum group�

Let g be a 
nite dimensional complex simple Lie algebra and let C � �
j�Hi����i�j�r
be the corresponding Cartan matrix� Let k be a 
eld and let q � k be an nonzero element
of k� The rational form of the Drinfel�d�Jimbo quantum group Uqg corresponding to g is
the algebra Uqg over k generated by

F�� F�� � � � � Fr� K�� K�� � � � � Kr� K��
� � K��

� � � � � � K��
r � E�� E�� � � � � Er�

with relations

KiKj � KjKi� for all � � i� j � r�

KiK
��
i � K��

i Ki � �� for all � � i � r�

KiEjK
��
i � qdi�j�Hi�Ej �

for all � � i� j � r�
KiFjK

��
i � q�di�j�Hi�Fj �

EiFj � FjEi � �ij
Ki �K��

i

qdi � q�di
� for � � i� j � r�

X
s�t
���j�Hi�

����s
�
�� 
j�Hi�

s

�
qdi

Es
iEjE

t
i � �� for i �� j�

X
s�t
���j�Hi�

����s
�
�� 
j�Hi�

s

�
qdi

F s
i FjF

t
i � �� for i �� j�

and with Hopf algebra structure given by

 �Ki� � Ki �Ki�  �Ei� � Ei �Ki ! ��Ei�  �Fi� � Fi � � !K��
i � Fi�

S�Ki� � K��
i � S�Ei� � �EiK

��
i � S�Fi� � �KiFi�


�Ki� � �� 
�Ei� � �� 
�Fi� � ��

It is very common to take q to be an indeterminate and to let k � C �q� be the 
eld of
rational functions in q�


���� Relating the rational form and the original form of the quantum group

The relations in the rational form of the quantum group are obtained from the relations
in the presentation of Uhg by making the following replacements�

eh �� q� ehdiHi �� Ki� X�
i �� Fi� X�

i �� Ei�
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The ring Uqg is an algebra over k and q � k while the ring Uhg is an algebra over C ��h��
where h is an indeterminate� They have many similar properties� Most of the theorems
about the structure of the algebra Uhg have analogues for the case of the algebra Uqg� The
category of modules for Uqg is very similar to the category of module for the enveloping
algebra Ug� One should note� however� in contrast to Chapt� VI Theorem ����� which says
that Uhg �� Ug��h��� it is not true that Uqg is isomorphic to Ug� even if k � C and q � k�
This fact complicates many of the proofs when one is trying to generalize results from the
classical case of Ug to the quantum case Uqg�

�� Integral forms of the quantum group

There are two di�erent commonly used integral forms of a C �q��algebra Uqg� the �non�
restricted integral form� UAg and the �restricted integral form� U

res
A g� Let us begin by

de
ning integral forms precisely�


���� De�nition of integral forms

Let q be an indeterminate and let Uq be an algebra over C �q�� the 
eld of rational functions
in q� An integral form of Uq is a A � Z�q� q��� subalgebra UA of Uq such that the map

UA �A C �q� �� Uq

is an isomorphism of C �q� algebras� In other words� upon extending scalars from Z�q� q���
to C �q� the algebra UA turns into Uq�


���� Motivation for integral forms

The purpose of de
ning integral forms of algebras is that we can use them to specialize
the variable q to certain elements of Q � or R� or C � etc� Let UA be an integral form of an
algebra Uq over C �q� and let � � C � � �� �� The specialization at q � � �over C � of UA is
the algebra over C given by

U
 � UA �A C � where the equation qc � �c

describes how C is an A � Z�q� q����module� Similarly� we can de
ne specializations of UA
over any 
eld� With this last de
nition in mind we see that one could regard an integral
form of Uq as an A � Z�q� q��� subalgebra UA such that Uq is the specialization of UA over
C �q� at q � q�


���� De�nition of the non�restricted integral form of the quantum group

Let q be an indeterminate and let k � C �q� be the 
eld of rational functions in q� Let
Uqg be the corresponding rational form of the quantum group� For each � � i � r� de
ne
elements

�Ki� ��qdi �
Ki �K��

i

qdi � q�di
�
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The non�restricted integral form of Uqg is the A � Z�q� q��� subalgebra UAg of Uqg gener�
ated by the elements

F�� F�� � � � � Fr� K��
� � K��

� � � � � � K��
r � �K�� ��� �K�� ��� � � � � �Kr� ��� E�� E�� � � � � Er�

The Hopf algebra structure on Uqg restricts to a well de
ned Hopf algebra structure on
UAg�


���� De�nition of the restricted integral form of the quantum group

Let q be an indeterminate and let k � C �q� be the 
eld of rational functions in q� Let
Uqg be the corresponding rational form of the quantum group� The restricted integral

form of Uqg is the A � Z�q� q��� subalgebra U res
A g of Uqg generated by the elements

K��
� � K��

� � � � � � K��
r � and the elements

F
���
i �

F �
i

���qdi 

� and E

���
i �

E�
i

���qdi 

� for all � � i � r and all � 
 ��

�The notation for the q�factorials is as in ������� The Hopf algebra structure on Uqg restricts
to a well de
ned Hopf algebra structure on U res

A g� It is nontrivial to prove that U res
A g is an

integral form of Uqg�
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The isomorphism theorem in ����� is found �with proof� in �D�� p� 		��		�� The proof
of this theorem uses several cohomological facts�

H��g�Ug� � �� H��h�Ug��Ug�h� � �� and H��g�Ug� Ug� � ��

The correspondence theorem in ���	� is also found in �D�� p�		�� All of the results in
section � can be found� with detailed proofs� in �Ja� Chapt� ��

�� Finite dimensional Uhg�modules


���� As algebras� Uhg �� Ug��h��

The algebra Ug��h�� is just the enveloping algebra of the Lie algebra g except over the ring
C ��h�� �and then h�adically completed� instead of over the 
eld C � It acts exactly like the
algebra Ug� the only di�erence is that we have extended coe�cients�

The following theorem says that the algebra Uhg and the algebra Ug��h�� are exactly
the same
 In fact we have already seen that this must be so� since Ug has no deformations
as an algebra �Chapt� III Theorem ������� One might ask� If Uhg and Ug��h�� are the
same then what is big deal about quantum groups% The answer is� They are the same as
algebras but they are not the same when you look at them as Hopf algebras�

Theorem� Let g be a �nite dimensional complex simple Lie algebra and let Uhg be the
Drinfel�d�Jimbo quantum group corresponding to g� Then there is an isomorphism of
algebras

	 � Uhg �� Ug��h��� such that

�a� 	 � idUg �mod h�� and

�b� 	
��
h
� idh�

where� in the second condition� h � C �spanfH�� � � � � Hrg 	 Uhg�


���� De�nition of weight spaces in a Uhg module

A �nite dimensional Uhg�module is a Uhg�module that is a 
nitely generated free module
as a C ��h���module� IfM is a 
nite dimensional Uhg�module and � � h� de
ne the ��weight
space of M to be the subspace

M� � fm �M j am � ��a�m� for all a � hg�

The dimension of the weight space M� is the number of elements in a basis for it� as a
C ��h���module�
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���� Classi�cation of modules for Uhg

Theorem ����� says that Uhg and Ug��h�� are the same as algebras� Since the category of

nite dimensional modules for an algebra depends only on its algebra structure it follows
immediately that the category of 
nite dimensional modules for Uhg is the same as the
category of modules for Ug��h���

Theorem� There is a one to one correspondence between the isomorphism classes of �nite
dimensional Uhg�modules and the isomorphism classes of �nite dimensional Ug�modules
given by

Uhg�modules
���
�� Ug�modules

M �� M�hM
V ��h�� �� V

where the Uhg module structure on V ��h�� is de�ned by the composition

Uhg
�
��Ug��h�� �� End�V ��h����

It follows from condition �b� of Theorem ����� that� under the correspondence in the
Theorem above� weight spaces of Uhg�modules are taken to weight spaces of Ug�modules
and their dimension remains the same� Furthermore� irreducible 
nite dimensional Ug�
modules correspond taken to indecomposable Uhg�modules and vice versa� �Note that
hV ��h�� is always a Uhg�submodule of the Uhg�module V ��h����

The previous theorem combined with Chapt� II Theorem ����� gives the following
corollary�

Corollary� Let P� �
Pr

i
� N�i be the set of dominant integral weights for g� as in ���
��
For every � � P� there is a unique �up to isomorphism� �nite dimensional indecomposable
Uhg�module L��� corresponding to ��

�� Finite dimensional Uqg�modules

The category of 
nite dimensional modules for the rational form Uqg of the quantum
group is slightly di�erent from the category of 
nite dimensional modules for Uhg� The
construction of the 
nite dimensional irreducible modules for Uqg is similar to the con�
struction of these modules in the case of the Lie algebra g� Let us describe how this is
done�


���� Construction of the Verma module M��� and the simple module L���

Let g be a 
nite dimensional complex simple Lie algebra and let Uqg be the corresponding
rational form of the quantum group over a 
eld k and with q � k� We shall assume that
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char k �� �� 	 and q is not a root of unity in k�

Let � � P be an element of the weight lattice for g� The Verma module M��� is be the
Uqg�module generated by a single vector v� where the action of Uqg satis
es the relations

Eiv� � �� and Kiv� � q����i�v�� for all � � i � r�

The map
Uqn

� �� M���
y ��� yv�

is a vector space isomorphism�
The module M��� has a unique maximal proper submodule� For each � � P de
ne

L��� �
M���

N

where N is the maximal proper submodule of the Verma module M����

Theorem� Let g be a �nite dimensional complex simple Lie algebra and let Uqg be the
corresponding rational form of the quantum group over a �eld k with q � k� Assume that
char k �� �� 	 and that q is not a root of unity in k� Let � � P be an element of the weight
lattice of g and let L��� be the Uqg�module de�ned above�

�a� The module L��� is a simple Uqg�module�

�b� The module L��� is �nite dimensional if and only if � is a dominant integral weight�


���� Twisting L��� to get L��� ��

Let Q be the root lattice corresponding to g as given in II ����� and let ��Q� f��g be
a group homomorphism� The homomorphism � induces an automorphism ��Uqg � Uqg
of Uqg de
ned by

�� Uqg �� Uqg

Ei ��� ��
i�Ei

Fi ��� Fi

K��
i ��� ���
i�K

��
i �

where 
�� � � � � 
r are the simple roots for g� Let � � P be an element of the weight lattice
and let L��� be the irreducible Uqg�module de
ned in ������ De
ne a Uqg�module L��� ��
by de
ning

�a� L��� �� � L��� as vector spaces�

�b� Uqg acts on L��� �� by the formulas

u � m � ��u�m� for all u � Uqg� m � L����
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where � is the automorphism of Uqg de
ned above�


���� Classi�cation of �nite dimensional irreducible modules for Uqg

Theorem� Let g be a �nite dimensional complex simple Lie algebra and let Uqg be the
rational form of the quantum group over a �eld k� Assume that char k �� �� 	 and q � k is
not a root of unity in k� Let P� be the set of dominant integral weights for g and let Q
be the root lattice for g �see II �������

�a� Let � � P� and let ��Q � f��g be a group homomorphism� The modules
L��� �� de�ned in ����� are all �nite dimensional irreducible Uqg�modules�

�b� Every �nite dimensional Uqg�module is isomorphic to L��� �� for some � � P�

and some group homomorphism ��Q� f��g�


���� Weight spaces for Uqg�modules

Retain the notations and assumptions from ���	� and let ��� be the inner product on h�
R

de
ned in II ������ Let M be a 
nite dimensional Uqg�module� Let ��Q � f��g be a
group homomorphism and let � � P � The ��� ���weight space of M is the vector space

M����� � fm �M j Kim � ��
i�q
����i�m for all � � i � r�g

The following proposition is analogous to Chapt� II Proposition ������

Proposition� Every �nite dimensional Uqg�module is a direct sum of its weight spaces�

The following theorem says that the dimensions of the weight spaces of irreducible
Uqg�modules coincide with the dimensions of the weight space of corresponding irreducible
modules for the Lie algebra g�

Theorem� Let � � P� be a dominant integral weight and let � be a group homomorphism
��Q � f��g� Let V � be the simple g�module indexed by the � and let L��� �� be the
irreducible Ug�module indexed by the pair ��� ��� Then� for all � � P and all group
homomorphisms � �Q� f��g�

dimk

�
L��� �����

�
� dimC

�
�V ���

�
and dimk

�
L��� �����

�
� �� if � �� � �
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VII� Properties of quantum groups

Let g be a 
nite dimensional complex simple Lie algebra and let Uhg be the Drinfel�d�
Jimbo quantum group corresponding to g that was de
ned in V ���	�� We shall often
use the presentation of Uhg given in V ������ In this chapter we shall describe some of
the structure which quantum groups have� In many cases this structure is similar to the
structure of the enveloping algebra Ug�

The proofs of the triangular decomposition and the grading on the quantum group
given in x� can be found in �Ja� ��� and ����� The proof of the statements in ����� and ���	��
concerning the pairing h� i� can be found in �Ja� ����� ����� ����� and ����� The statement in
����� follows from Chapt I� Prop� ������ The theorem giving the existence and uniqueness
of the R�matrix is stated in �D�� p�	�� and the uniqueness is proved there� The existence
follows from ������ see also �Lu� Theorem ������ The properties of the R�matrix stated in
�	�	� are proved in �D�� Prop� 	�� and Prop� ���� Proofs of the statements in the section
on the Casimir element can be found in �D�� Prop ���� Prop 	�� and Prop� ����

Theorem ����a� is proved in �Ja� ��������� and �Lu� 	������ Theorem ����b� is a non�
trivial� but very natural� extension of well known results which appear� for example� in �Ja�
Chapt� �� The proof is a combination of the methods used in �CP� ���B and �Ja� ��� and a
calculation similar to that in the proof of �Ja� Lemma ��	� The properties of the element
Tw�

given in ���	� are proved in the following places� The formula for ��Tw�
�Tw�

is proved
in �CP� ������ The formula for T��w�

is proved by a method similar to �Ja� ���� The formula
for  h�Tw�

� is proved in �CP� ��	��� and the remainder of the formulas are proved in �CP�
����	�

The construction of the Poincar�e�Birkho��Witt basis of Uhg given in section � appears
in detail in �Ja� �������	�� The statement that Uhg is almost a quantum double� Theorem
���	�� appears in �D�� x�	� and an outline of the proof can be found in �CP� ��	� The proof
of Theorem ����� can be gleaned from a combination of �Ja� ���� and ����� Both of the
books �Lu� and �Jo� also contain this fact�

�� Triangular decomposition and grading


���� Triangular decomposition of Uhg

The triangular decomposition of the quantum group Uhg is analogous to the triangular
decomposition of the Lie algebra g and the triangular decomposition of the enveloping
algebra Ug given in II ���	� and II ������

Proposition� Let g be a �nite dimensional complex simple Lie algebra and let Uhg be
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the corresponding Drinfel�d�Jimbo quantum group as presented in V ������ De�ne

Uhn
� � subalgebra of Uhg generated by X�

� � X
�
� � � � � � X

�
r �

Uhh � subalgebra of Uhg generated by H�� H�� � � � � Hr�

Uhn
� � subalgebra of Uhg generated by X�

� � X
�
� � � � � � X

�
r �

The map
Uhn

� � Uhh� Uhn
� �� Uhg

u� � u� � u� ��� u�u�u�

is an isomorphism of vector spaces�


���� The grading on Uhn
� and Uhn

�

The gradings on the positive part Uhn
� and on the negative part Uhn

� of the quantum
group Uhg are exactly analogous to the gradings on the postive part Un

� and the negative
part Un� of the enveloping algebra Ug which are given in II ���	��

Proposition� Let g be a �nite dimensional complex simple Lie algebra and let Uhg be
the corresponding Drinfel�d�Jimbo quantum group as presented in V ������ Let 
�� � � � � 
r
be the simple roots for g and let

Q� �
X
i

N
i � where N � Z���

For each element � �
Pr

i
� �i
i � Q� de�ne

�Uhn
��� � span�fX�

i�
� � �X�

ip
j X�

i�
� � �X�

ip
has �j�factors of type X

�
j g

�Uhn
��� � span�fX�

i�
� � �X�

ip
j X�

i�
� � �X�

ip
has �j�factors of type X

�
j g�

Then
Uhn

� �
M
��Q�

�Uhn
��� and Uhn

� �
M
��Q�

�Uhn
��� �

as vector spaces�

�� The inner product h� i
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In some sense the nonnegative part Uhb
� of the quantum group is the dual of the

nonpositive part Uhb
� of the quantum group� This is re�ected in the fact that there is a

nondegenerate bilinear pairing between the two� Later we shall see that this pairing can
be extended to a pairing on all of Uhg� The extended pairing is an analogue of the Killing
form on g in two ways�

��� it is an ad�invariant form on Uhg� and

��� upon restriction to g it coincides �mod h� with the Killing form�


���� The pairing between Uhb
� and Uhb

�

Let g be a 
nite dimensional complex simple Lie algebra and let Uhg be the corresponding
Drinfel�d�Jimbo quantum group as presented in V ������ De
ne

Uhb
� � subalgebra of Uhg generated by X

�
� � X

�
� � � � � � X

�
r and H�� � � � � Hr�

Uhb
� � subalgebra of Uhg generated by X

�
� � X

�
� � � � � � X

�
r and H�� � � � � Hr�

Theorem�
��� There is a unique C ��h���bilinear pairing

h� i � Uhb
� � Uhb

� �� C ��h�� which satis�es

�a� h�� �i � ��

�b� hHi� Hji �

j�Hi�

dj
�

�c� hX�
i � X

�
j i � �ij

�

edih � e�dih
�

�d� hab� ci � ha� b� h�c�i� for all a� b � Uhb
� and c � Uhb

��

�e� ha� bci � h op
h �a�� b� ci� for all a � Uhb

� and b� c � Uhb
��

��� The pairing h� i is nondegenerate�

��� The pairing h� i respects the gradings on Uhn
� and Uhn

� in the following sense	
�a� Let �� � � Q��

If � �� � then
�
�Uhb

���� �Uhb
���

�
� ��

�b� Let � � Q�� The restriction of the pairing h� i to �Uhn
��� � �Uhn

��� is a nonde�
generate pairing

h� i� �Uhn
��� � �Uhn

��� � C ��h���

If � is the Cartan involution of Uhg as given in V ����� and Sh is the antipode of Uhg then

h��u��� ��u��i � hu�� u�i and hSh�u
��� Sh�u

��i � hu�� u�i�
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for all u� � Uhb
� and u� � Uhb

��


���� Extending the pairing to an ad�invariant pairing on Uhg

The triangular decomposition ����� of Uhg says that Uhg �� Uhn
� � Uhh� Uhn

� and that

every element u � Uhg can be written in the form u�u�u��

where u� � Uhn
�� u� � Uhh� and u� � Uhn

�� We can use this to extend the pairing
de
ned in ����� to a pairing

h� i�Uhg� Uhg �� C ��h�� de
ned by the formula�
u�� u

�
�u

�
� � u

�
� u

�
�u

�
�

�
�
�
u�� � Sh�u

�
�u

�
� �
��
u�� � S

��
h �u

�
�u

�
� �
�
�

for all u�� � u
�
� � Uhn

�� u��� u
�
� � Uhh� and u

�
� � u

�
� � Uhn

�� where Sh is the antipode of Uhg�
Then

hadu�v��� v�i � hv�� adSh�u��v��i� for all u� v�� v� � Uhg�

This formula says that the extended pairing h� i is an ad�invariant pairing as de
ned in I
������ The pairing h� i�Uhg� Uhg� C ��h�� is not symmetric� see I ������


���� Duality between matrix coe�cients for representations and Uqg�

Let g be a 
nite dimensional complex simple Lie algebra and let Uqg be the rational form
of the quantum group over a 
eld k� where char k �� �� 	 and q � k is not a root of unity�
Let Q be the root lattice for g�

Theorem� Let M be a �nite dimensional Uqg module such that all weights � of M satisfy
�� � Q� Then� for each pair n� �M� and m �M there is a unique element u � Uqg such
that

n��vm� � hv� ui� for all v � Uqg�

where h� i is the bilinear form on Uqg given by ����� after making the substitutions in V
������

The function

cm�n� �Uqg� C �q� de
ned by cm�n��v� � hn
�� vmi

is the �m�n���matrix coe�cient of v acting on M � The above theorem gives a duality
between matrix coe�cient functions and Uqg� It also says that every element of Uqg is
determined by how it acts on 
nite dimensional Uqg�modules�

�� The universal R�matrix


���� Motivation for the R�matrix
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The following theorem states that there is an element R such that the pair �Uhg�R�
is a quasitriangular Hopf algebra� In particular� this implies that the category of 
nite
dimensional modules for the quantum group Uhg is a braided SRMCwMFF�


���� Existence and uniqueness of R

Let g be a 
nite dimensional complex simple Lie algebra and Uhg be the corresponding
quantum group as presented in V ������ Recall the Killing form on g from II ������

Let f &Hig be an orthonormal basis of h with respect to the Killing form and de
ne

t� �
rX
i
�

&Hi � &Hi�

If � � Q� �see ������ and � �
Pr

i
� �i
i where 
�� � � � � 
r are the simple roots� de
ne
n� to be the smallest number of positive roots 
 � � whose sum is equal to ��

The element R is not quite an element of Uhg � Uhg so we have to make the tensor
product just a tiny bit bigger� To do this we let Uhg$�Uhg denote the h�adic completion
of the tensor product Uhg� Uhg� see III x��

Theorem� There exists a unique invertible element R � Uhg$�Uhg such that

R h�a�R
�� �  op

h �a�� for all a � Uhg� and

R has the form R �
X
��Q�

exp
�
h
�
t� !

�
� �H� � �� ��H��

��
P� � where

P� � �Uhn
��� � �Uhn

��� �

H� �
Pr

i
� �iHi� if � �
P

i �i
i�

P� is a polynomial in X�
i � � and ��X�

i � � � i � r� with coe
cients in C ��h���
such that

the smallest power of h in P� with nonzero coe
cient is hn� �


���� Properties of the R�matrix

Recall V ����� that Uhg is a Hopf algebra with comultiplication  h� counit 
h� and antipode
Sh and that Uhg comes with a Cartan involution �� The following formulas describe the
relationship between the R�matrix and the Hopf algebra structure of Uhg� If R �

P
ai�bi

then let

R�� �
X

ai � bi � �� R�	 �
X

ai � �� bi� and R�	 �
X
�� ai � bi�

and let R�� �
X

bi � ai�
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Let ��Uhg � Uhg be the C �algebra automorphism of Uhg given by ��h� � �h� ��X
�
i � �

X�
i � and ��Hi� � Hi� With these notations we have

� h � id��R� � R�	R�	� and �id� h��R� � R�	R���

�
h � id��R� �� � �id� 
h��R��

�Sh � id��R� � �id� S��h ��R� � R
�� and �Sh � Sh��R� � R�

�� � ���R� � R�� and �� � ���R� � R���

�� An analogue of the Casimir element


���� De�nition of the element u

Let g be a 
nite dimensional complex simple Lie algebra and let Uhg be the corresponding
Drinfel�d�Jimbo quantum group as presented in V ������ The antipode Sh�Uhg � Uhg is
an antiautomorphism of Uhg� see I ������ This means that the map S

�
h�Uhg � Uhg is an

automorphism of Ug� The following theorem says that this automorphism is inner


Theorem� Let R � Uhg$�Uhg be the universal R�matrix of Uhg as de�ned in ������
Suppose that R �

P
ai � bi and de�ne u �

P
S�bi�ai� Then u is invertible and

uau�� � S�
h�a�� for all a � Uhg�


���� Properties of the element u�

The relationship of the element u to the Hopf algebra structure of Uhg is given by the
formulas

 h�u� � �R��R���
���u� u�� Sh�u� � u� and 
h�u� � ��

where R�� � R �
P

ai � bi is the universal R�matrix of Uhg given in �	���� and R�� �P
bi � ai� The inverse of the element u is given by

u�� �
X

S��h �dj�cj � where R�� �
X

cj � dj �


���� Why the element u is an analogue of the Casimir element
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Let &� be the element of h such that 
i�&�� � � for all simple roots 
i of g� An easy check
on the generators of Uhg shows that

eh��ae�h�� � S�
h�a�� for all a � Uhg�

It follows that

the element e�h��u � ue�h�� is a central element in Uhg�

Any central element of Uhg must act on each 
nite dimensional simple Uhg�module by a
constant� For each dominant integral weight � let L��� be the 
nite dimensional simple
Uhg�module indexed by � �see VI ���	��� As in II ������ let � be the element of h

�
R
given by

� � �
�

X
�
�


�

where the sum is over all positive roots for g� Then the element

e�h��u acts on L��� by the constant q�����������������

where q � eh and the inner product in the exponent of q is the inner product on h�
R
given

in II ������ Note the analogy with II ������ It is also interesting to note that

�e�h��u�� � uSh�u��

�� The element Tw�


���� The automorphism � � � � Sh

Let W be the Weyl group corresponding to g and let w� be the longest element of W �see
II ������� Let s�� � � � � sr be the simple re�ections inW � For each � � i � r there is a unique
� � j � r such that w�siw

��
� � sj � The map given by

��X�
i � � X�

j � and ��Hi� � Hj � where w�siw
��
� � sj� for � � i � r�

extends to an automorphism of Uhg� Let &� be the anti�automorphism of Uhg de
ned by
&��X�

i � � X�
i and

&��Hi� � Hi� This is an analogue of the Cartan involution� Let Sh be
the antipode of Uhg as given in V ������ These are both anti�automorphisms of Uhg� The
composition

�Sh � &� � ���Uhg� Uhg

is an automorphism of Uhg� The following result says that this automorphism is inner�


���� De�nition of the element Tw�



�� Arun Ram

Let g be a 
nite dimensional complex simple Lie algebra and let Uhg be the corre�
sponding quantum group as presented in V ������ Let q � eh and for each � � i � r
let

E
�r�
i �

�X�
i �

r

�r�qdi 

F
�r�
i �

�X�
i �

r

�r�qdi 

and Ki � ehdiHi �

where the notation for q�factorials is as in V ������ For each � � i � r� de
ne

Ti �
X

a�b�c��

����bqb�ac��c�a�b��c�a�E
�a�
i F

�b�
i E

�c�
i Kc�a

i �

where the sum is over all nonnegative integers a�b� and c�

Theorem�

�a� The elements Ti satisfy the relations

TiTjTiTj � � �� �z �
mij factors

� TjTiTjTi � � �� �z �
mij factors

for i �� j�

where the mij are as given in II ������

�b� Let w� � si� � � �siN be a reduced word for the longest element of the Weyl group W �
see II ������ De�ne

Tw�
� Ti� � � �TiN �

Then Tw�
is invertible and

Tw�
aT��w�

� �Sh � &� � ���a�� for all a � Uhg�


���� Properties of the element Tw�

Let u � Uhg be the analogue of the Casimir element for Uhg as given in x� and let � be
the C �algebra automorphism of Uhg given in �	�	�� Let &� be the C �linear automorphism
of Uhg given by &��h� � �h� &��X

�
i � � X�

i � and &��Hi� � �Hi� Then

��Tw�
�Tw�

� u and T��w�
� &��Tw�

��

The relationship between the element Tw�
and the Hopf algebra structure of Uhg is given

by the formulas

 h�Tw�
� � R���� �Tw�

�Tw�
� � �Tw�

�Tw�
�R���� � Sh�Tw�

� � Tw�
eh��� and 
h�Tw�

� � ��

where R�� � R �
P

ai � bi is the universal R�matrix of Uhg given in �	���� and R�� �P
bi � ai�
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	� The Poincar
e�Birkho��Witt basis of Uhg


	��� Root vectors in Uhg

Let g be a 
nite dimensional complex simple Lie algebra and let Uhg be the corresponding
quantum group as presented in V ������ Let Ti be the elements of Uhg given in ������
De
ne an automorphism �i�Uhg� Uhg by

�i�u� � TiuT
��
i � for all u � Uhg�

Let W be the Weyl group corresponding to g� Fix a reduced decomposition w� �
si� � � � siN of the longest element w� �W � see II ������ De
ne

�� � 
i� � �� � si��
i��� � � � � �N � si�si� � � � siN��
�
iN ��

The elements ��� � � � � �N are the positive roots g� De
ne elements of Uhg by

X�
��
� X�

i�
� X�

��
� �i��X

�
i�
�� � � � � X�

�N
� �i��i� � � � �iN��

�X�
iN
��

These elements depend on the choice of the reduced decomposition� They are analogues of
the elements X� and X�� in Ug which are given in II ������


	��� Poincar
e�Birkho��Witt bases of Uhn
�� Uhh� and Uhn

�

Let g be a 
nite dimensional complex simple Lie algebra and let Uhg be the cor�
responding quantum group as presented in V ������ Let Uhn

�� Uhh� and Uhn
� be the

subalgebras of Uhg de
ned in ������ The following bases of Uhn
�� Uhh� Uhn

�� and Uhg are
analogues of the Poincar�e�Birkho��Witt bases of Un�� Uh� and Un� which are given in II
������

Theorem� Let X�
��
� � � � � X�

�N
be the elements of Uhg de�ned in ������ Then

f�X�
��
�p��X�

��
�p� � � � �X�

�N
�pN j p�� � � � � pN � Z��g is a basis of Uhn

��

f�X�
��
�n��X�

��
�n� � � � �X�

��
�nN j n�� � � � � nN � Z��g is a basis of Uhn

��

fHs�
� Hs�

� � � �Hsr
� j s�� � � � � sN � Z��g is a basis of Uhh�


	��� The PBW�bases of Uhn
� and Uhn

� are dual bases with respect to h� i

almost�

Recall the pairing between Uhb
� and Uhb

� given in ������
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Theorem� Let w� � si� � � � siN be a reduced decomposition of the longest element of
the Weyl group and let �j and X�

�j
� � � j � N � be the elements de�ned in ������ Let

p�� � � � � pN � n�� � � � � nN � Z��� Then

�
�X�

��
�n��X�

��
�n� � � � �X�

�N
�nN � �X�

��
�p��X�

��
�p� � � � �X�

�N
�pN

�
�

NY
j
�

�nj �pj
�
�X�

ij
�nj � �X�

ij
�nj
�
�

where �nj �pj is the Kronecker delta�

Furthermore� we have that� for each � � i � r�

�
�X�

i �
n� �X�

i �
n
�
� ����nq�din�n�����

�n�qdi 


�qdi � q�di�n
� where q � eh�

�� The quantum group is a quantum double 
almost�


���� The identi�cation of �Uhb
���coop with Uhb

�

Let g be a 
nite dimensional complex simple Lie algebra and let Uhg be the corresponding
quantum group as presented in V ������ De
ne

Uhb
� � subalgebra of Uhg generated by X

�
� � X

�
� � � � � � X

�
r and H�� � � � � Hr�

Uhb
� � subalgebra of Uhg generated by X

�
� � X

�
� � � � � � X

�
r and H�� � � � � Hr�

except let us distinguish the elements Hi which are in Uhb
� from the elements Hi which

are in Uhb
� by writing H�

i and H
�
i respectively� instead of just Hi in both cases�

The nondegeneracy of the pairing h� i between Uhb
� and Uhb

� �see ������ shows that
Uhb

� is essentially the dual of Uhb
�� Furthermore� it follows from the conditions

hx�x�� yi � hx� � x�� h�y�i and hx� y�y�i � h 
op�x�� y� � y�i

that the multiplication in Uhb
� is the adjoint of the comultiplication in Uhb

� and the
opposite of the comultiplication in Uhb

� is the adjoint of the multiplication in Uhb
�� Thus

�here we are fudging a bit since Uhb
� is in
nite dimensional��

Uhb
� 
 �Uhb

���coop as Hopf algebras�

where �Uhb
���coop is the Hopf algebra de
ned in I ������


���� Recalling the quantum double
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Recall� from I ���	�� that the quantum double D�A� of a 
nite dimensional Hopf algebra
A is the new Hopf algebra

D�A� � f a
 j a � A� 
 � A�coopg �� A� A�coop

with multiplication determined by the formulas


a �
X
��a

h
���� S
���a����ih
�	�� a�	�ia���
���� and

a
 �
X
��a

h
���� a���ih
�	�� S
���a�	��i
���a����

where� if  is the comultiplication in A and A�coop�

� � id� � �a� �
X
a

a��� � a��� � a�	�� and � � id� � �
� �
X
�


��� � 
��� � 
�	��

The comultiplication D�A� is determined by the formula

 �a
� �
X
a��

a���
��� � a���
����

where  �a� �
P

a a��� � a��� and  �
� �
P

� 
��� � 
����


���� The relation between D�Uhb
�� and Uhg

With the de
nition of the quantum double in mind it is natural that we should de
ne the
quantum double of Uhb

� to be the algebra

D�Uhb
�� � �Uhb

���coop � Uhb
� �� Uhb

� � Uhb
�

with multiplication and comultiplication given by the formulas in ������ The following
theorem says that the quantum group Uhg is almost the quantum double of Uhb

�� in other
words� Uhg is almost completely determined by pasting two copies of Uhb

� together�

Theorem� Let �Bij� � C�� be the inverse of the Cartan matrix corresponding to g and�
for each � � i � r� de�ne

H�
i �

rX
j
�

BijHj � Uhg�

�a� There is a surjective homomorphism ��D�Uhb
�� �� Uhg determined by

�� D�Uhb
�� �� Uhg

X�
i ��� X�

i

H�
i ��� Hi

X�
i ��� X�

i

H�
i ��� H�

i

and thus
D�Uhb

��

ker�
�� Uhg�
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�Recall ����� that we distinguish the elements Hi which are in Uhb
� from the elements Hi

which are in Uhb
� by writing H�

i and H�
i respectively� instead of just Hi in both cases��

�b� The ideal ker� is the ideal generated by the relations

H�
i �


� rX
j
�

BijH
�
j

�A � where � � i � r�


���� Using the R�matrix of D�Uhb
�� to get the R�matrix of Uhg

Recall ����� that the double D�Uhb
�� comes with a natural universal R�matrix given by

&R �
X
i

bi � bi�

where the sum is over a basis fbig of Uhb
� and fbig is the dual basis in Uhb

� with respect
to the form h� i given in ������ We have used the notation &R here to distinguish it from
the element R in Theorem �	���� The element &R is not exactly in the tensor product
D�Uhb

�� � D�Uhb
�� but if we make the tensor product just a tiny bit bigger by taking

the h�adic completion D�Uhb
�� $�D�Uhb

�� of D�Uhb
���D�Uhb

�� then we do have

&R � D�Uhb
�� $�D�Uhb

���

The image of &R under the homomorphism

�� �� D�Uhb
�� $�D�Uhb

�� �� Uhg$�Uhg

&R ��� R

coincides with the element R given in Theorem �	���� This means that we actually get the
element R in Theorem �	��� for free by realising the quantum group as a quantum double
�almost��

�� The quantum Serre relations occur naturally

In this section we will see that the most complicated of the de
ning relations in
the quantum group can be obtained in quite a natural way� More speci
cally� the ideal
generated by them is the radical of a certain bilinear form�


���� De�nition of the algebras Uhb
� and Uhb

�

Let g be a 
nite dimensional complex simple Lie algebra and let C � �
j�Hi����i�j�r be
the corresponding Cartan matrix�
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LetUhb
� be the associative algebra over C ��h�� generated �as a complete C ��h���algebra

in the h�adic topology� by

H�� H�� � � � � Hr� X�
� � X

�
� � � � � � X

�
r �

with relations

�Hi� Hj� � �� and �Hi� X
�
j � � 
j�Hi�X

�
j � for all � � i� j � r�

and de
ne an algebra homomorphism  h�Uhb
� � Uhb

� $�Uhb
� by

 h�Hi� � Hi � � ! ��Hi� and  h�X
�
i � � X�

i � edihHi ! ��X�
i �

where Uhb
� $�Uhb

� denotes the h�adic completion of the tensor product Uhb
� �C ��h��

Uhb
��

LetUhb
� be the associative algebra over C ��h�� generated �as a complete C ��h���algebra

in the h�adic topology� by

X�
� � X

�
� � � � � � X

�
r � H�� H�� � � � � Hr�

with relations

�Hi� Hj � � �� and �Hi� X
�
j � � �
j�Hi�X

�
j � for all � � i� j � r�

and de
ne an algebra homomorphism  h�Uhb
� � Uhb

� $�Uhb
� by

 h�Hi� � Hi � � ! ��Hi� and  h�X
�
i � � X�

i � � ! e�dihHi �X�
i �

where Uhb
� $�Uhb

� denotes the h�adic completion of the tensor product Uhb
� �C ��h��

Uhb
��


���� The di�erence between the algebras Uhb
� and the algebras Uhb

�

The algebras Uhb
� are much larger than the algebras Uhb

� used in ����� since they have
fewer relations between the X�

i generators�


���� A pairing between Uhb
� and Uhb

�

In exactly the same way that we had a pairing between Uhb
� and Uhb

� in ������ there is
a unique C ��h���bilinear pairing

h� i � Uhb
� �Uhb

� �� C ��h�� which satis
es

�a� h�� �i � ��

�b� hHi� Hji �

j�Hi�

dj
�

�c� hX�
i � X

�
j i � �ij

h

edih � e�dih
�

�d� hab� ci � ha� b� h�c�i� for all a� b � Uhb
� and c � Uhb

��

�e� ha� bci � h op
h �a�� b� ci� for all a � Uhb

� and b� c � Uhb
��
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���� The radical of h� i is generated by the quantum Serre relations

Let r� and r� be the left and right radicals� respectively� of the form h� i de
ned in ���	��
i�e�

r� � fa � Uhb
� j ha� bi � � for all b � Uhb

�g� and

r� � fb � Uhb
� j ha� bi � � for all a � Uhb

�g�

Theorem� The sets r� and r� are the ideals ofUhb
� andUhb

� generated by the elements

X
s�t
���j�Hi�

����s
�
�� 
j�Hi�

s

�
edih

�X�
i �

sX�
j �X

�
i �

t� for i �� j�

and

X
s�t
���j�Hi�

����s
�
�� 
j�Hi�

s

�
edih

�X�
i �

sX�
j �X

�
i �

t� for i �� j�

respectively�

It follows from this theorem that the quantum group Uhg is determined by the algebras
Uhb

�� Uhb
� and the form h� i� A construction of the quantum group along these lines

would be very similar to the standard construction of Kac�Moody Lie algebras �see �K�
x��	��
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VIII� Hall algebras

The results in x� are outlined in �CP� x��	D� The proof of Theorem ����� appears
in �BGP� Theorem 	�� and the proof of Theorem ����� appears in �Lu�� Prop� ���� The
material in x� is a combination of �Lu�� and �Lu� Part II� In particular� Theorem �������� is
proved in �Lu� �	����� ���	��� and ������ Theorem �������� is proved in �Lu� �	����� �	�����e�
���	�	� and ������� Theorem ������	� is proved in �Lu� �	�����d and ���	��� The statement
about the symmetric form given in ����� is proved in �Lu� ������� ����� and the references
given there� The proof of the isomorphism theorem in ����� is given in �Lu� �	����� and
in �Lu�� Th� ������ The material in x	 appears in �Lu�� x�� The isomorphism theorem in
�	��� is stated in �Lu�� ����

�� Hall algebras

The Hall algebra is an algebra which has a basis labeled by representations of quivers
and for which the structure constants with respect to this basis re�ect the structure of
these representations� The Hall algebra encodes a large amount of information about
the representations of the quiver� Amazingly� this algebra is almost isomorphic to the
nonnegative part of the quantum group�


���� Quivers

A quiver is an oriented graph �� i�e� a set of vertices and directed edges� The following is
an example of a quiver�

Every Dynkin diagram if type A� D or E can be made into a quiver by orienting the edges�
Note that there are many possible ways of orienting the edges of a Dynkin diagram in
order to make a quiver� For example the quivers

are both obtained by orienting the edges of the Dynkin diagram of type E��


���� Representations of a quiver

A representation R of a quiver � over a 
eld k is a labeling of the graph � such that

��� Each vertex i � � is labeled by a vector space Ri over k�
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��� Each edge i� j in � is labeled by a �vector space� homomorphism �ij �Ri � Rj�

De
ne morphisms of representations of quivers in the natural way and make the category
of representations of the quiver �� The dimension of a representation R is the vector
dim�R� � �di� where� for each vertex i � �� di � dim�Ri�� An irreducible representation
of � is a representation R of � such that the only subrepresentations of R are � and R�

A representation R of a quiver � is indecomposable if it cannot be written as R � S�T
where S and T are nonzero representations of ��

Theorem� Let � be a quiver�

�a� There are a �nite number of indecomposable representations of � if and only if �
is an oriented Dynkin diagram of type A� D or E�

�b� If � is an oriented Dynkin diagram of type A� D or E then the indecomposable
representations of � are in ��� correspondence with the positive roots for the Lie
algebra g corresponding to the Dynkin diagram�


���� De�nition of the Hall algebra

Let � be a quiver and let Fq be a 
nite 
eld with q elements� The Hall algebra or
Grothendieck ring R� of representations of � is the algebra over C with

��� basis labeled by the isomorphism classes �R� of representations of � over Fq � and
��� multiplication of two isomorphism classes �R� and �S� given by

�R� � �S� �
X
�T �

CT
RS �T � where CT

RS � Card
�
fP 	 T j P �� R� T�P �� Sg

�
�


���� Connecting Hall algebras to the quantum group

Let � be a quiver which is obtained by orienting the edges of a Dynkin diagram of type A�
D� or E� and let Fq be a 
nite 
eld with q elements� Let us describe explicitly two types
of indecomposable representations of ��

��� Let i be a vertex of �� The representation

ei given by Vj �

�
Fq � if j � i�
�� if j �� i�

is an irreducible representation of ��

��� Let i� j be an edge of �� The representation

eij given by V� �

�
Fq � if � � i or � � j�
�� otherwise�

and �ij � idFq �

is an indecomposable �but not irreducible� representation of ��
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The following relations hold in the Hall algebra R��

eij � eiej � ejei� eieij � qeijei� eijei � qejeij � for each edge i� j in ��

It is easier to prove the 
rst relation by writing it in the form eiej � eij! ejei� Combining
the 
rst two of these relations and the 
rst and last of these relations respectively� gives
the identities

e�i ej � �q ! ��eiejei ! qeje
�
i � � and eie

�
j � �q ! ��ejeiej ! qe�jei � �� respectively�

We shall make the Hall algebra a bit bigger by adding the K��
i s that are in the quan�

tum group Uqg� Let g be the 
nite dimensional complex simple Lie algebra corresponding
to the Dynkin diagram given by � and let Uqg be the rational version of the quantum group
with k � C and q � C the number of elements in the 
eld Fq � Let Uqh be the subalgebra
of Uqg generated by K

��
� � � � � � K��

r � Let 
�� � � � � 
r be the simple roots corresponding to
the Lie algebra g �see II ������� De
nefR� � algebra generated by R� and K��

� � � � � � K��
r with the additional relations

Ki�R�K
��
i � q��i�d�R���R�� for all � � i � r and representations R of ��

where d�R� �
Pr

j
� dim�Rj�
j � and the inner product in the exponent of q is the inner
product on h�

R
given in II ������

Theorem� Let � be a quiver which is obtained by orienting the edges of a Dynkin diagram
of type A� D or E� Let R� be the Hall algebra of representations of � over the �nite �eld
Fq with q elements and let fR� be the extended Hall algebra de�ned above� Let Uqg be the
rational form of the quantum group with k � C which corresponds to the Dynkin diagram
� and let

Uqb
� � subalgebra of Uqg generated by K��

� � � � � � K��
r and E�� � � �Er�

Choose elements z�� � � � � zr � Z such that zi � zj � � if i � j is an edge in �� Then the
homomorphism of algebras determined by

Uqb
� �� fR�

K��
i ��� K��

i

Ei ��� Kzi
i ei

is an isomorphism�
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�� An algebra of perverse sheaves

In this section we shall construct an algebra K from a Dynkin diagram �� There is a
strong relationship between this algebra and the quantum group Uqg where g is the simple
complex Lie algebra corresponding to the Dynkin diagram ��

The algebra K is graded�

K �
M
��Q�

K� �

in the same way that the quantum group Uqn
� is graded� see VII ������ The vector space K

comes with natural shift maps �n� which correspond to multiplication by qn in the quantum
group Uqb

�� The algebra K has a natural multiplication which comes from an induction
functor and a natural �pseudo�comultiplication� which comes from a restriction functor�
The multiplication and the pseudo�comultiplication turn out to be almost the same as the
multiplication and the comultiplication on the quantum group Uqb

�� Lastly� the algebra
K has a natural inner product f� g that is related to the inner product h� i pairing Uqb

�

and Uqb
�� �see VII �������

In Theorem ����� we shall see that if we extend the algebra K a little bit� by adding

the K��
i �s that are in the quantum group Uqg then we get an algebra

eK such that
eK 
 Uqb

��

This last fact is very similar to the case of the Hall algebra ����� where after extending
the Hall algebra R� by adding the K��

i �s that are in the quantum group Uqg� we got an

algebra fR� which was also isomorphic to Uqb�� We shall see in section 	 that this is not a
coincidence� there is a concrete connection between R� and the algebra K� The advantage
of working with the algebra K instead of the Hall algebra R� is that K has more natural
structure than R�� it has�

�a� a natural pseudo�comultiplication r�K � K�K�

�b� a natural inner product f� g�K� K � Z��q���

�c� a natural involution D�K � K�

�d� a natural basis coming from simple perverse sheaves�

The natural basis coming from simple perverse sheaves is called the canonical basis�


���� ��graded vector spaces and the varieties EV with GV action

Let � be a quiver obtained by orienting the edges of a Dynkin diagram of type A� D or
E� For convenience we label the vertices by �� �� � � � � r� Let g be the 
nite dimensional
complex simple Lie algebra corresponding to the Dynkin diagram given by ��

Let p be a positive prime integer and let Fp be the algebraic closure of the 
nite 
eld
Fp with p elements� A ��graded vector space V over Fp is a labeling of the graph � such
that each vertex i is labeled by a vector space Vi over Fp � The dimension of a ��graded
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vector space V is the r�tuple of nonnegative integers dim�V � � �dim�Vi��� We shall identify
dimensions of ��graded vector spaces with elements of

Q� �
X
i

N
i so that dim�V � �
rX
i
�

dim�Vi�
i�

where 
�� � � � � 
r are the simple roots for g and N � Z���

Fix an element � � Q� and a ��graded vector space V over Fp such that dim�V � � ��
De
ne

GV �
Y
i

GL�Vi� and EV �
M
i�j

Hom�Vi� Vj��

where the sum in the de
nition of EV is over all edges of �� There is a natural action of
GV on EV given by

g � ��ij� � �gj�ijg
��
i �� if ��ij� � EV and g � �g�� � � � � gr� � GV �

Let x � EV and let W be a ��graded subspace of V � i�e� Wi 	 Vi for all vertices i in ��
The subspace W is x�stable if xWi 	 Wj for all edges i � j in �� We shall simply write
W 	 V if W is a ��graded subspace of V and xW 	W if W is x�stable�


���� De�nition of the categories QV and QT �QW

The reader may skip this de�nition if it looks like too much to swallow� The only important
thing at this stage is that QV is a category of objects and it is contained in a category
called Db

c�EV ��

Let V be a ��graded vector space over Fp and let EV be the variety over Fp de
ned in
������ Let Db

c�EV � be the bounded derived category of Q l��constructible� sheaves on EV �
see IV ������ Recall that Db

c�EV � comes endowed with shift functors IV ������

�n�� Db
c�EV � �� Db

c�EV �
A ��� A�n��

De
ne

QV � the full subcategory of Db
c�EV � consisting of 
nite direct sums of simple

perverse sheaves L such that some shift of L is a direct summand of L��

for some partition �� of � � dim�V ��

The complexes L�� are de
ned in ������ Let T and W be ��graded vector spaces over Fp �
De
ne

QT �QW � the complexes L � Db
c�ET � EW � such that L ��

sM
i
�

Ai � Bi�

for some Ai � QT � Bi � QW � and some positive integer s�
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This is a subcategory of Db
c�ET � EW ��


���� The Grothendieck group K associated to the categories QV

Let � � Q� and let V be a ��graded vector space of dimension �� Let QV be as in ������
The important thing about QV at the moment is that it is a category related to EV �

The Grothendieck group K�QV � of the category QV is the C �q��module generated by
the isomorphism classes of objects in QV with the addition operation given by the relations

�B� � B�� � �B�� ! �B��� if B�� B� � QV �

and multiplication by q given by the relations

�B�n�� � qn�B�� for B � QV and n � Z�

where the map B � B�n� is the shift functor on Db
c�EV �� see IV ������ The structure of

K�QV � depends only on the element � and so we shall often write K� in place of K�QV ��
De
ne

K �
M
��Q�

K� �

The group K is graded in the same way that Uqn
� is graded� see VII ������


���� De�nition of the multiplication in K

Let V be a ��graded vector space� Let T and W be ��graded vector spaces such that

W 	 V and V�W �� T�

If x � EV such that xW 	 W then let xW be the linear transformation of W induced by
the action of x on W and let xT be the linear transformation of T �� V�W induced by the
action of x on V�W � De
ne

S � fx � EV j xW 	 Wg�

P � fg � GV j gW 	Wg� U � fg � P j gW � idW � gT � idT g�

The groups P and U are subgroups of GV � The group P is the stabilizer of W in GV � it
is a parabolic subgroup of GV � The group U is the unipotent radical of P �

Let QT � QW be the subcategory of Db
c�ET � EW � which is de
ned in ������ The

diagram

ET �EW
p�
�� GV �U S

p�
�� GV �P S

p�
�� EV

�xT � xW � ��� �g� x� ��� �g� x� ��� gx

induces the diagram
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QT �QW �� Db
c�ET �EW �

p���� Db
c�G�U S�

�p���
�� Db

c�G�P S�
�p���
�� Db

c�EV �

where the 
rst map is the inclusion map�

Theorem� Let V be a ��graded vector space and let EV be the variety with the GV action
which is de�ned in ������ Let W and T be ��graded vector spaces such that W 	 V and
V�W �� T � Let QT �QW and QV be the categories of complexes of sheaves on ET �EW

and EV � respectively� which are de�ned in ������ There is a well de�ned functor

IndVT�W � QT �QW �� QV

A ���
�
�p	���p���p

�
�A
�
�dim�p��� dim�p���

where p�� p�� and p	 are as de�ned in the diagram above� dim�p�� is the dimension of the
�bers of the map p�� and dim�p�� is the dimension of the �bers of the map p��

The multiplication in K is de
ned by the formula

�A� � �B� �
�
IndVT�W �A� B�

�
� for A � QT and B � QW �

With this multiplication K becomes an algebra� The strange shift by �dim�p��� dim�p���
in the de
nition of IndVT�W is there to make the multiplication in K match up with the
multiplication in the nonnegative part of the quantum group Uqb

�� see Theorem �����
below�


���� De�nition of the pseudo�comultiplication r�K � K �K

Let V be a ��graded vector space� Let T and W be ��graded vector spaces such that

W 	 V and V�W �� T�

If x � EV such that xW 	 W then let xW be the linear transformation of W induced by
the action of x on W and let xT be the linear transformation of T �� V�W induced by the
action of x on V�W �

De
ne
S � fx � EV j xW 	Wg

and let QV be the subcategory of D
b
c�EV � which is de
ned in ������ The diagram

EV
�
�� S

�
�� ET � EW

x ��� x ��� �xT � xW �

induces the diagram

QV �� Db
c�EV �

��

�� Db
c�S�

���� Db
c�ET �EW �
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where the 
rst map is the inclusion map�

Theorem� Let V be a ��graded vector space and let EV be the variety with the GV action
which is de�ned in ������ Let W and T be ��graded vector spaces such that W 	 V and
V�W �� T � Let QT �QW and QV be the categories of complexes of sheaves on ET �EW

and EV � respectively� which are de�ned in ������ There is a well de�ned functor

ResVT�W � QV �� QT �QW

B ���
�
���

�B
�
�dim�p��� dim�p��� �dim�GV �P ��

where p�� p�� �� and � are as de�ned above� dim�p�� is the dimension of the �bers of the map
p�� dim�p�� is the dimension of the �bers of the map p�� and P is the parabolic subgroup
of GV de�ned in ���
��

The pseudo�comultiplication on K is the map r�K � K�K de
ned by

r��A�� �
�
ResVT�W �A�

�
� if A � QV �

The strange shift by �dim�p�� � dim�p�� � �dim�GV �P �� in the de
nition of Res
V
T�W is

there to make the pseudo�comultiplication in K match up with the comultiplication in the
nonnegative part of the quantum group Uqb

�� see Theorem ����� below�


��	� The symmetric form on K

Recall that we write K� in place of K�QV � since the structure of K�QV � depends only on
�� For each � � Q�� de
ne a bilinear form

f� g��K� � K� � C �q� by de
ning

�
�B��� �B��

�
�
�
X
j

q�jdim
�
Hj��dim�Gn���u��t�s

�B� � t�s
�B���

�
�

for B�� B� � QV � The vector spaces H
j��dim�Gn���u��t�s

�B� � t�s
�B��� are de
ned in

������ below� At this stage the important thing is that they depend only on B�� B� and j�
Use the forms f� g� � � � Q�� to de
ne a bilinear form

f� g�K�K � Z��q�� on K �
M
��Q�

K� by setting

�
K��K�

�
� ���

x� y
�
�
�
x� y

�
�
�

if �� � � Q� such that � �� �� and

if x� y � K� �
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Theorem� Let V be a ��graded vector space and let T and W be ��graded subspaces
such that W 	 V and T �� V�W � Let A � QT �QW and let B � QV � Then�

A � ResVT�W �B�
�
�
�
IndVT�W �A� � B

�
The result in this theorem is an analogue of the property of the bilinear form h� i on the
quantum group which is given in VII ������d��


���� De�nition of the elements L�� � K

Let � � Q� and let V be a ��graded subspace of dimension �� A partition of � is a sequence
�� � ���� � � � � �m� of elements of the root lattice Q such that

��� each �j � � � j � m� is a nonnegative integer multiple of a simple root� and

��� �� ! � � �! �m � ��

For example we might have �� � �	
�� �
	� �� 
�� �
�� if � � �
�!�
	� A �ag of type �� in

V is a sequence
f � �V � V ��� � V ��� � � � � � V �m� � ��

of ��graded subspaces of V such that dim�V ������V ���� � ��� for all � � � � m�
Let x � EV � A �ag f is x�stable if xV

��� 	 V ��� for all � � � � m� De
ne

F�� � f�x� f� j x � EV � f is an x�stable �ag of type �� in V g�

The map

F��
����� EV

�x� f� ��� x
induces a map Db

c�F���
������
�� Db

c�EV ��

Let f���� � dim�F��� and de
ne

L�� �
�
�������

�
�dim�F����� i�e�

Db
c�F���

������
�� Db

c�EV �
�dim�F����
�� Db

c�EV �
� ��� ��� L��

where � is the constant sheaf on F�� and �dim�F���� is a shift� see IV ������

Theorem� Let V be a ��graded vector space of dimension � and let T andW be ��graded
vector spaces such that W 	 V and T �� V�W �

��� Let �� and �� be partitions of dim�T � and dim�W �� respectively� Then

IndVT�W �L�� � L��� � L�����
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where� if �� � ���� ��� � � � � �s� and �� � ���� � � � � �t�� then ���� � ���� � � � � �s� ��� � � � � �t��

��� Let �� be a partition of dim�V �� Then

ResVT�WL�� ��
M
�����

�L�� � L����M
����� �����

where the sum is over all ��� �� such that �� is a partition of dim�T �� �� is a partition of
dim�W � and �� ! �� � ��� The positive integer M ����� ��� is de�ned in ����� below�

��� Let � � 
i be a simple root for g and let V be a ��graded subspace such that dim�V � �

i� De�ne Li � K�QV � by Li � L�� where �� � �
i�� Then

�
�Li� � �Li�

�
�

�

�� q�
�


���� The connection between K and the quantum group

We shall make the algebra

K �
M
��Q�

K�

a bit bigger by adding the K��
i �s that are in the quantum group Uqg� Let g be the 
nite

dimensional complex simple Lie algebra corresponding to the Dynkin diagram given by
� and let Uqg be the rational version of the quantum group with k � C �q� where q is
an indeterminate� Let Uqh be the subalgebra of Uqg generated by K��

� � � � � � K��
r � Let


�� � � � � 
r be the simple roots corresponding to the Lie algebra g� De
neeK � algebra generated by K and K��
� � � � � � K��

r with the additional relations

KixK
��
i � q��i���x� for all � � i � r and all x � K� �

where the inner product in the exponent of q is the inner product on h�
R
given in II ������

De
ne a map j��K �K � eK � eK by
j��x� y� � xK��

� � � �K�r
r � y� if x � K and y � K� � where � �

P
i �i
i�

Use the map j� and the pseudo�comultiplication r�K � K � K de
ned in ����� to de
ne

a coproduct on eK by
 � eK �� eK � eK

K��
i ��� K��

i �K��
i

x ��� j�r�x�

for � � i � r�
for x � K�
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where r�K � K � K is the pseudo�comultiplication de
ned in ������ Then eK is a Hopf
algebra


Theorem� Let Li be as de�ned in Theorem ����b�� The algebra homomorphism deter�
mined by

I � eK �� Uqb
�

Li ��� Ei

K��
i ��� K��

i

is an isomorphism of Hopf algebras�


���� Dictionary between K and Uqb
�

Let us make a small dictionary between the algebra K and the quantum group Uqb
�� Our

intent is to describe� conceptually� the correspondence between the structures inherent
in the algebra K and the structures in the quantum group Uqb

�� The map I is the
isomorphism given in Theorem ������
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eK is isomorphic to Uqb
��

eK is the algebra Similarly� Uqb
� is the algebra

generated by generated by
K and the K��

i s� Uqn
� and the K��

i s�

K is graded� Similarly� Uqn
� is graded�

K �
L

��Q� K� � U�
n �

L
��Q��Uqn

��� �

The shift functor �n� which corresponds to multiplication by qn

gives rise to in Uqb
��

multiplication by qn in K

The functor IndVT�W corresponds to the multiplication in Uqn
��

The functor ResVT�W corresponds to the comultiplication in Uqb
��

The inner product f� g corresponds to the bilinear form h� i
pairing Uqb

� and Uqb
��

A partition which maps� E
����
i�

� � �E
��l�
il

�� � ���
i� � � � � � �l
il� under I� to where E
�n�
i � En

i ��n�
�
indexes L��

The Verdier duality corresponds to the C �algebra involution
functor D '�Uqn

� � Uqn
�

which sends q �� q�� and Ei �� Ei�

The simple map� under I� to a canonical basis in Uqn
��

perverse sheaves
in the various QV


����� De�nition of the constant M ���� �� which was used in 
����

Let V be a ��graded vector space and let T and W be ��graded subspaces such that
W 	 V and T �� V�W � If x � EV such that xW 	W then let xW be the linear transfor�
mation of W induced by the action of x on W and let xT be the linear transformation of
T �� V�W induced by the action of x on V�W � Let �� be a partition of dim�V �� If

f �
�
V � V ��� � V ��� � � � � � V �m� � �

�
is a �ag of type �� in V then de
ne

fW �
�
�V �W � � �V � �W � � �V ��� �W � � � � � � �V �m� �W � � �

�
and

fT �
�
p�V � � p�V ���� � p�V ���� � � � � � p�V �m�� � �

�
where p�V � V�W
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is the canonical projection�
Let �� be a partition of dim�T � and let �� be a partition of dim�W �� such that ��!�� � ���

De
ne

&F ���� ��� �

�
�x� f�

����� xW 	W�
f is an x�stable �ag of type �� in V �

and fW is a �ag of type �� in W

�
�

De
ne a map

� &F ���� ��� �� F�� � F��

�x� f� ��� ��xT � fT �� �xW � fW ��

and de
ne

M ���� �� � dim�p���dim�p��� �dim�GV �P �!dim�F����dim�F�� ��dim�F���� �dim�
��

where p� and p� are the maps given in ������ P is the parabolic subgroup of GV de
ned in
������ and dim�p��� dim�p�� and dim�
� are the dimensions of the 
bers of the maps p��
p�� and 
� respectively�


����� De�nition of the vector spaces Hj��dim�Gn���u��t�s
�B�� t�s

�B��� from 
��	�

Let ( be a smooth irreducible algebraic variety with a free action of GV such that the
Q l �cohomology of ( is zero in degrees �� �� � � � �m where m is a large integer� Consider the
diagram

EV
s
�� (� EV

t
�� Gn�(�EV �

x ��� ��� x� ��� GV ��� x�
and the diagram GV n�(� EV �

u
�� fpointg�

These diagrams induce diagrams

Db
c�EV �

s�

�� Db
c�(� EV �

t��� Db
c�Gn�(� EV �� and

Db
c�GV n�(� EV ��

u��� Db
c�fpointg��

With these notations one has that Hj��dim�Gn���u��t�s
�B� � t�s

�B��� is a sheaf on the
space fpointg� i�e� a Q l �vector space�


����� Some remarks on Part II of Lusztig�s book

The construction of the algebra K and the relationship between it and the quantum group
is detailed in Lusztig�s book �Lu�� Lusztig works in much more generality there�

��� Lusztig allows � to be an arbitrary quiver� rather than just a quiver gotten by orienting
a Dynkin diagram of type A� D or E� It does not require any more theory than what
we have already outlined in order to de
ne the algebra K in this more general setting�

��� Lusztig wants to construct algebras K which will be isomorphic to the nonnegative
parts of the quantum groups corresponding to general Dynkin diagrams� In order to
do this he must 
rst consider only diagrams with single bonds and then )fold� the
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diagram by analyzing the action of an automorphism of the diagram� The addition
of the folding automorphism into the theory is a nontrivial extension of what we have
developed in these notes�

�	� We have ignored the e�ect of the orientation of the quiver� If one wants to compare
the algebras K that are obtained by orienting the same quiver in di�erent ways one
must analyze a Fourier�Deligne transform between these two di�erent algebras� The
amazing thing is that� after one extends the algebras by adding the K��

i s that are in
the quantum group� the two di�erent algebras �from the di�erent orientations� become
isomorphic


�� The connection between representations of quivers and per�
verse sheaves


���� Correspondence between orbits and isomorphism classes of representa�
tions of �

Let � be a quiver obtained by orienting the edges of a Dynkin diagram of type A� D or
E� For convenience we label the vertices by �� �� � � � � r� Let g be the 
nite dimensional
complex simple Lie algebra corresponding to the Dynkin diagram given by ��

Let p be a positive prime integer and let Fp be the algebraic closure of the 
nite 
eld
Fp with p elements� Fix an element � � Q� �see VII ������ and a ��graded vector space V
over Fp such that dim�V � � �� De
ne

GV �
Y
i

GL�Vi� and EV �
M
i�j

Hom�Vi� Vj��

where the sum in the de
nition of EV is over all edges of �� The natural action of GV on
EV is given by

g � ��ij� � �gj�ijg
��
i �� if ��ij� � EV and g � �g�� � � � � gr� � GV �

The group GV is an algebraic group over Fp and EV is a variety over Fp with a GV action�
Each element ��ij� � EV determines a representation of � of dimension dim�V �� Each
GV �orbit in EV determines an isomorphism class of representations of �� Let us make this
correspondence precise�

An orbit index for V is a sequence of positive integers labeled by the positive roots

�c � �c����R� such that
X
��R�

c�
 � dim�V ��

where R� is the set of positive roots for g� For each orbit index �c for V de
ne a represen�
tation of � by

R�c �
M
��R�

e
c�� and let O�c � the GV �orbit in EV corresponding to R�c�
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where e� is the indecomposable representation of � indexed by the positive root 
� see
Theorem ����b�� Then we have a one�to�one correspondence

GV orbits in EV
���
�� isomorphism classes of representations

of � of dimension �

O�c �� �R�c�


���� Realizing the structure constants of the Hall algebra in terms of orbits

Let q be a power of the prime p� Since EV is a variety over Fp there is an action of
the the qth power Frobenius map F on EV � see �Ca� p� ��	� If X is a subset of EV then
let XF denote the set of points of X which are 
xed under the action of the Frobenius
map F �

Let T and W be ��graded vector spaces such that W 	 V and T �� V�W � Recall the
diagram

ET �EW
p�
�� GV �U S

p�
�� GV �P S

p�
�� EV

�xT � xW � ��� �g� x� ��� �g� x� ��� gx

given in ������ Let �a� �b� and �c be orbit indices for T � W and V � respectively� Then we have

ET � EW
p�
�� GV �U S

p�
�� GV �P S

p�
�� EV

O�a �O�b � p��� �O�a �O�b� ��� p��p
��
� �O�a �O�b��

p��	 �O�c� �� O�c

Let M � R�a� N � R�b and P � R�c be the representations of � given in �	���� By a direct
count� we have

CP
M�N � Card

��
p��p

��
� �O�a �O�b��

�
p��	 �O�c�

�F�
�

where CP
M�N are the structure coe�cients of the Hall algebra R� given in ���	��


���� Rewriting the Hall algebra in terms of functions constant on orbits

Let q be a power of the prime p� On any variety Y over Fp there is an action of the the qth
power Frobenius map F on EV � see �Ca� p� ��	� If X is a subset of Y then XF denotes
the set of points of X which are 
xed under the action of the Frobenius map F �

Let l be a positive prime number� invertible in Fp � Let Q l be the algebraic closure of
the 
eld of l�adic numbers� De
ne

K� � the vector space of Q l �valued functions on �EV �
F which are constant on the

orbits �O�c�
F for all orbit indexes �c for V �

De
ne
K �

M
��Q�

K� �
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where Q� is as in VII ������
De
ne a multiplication on K as follows� Let T and W be ��graded vector spaces such

that W 	 V and T �� V�W � Recall the diagram

ET �EW
p�
�� GV �U S

p�
�� GV �P S

p�
�� EV

�xT � xW � ��� �g� x� ��� �g� x� ��� gx

given in ������ Let � � dim�T � and � � dim�W �� Given f� � K� and f� � K� de
ne a
function f� � f� as follows�

If x � �EV �
F then

�f� � f���x� �
X

xT �xW

CV
T�W f��xT �f��xW ��

where the sum is over all xT � �ET �
F and xW � �EW �

F � and

CV
T�W �

Card� f�y� f� � �GV �P S�
F j p��y� f� � �xT � xW �� p	�p��y� f�� � xg �

Card��GT �F �Card��GW �F �
�

Let �c be an orbit index and let ��c be the characteristic function of the orbit O�c� i�e�

for x � �EV �
F � ��c�x� �

�
�� if x � �O�c�

F �
�� otherwise�

Then it follows from the observation in �	��� that the map

K �� R�
��c ��� �R�c�

is an isomorphism of algebras� where R� is the Hall algebra de
ned in ���	��


���� The isomorphism between K and K

Let �a be an orbit index and let O�a be the corresponding GV �orbit in EV as de
ned in
�	���� Let F�c be the constant sheaf Q l on the orbit O�c extended by � on the complement�
This sheaf can be viewed as the complex of sheaves A� for which A� � F�c and Ai � ��
for all i �� �� In this way F�c can be viewed as an element of QV � see IV ������ and the
isomorphism class �F�c� of F�c is an element of K�

Theorem� Let K be the algebra de�ned in x� and let K be the algebra de�ned in ������
For each orbit index �c let O�c be the corresponding GV orbit in EV � as given in ������ and
let ��c be the characteristic function of the orbit O�c� The map

K �� K
�F�c� ��� ��c

is an isomorphism of algebras�



VIII� Hall algebras 
�

This theorem is a consequence of an analogue of the Grothendieck trace formula� The
Grothendieck trace formula� �Ca� p� ���� is the formula

jXF j �

�dim�X�X
i
�

����i Tr�F�Hi
c�X�Q l ���

which describes the number of points of X which are 
xed under a Frobenius map F in
terms of the trace of the action of the Frobenius map on the l�adic cohomology Hi

c�X�Q l�
of the variety X�

Theorems �	��� and ����� together show that there is a natural connection between
the algebra K and the Hall algebra R� which was introduced in ���	��
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IX� Link invariants from quantum groups

The theorems of Alexander and Markov given in ����� and ����� are considered classi�
cal� they can be found in �Bi� Theorem ��� and Theorem ��	� respectively� A sketch� with
further references� of the proof of Theorem ����� can be found in �CP� ����� See �J� Prop�
��� for the proof of Theorem ����� and �Stb� Lemma ��� for the proof of Proposition ������


���� Knots� links and isotopy

A knot is an imbedded circle in R	 � By circle we mean an S� and imbedded is in the sense
of di�erential geometry� A link is a disjoint union of imbedded circles in R	 � A link is
oriented if each connected component is oriented� We shall identify a link with its �picture
in the plane��

knot �unknot� knot �trefoil� link �Borromean rings�

The conceptual idea of when two links are the same is called ambient isotopy� More
precisely� two oriented links L� and L� are equivalent under ambient isotopy if there is an
orientation preserving di�eomorphism of R	 which takes L� to L�� In terms of pictures
in the plane L� and L� are equivalent under ambient isotopy if the picture for L� can be
transformed into the picture for L� by a sequence of Reidemeister moves�

�R�� �� ��

�R�� �� ��

�R	� ��

These moves are applied locally to a region in the picture and all possible orientations of
the strings are allowed� The equivalence relation on pictures in the plane gotten by only
allowing moves �R�� and �R	� is called regular isotopy�


���� Link invariants

Let S be a set� An oriented link invariant with values in S is a map

P � L �� S



IX� Link invariants from quantum groups ��

from the set L of equivalence classes of oriented links under ambient isotopy to S�

Theorem� There exists a unique oriented link invariant P � L �� Z�x� x��� y� y��� such
that

P
� �

� �� and xP


B�
�CA� x��P


B�
�CA � yP


B�
�CA �

The unusual notation in the second relation indicates changes to the link in a local region�

The link invariant de
ned in the above Theorem is the HOMFLY polynomial� Other
famous link invariants can be obtained in a similar fashion by specializing x and y� as
follows�

Jones polynomial x � t�� and y � t��� � t�����
Conway polynomial x � � and y � y�
Alexander polynomial x � � and y � t��� � t�����


���� Braids

A braid on m�strands consists of two rows of m dots each� one above the other� and m
strands in R	 such that

��� each strand connects a dot in the top row to a dot in the bottom row�

��� the strands do not intersect�

�	� every dot is incident to exactly one strand�

Composition of two braids b�� b� on m�strands is given by identifying the bottom points of
b� with the top points of b�� The following are braids on � strands�

b� � � b� � �

and the product b�b� is the braid

b�b� � �
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One should note that it is important to be careful in de
ning the word �strand� since the
diagram

is not a legal braid�
The braid group Bm is the group of braids on m strands and it is a famous theorem

of E� Artin that Bm has a presentation by generators

gi �

� � i� � i i! � i! � m� � m

� � � � � � �

for � � i � m� �� and relations

gigj � gjgi� if ji� jj � ��
gigi��gi � gi��gigi��� for � � i � m� ��


���� Every link is the closure of a braid

It will be convenient to �orient� the strands of a braid so that they �travel� from top to
bottom�

The closure � $��m� of a braid � � Bm on m�strands is the oriented link obtained by joining
together �identifying� each dot in the top row to the corresponding dot in the bottom row�
If

� � � then �$�� 	� � �

and if

� � � then �$�� 	� � �
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Theorem� �Alexander� Every oriented link is the closure � $��m� of a braid � � Bm for
some m�


���� Markov equivalence

The braid group Bm can be embedded into the braid group Bm�� by adding a strand�

B� �� B


���

Two braids �� � Bm and �� � Bn are Markov equivalent if they are equivalent under the
equivalence relation on tmBm �disjoint union of Bm� which is de
ned by the relations

�M�� �� � ������� for all �� �� � Bk� and

�M�� � � �gk � �g��k � if � � Bk�

where in the relation �M�� the products �gk and �g��k are obtained by viewing � as an
element of Bk�� under the imbedding Bk 	 Bk���

Theorem� �Markov� Two braids �� � Bm and �� � Bn have equivalent closures � $���m�

and � $��� n� �under ambient isotopy� if and only if �� and �� are Markov equivalent�


��	� Quantum dimensions and quantum traces

Let g be a 
nite dimensional complex simple Lie algebra and let Uhg be the corresponding
Drinfel�d�Jimbo quantum group� Let &� be the element of h such that 
i�&�� � � for all
simple roots 
i� see II ������

Let V be a 
nite dimensional Uhg module� The quantum dimension of V is

dimq�V � � Tr
V
�eh����

If z � EndUhg�V � then the quantum trace of z is

trq�z� � Tr
V
�eh��z� �

Proposition� Let L��� be the irreducible Uhg�module of highest weight � as given in
VI ����� and VI ������ Then

dimq�L���� �
Y
�
�

�� q�������

�� q�����
� where q � eh�
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� � �
�

P
�
� 
 is the half sum of the positive roots� and the inner product �� � on h�

R
is as

given in II ������


���� Quantum traces give us link invariants�

Recall that Uhg is a quasitriangular Hopf algebra and that therefore the category of

nite dimensional Uhg�modules is a braided SRMCwMFF� Let

"RV V � V � V �� V � V

be the braiding isomorphism from V � V to V � V � It follows from the identity I �	���
that the map

*� Bm �� EndUhg�V
�m�

gi ��� "Ri � id
��i��� � "RV V � id

�m��i���

is well de
ned and that *������ � *����*���� for all braids ��� �� � Bm�

Theorem� Let g be a �nite dimensional complex simple Lie algebra and let Uhg be the
correponding Drinfel�d�Jimbo quantum group� Let L��� be an irreducible Uhg�module of
highest weight � �see VI ����� and VI ������� Let � be the half sum of the positive roots
and let �� � be the inner product on hR as given in II ������ For each braid � on m�strands
de�ne

P � $��m� �

�
�

q	������
 dimq�V �

�m
trq�*�����

where q � eh� Then P is a well de�ned link invariant�

Remark� The above theorem gives the Jones polynomial when g � sl�� the simple Lie
algebra corresponding to the Dynkin diagram A�� and L��� is chosen to be the irreducible
representation of Uhg with highest weight � � ���
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