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We show how the ribbon Hopf algebra structure on the Drinfel'd�Jimbo quan-
tum groups of Types A, B, C, and D can be used to derive formulas giving explicit
realizations of the irreducible representations of the Iwahori�Hecke algebras of
type A and the Birman�Wenzl algebras. We use this derivation to give explicit
realizations of the irreducible representations of the Brauer algebras as well. The
derivation is accomplished by way of a combination of techniques from operator
algebras, quantum groups, and the theory of 3-manifold invariants. Although our
applications are in the cases of the quantum groups of Types A, B, C, and D, most
of the aspects of our approach apply in the general setting of ribbon Hopf algebras.
� 1997 Academic Press

0. INTRODUCTION

The Iwahori�Hecke algebras of Type A and the Birman�Wenzl�
Murakami algebras arise naturally in the following setting: Let U be a
quantum group corresponding to a finite dimensional complex simple Lie
algebra of Type A, B, C, or D, and let V be the irreducible representation
of U corresponding to the fundamental weight |1 . Then the centralizer
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algebra Zm=EndU(V }m) is isomorphic to a quotient of either the Iwahori�
Hecke algebra or the Birman�Wenzl algebra.

The purpose of this paper is to give a unified approach for determining
explicit realizations of the irreducible representations of the Iwahori�Hecke
algebras of Type A and the Birman�Wenzl�Murakami algebras. Indeed, the
formulas for the irreducible representations which we find are equivalent to
those in [H] and [W2] in the case of the Iwahori�Hecke algebras of type
A and to those in [M2] for the case of the Birman�Wenzl�Murakami
algebras. However, we have found that in all three of these previous works
the appropriate formulas are stated without derivation and then proved to
be correct. In this paper we show that there is indeed a consistent method
by which one may actually derive the appropriate formulas.

Our method is motivated strongly by the machinery which has developed
in the context of operator algebras, quantum groups, and link invariants, in
particular the work of Reshetikhin [Re], Drinfel'd [D], Wenzl [W3], and
Turaev [7]. See also the papers [RT, RT2, TW, W4, and BW]. Although
we have applied our methods in the particular case of the quantum groups
corresponding to finite dimensional simple Lie algebras of types A, B, C,
it is clear that main aspects of our approach hold in the setting of quasi-
triangular Hopf algebras and ribbon Hopf algebras. The following list
describes the central features in our approach.

(1) From operator algebras: We have used the path model approach
for towers of algebras in [GHJ] in order to work with infinite families of
centralizer algebras all at once. In some sense the path algebra mechanism
reduces all of the ``difficult'' parts of the derivation to simple computations
with matrix units in direct sums of ordinary n_n matrix algebras.

(2) From quantum groups: The Drinfel'd�Jimbo quantum groups
carry the structure of quasitriangular Hopf algebras and ribbon Hopf
algebras [D]. We have been able to use this structure to get very specific
information about certain elements in the centralizer algebra. The
quasitriangular structure guarantees that the product R21R12 , where R is
the R-matrix, is always an element of the centralizer algebra and the
ribbon structure allows us to determine the eigenvalues of this element.
These eigenvalues turn out to be determined by the Casimir element
from the corresponding Lie algebra. This idea is the central idea in
[Re].

(3) Combining tools from 3-manifold invariants and operator
algebras: We show that the Markov traces used to derive link invariants
and 3-manifold invariants are equivalent to certain traces on towers of
algebras that arise from Wenzl's approach to the Jones basic construction.
This was observed in [W3] for the case of quantum groups of type B using
the explicit form of the R8 matrix. In our approach we have obtained this
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result for any ribbon Hopf algebra. This idea allows one to give an easy
derivation of the framing anomalies for the Reshetikhin�Turaev 3-manifold
invariants.

In the first three sections of this paper we develop these tools in the con-
text of centralizer algebras. Although the main objects have all appeared in
previous work ([Re, T, D, W3]), we have felt it necessary to give a con-
sistent presentation in the context of centralizer algebras since it is not
necessarily clear from the previous work how these techniques apply to our
situation.

Our paper is organized as follows:
In Section 1 we review the path algebra setup. In the second half of

Section 1 we show that if U is a Hopf algebra such that all finite dimen-
sional representations of U are completely reducible and if V is a U-module
then the centralizer algebras Zm=EndU(V }m) can be identified with path
algebras in a natural way.

In Section 2 we begin by reviewing the definitions of quasitriangular
Hopf algebras, ribbon Hopf algebras, and the Drinfel'd�Jimbo quantum
groups. Then, letting U be a quasitriangular Hopf algebra and letting V be
a U-module, we show how to determine explicitly the image of the element
R21 R12 both as an element of the centralizer algebra Zm=EndU(V �m) and
as an element of the corresponding path algebra.

In Section 3 we let U be a ribbon Hopf algebra and let V be a U-module.
Then there is a natural projection e� # EndU(V�V*) onto the invariants in
the U-module V�V*. This projection gives rise to a natural trace on the
centralizer algebras Zm , and it turns out that this trace is always a Markov
trace with respect to the corresponding R-matrix. We are able to determine
explicit formulas for the image of the element e� in the path algebras corre-
sponding to the centralizer algebras Zm .

In Section 4 we apply the results of the first three sections to compute
the irreducible representations, in terms of path algebras, of the centralizer
algebras corresponding to the quantum groups Uh(sl(r+1)) and the
fundamental representation.

In Section 5 we apply the results of the first two sections to compute the
irreducible representations, in terms of path algebras, of the centralizer
algebras corresponding to the quantum groups corresponding to complex
simple Lie algebras of Types B, C, D, and the fundamental representation.
This derivation is only slightly more complex than that for the Type A case
given in Section 4.

We finish in Section 6 by deriving, explicitly, irreducible representations
of the Iwahori�Hecke algebras, the Birman�Wenzl�Murakami algebras,
and the Brauer algebras.

Some further remarks on the results in this paper:

3RIBBON HOPF ALGEBRA APPROACH
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(1) All of the representations obtained in this paper are, in some
sense, analogues of Young's orthogonal representations for the symmetric
group. This is due to the way that we inductively identify the centralizer
algebras Zm with path algebras.

(2) Hoefsmit determined explicit irreducible representations of the
Iwahori�Hecke algebras of Type A in [H]. One of the consequences of our
approach is that the mysterious axial distances which have appeared in the
work of Hoefsmit are completely explained in terms of the values of the
Casimir element of the complex simple Lie algebras of type A acting on
irreducible representations. Similarly, some of the constants appearing in
the formulas for the irreducible representations of the Birman�Wenzl�
Murakami algebras are obtained from the values of the Casimir elements
of the complex simple Lie algebras of type B or C acting on irreducible
representations. In fact, the only other values that are needed in order to
give closed form formulas for the irreducible representations are the ``quan-
tum dimensions'' of the irreducible representations of the corresponding Lie
algebra. These are determined by the Weyl character formula.

(3) Although our formulas for the irreducible representations of the
Birman�Wenzl�Murakami algebra are equivalent to those in [M2] we
have found ours to be more tractable, in particular, it is a trivial matter to
specialize appropriately to give formulas, to our knowledge new ones, for
the irreducible representations of the Brauer algebras [Br, W1].

(4) We have found that it is quite easy to derive the formulas for the
basic construction element (which was obtained by various authors [RW,
Theorem 1.4; GHJ, (2.6.5.4); Su]) by simple path algebra (matrix algebra)
computations and thus we give an alternate and elementary proof of some
of the results in [W1, Section 1]. This result appears in our Theorem (3.12).

(5) In Sections 4 and 5 we give formulas for matrix units in the
centralizer algebras corresponding to quantum groups of types A, B, C,
and D. Similar formulas have been given in [RW]. The formulas we give
here, in the cases of types B, C, and D, are new formulas for the same
matrix units that were given in [RW].

1. PATH ALGEBRAS AND TENSOR POWER
CENTRALIZER ALGEBRAS

Bratteli Diagrams

A Bratteli diagram A is a graph with vertices from a collection of sets
A� m , m�0, and edges that connect vertices in A� m to vertices in A� m+1. We
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assume that the set A� 0 contains a unique vertex denoted <. It is possible
that there are multiple edges connecting any two vertices. We shall call the
vertices shapes. The set A� m is the set of shapes on level m. If * # A� m is con-
nected by an edge to a shape + # A� m+1 we write *�+.

A multiplicity free Bratteli diagram is a Bratteli diagram such that there
is at most one edge connecting any two vertices. Alternatively we could
define a multiplicity free Bratteli diagram to be a ranked poset A which is
ranked by the nonnegative integers and such that there is a unique vertex
on level 0 called <. Identifying the poset A with its Hasse diagram we see
that these two definitions are the same since the poset condition implies
that the resulting Bratteli diagram is multiplicity free. In order to make
sure that we do not make careless statements in this paper.

Assume throughout this paper that all Bratteli diagrams are
multiplicity free.

We make this assumption to simplify our proofs and our notation. See
[GHJ] for the more general setting.

The Bratteli diagrams which we will be most interested in, see Figures 1
and 2, are multiplicity free and arise naturally in the representation theory
of centralizer algebras. Other examples of Bratteli diagrams arise from
differential posets [St] and towers of C* algebras [GHJ]. The Bratteli
diagrams in Figures 1 and 2 are described further in Sections 4 and 5
respectively.

Paths and Tableaux

Let A be a multiplicity free Bratteli diagram and let * # A� m and + # A� n

where m<n. A path from * to + is a sequence of shapes *(i ), m�i�n,

P=(*(m), *(m+1), ..., *(n))

such that *=*(m)�*(m+1)� } } } �*(n)=+ and *(i ) # A� i . In the poset sense
the path P is a saturated chain from * to +. (If we are working in the non-
multiplicity free setting we must distinguish paths which ``travel'' from *(i )

to *(i+1) along different edges.) A tableau T of shape * is a path from <
to *

T=(*(0), *(1), ..., * (m))

such that <=*(0)�*(1)� } } } �*(m)=* and *(i ) # A� i for each 1�i�m.
We write shp(T )=* if T is a tableau of shape *. We say that the length
of T is m if shp(T) # A� m .

5RIBBON HOPF ALGEBRA APPROACH
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Let us make the following (hopefully suggestive) notations.

T* is the set of tableaux of shape *,
Tm is the set of tableaux of length m,
T+

* is the set of paths from * to +,
Tm

* is the set of paths from * to any shape on level m,
Tm

T is the set of paths from shp(T ) to any shape on level m.

Similarly, we define

0* is the set of pairs (S, T ) of paths S, T # T*,
0m is the set of pairs (S, T ) of paths S, T # Tm such that
shp(S )=shp(T ),
0+

* is the set of pairs (S, T ) of paths S, T # T+
* ,

0m
* is the set of pairs (S, T ) of paths S, T # Tm

* such that
shp(S )=shp(T ).

Path Algebras

For each m define an algebra Am over a field k with basis EST ,
(S, T ) # 0m and multiplication given by

ESTEPQ=$TPESQ . (1.1)

Note that A0&k. Every element a # Am can be written in the form

a= :
(S, T ) # 0m

aSTEST ,

for some constants aST # k. In this way we can view each element a # Am as
weighted sum of pairs of paths, where the weight of a pair of paths
(S, T ) # 0m is the constant aST . We shall refer to the collection of algebras
Am as the tower of path algebras corresponding to the Bratteli diagram A.

Each of the algebras Am is isomorphic to a direct sum of matrix algebras

Am& �
* # A� m

Md * (k),

where Md (k) denotes the algebra of d_d matrices with entries from k and
d*=Card(T*). Thus, the irreducible representations of Am are indexed by
the elements of A� m . Furthermore, the dimensions of these irreducible
representations are equal to Card(T*), and thus, the set of tableaux T* is
a natural index set for a basis of the irreducible Am-module indexed by
* # A� m .

6 LEDUC AND RAM
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The Inclusions Am�An , m�n

Given a path T=(*, ..., +) from * to + and a path S=(+, ..., &) from +
to & define

T V S=(*, ..., +, ..., &) (1.2)

to be the concatenation of the two paths (the shape + is not repeated since
that would not produce a path).

Let 0�m<n. Define an inclusion of Am�An as follows: For each
(P, Q) # 0m view EPQ as an element of An by the formula

EPQ= :
T # T

n
*

EP V T, Q V T , where *=shp(P)=shp(Q). (1.3)

In particular we have an inclusion of Am&1 into Am for every m>0. Let
* # A� m and let V* be the irreducible representation of Am corresponding
to *. Then the restriction of V* to Am&1 decomposes as

V* a A m
Am&1

& �
+ # *&

V+,

where *&=[+ # A� m&1 | +�*]. The multiplicity free condition on the
Bratteli diagram guarantees that this decomposition is multiplicity free.

The Centralizer of Am Contained in An , 0�m<n

Define

Z(Am�An)=[a # An | ab=ba for all b # Am].

Let us extend the notation in (1.3) and define

EST= :
P # T*

EP V S, P V T ,

for each pair (S, T ) # 0+
* , * # A� m , + # A� n , the following result appears in

[GHJ, Proposition 2.3.12].

(1.4) Proposition. The elements EST , (S, T) # 0+
* , * # A� m , + # A� n , are a

basis of Z(Am�An).

Proof. First let us show that the elements EST # Z(Am�An). Let # # A� m

and let Q, R # T#. Then

7RIBBON HOPF ALGEBRA APPROACH
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ESTEQR=\ :
P # T*

EP V S, P V T+\ :
U # T #

n
EQ V U, R V U+

=EQ V S, Q V T \ :
U # T#

n
EQ V U, R V U+

=EQ V S, Q V TEQ V T, R V T=EQ V S, R V T .

Similarly one shows that EQREST=EQ V S, R V T , giving that EST # Z(Am�An).
Now we show that if a # Z(Am�An) then a is a linear combination of

EST . Suppose

a= :
(M, N ) # 0 n

aMNEMN # Z(Am�An).

Let * # A� m and let P # T*. Then

aEPP=\ :
(M, N ) # 0 n

aMNEMN+\ :
T # T*

n
EP V T, P V T+

= :
(M, P V T ) # 0n

aM, P V TEM, P V T

EPPa=\ :
S # T*

n
EP V S, P V S+\ :

(M, N ) # 0n

aMNEMN+
= :

(P V S, N ) # 0n

aP V S, N EP V S, N

This implies that aM, P V T=0 unless M=P V S for some S # Tn
* and

aP V S, N=0 unless N=P V T, for some T # Tn
* . Thus, a must be of the form

a= :

(S, T ) # 0n
*

P # Tm

aP V S, P V TEP V S, P V T .

If * # A� m and (P, Q) # 0* then

EPQa=\ :
S # T

n
*

EP V S, Q V S+\ :

(S, T) # 0 n
*

R # Tm

aR V S, R V TER V S, R V T ER V S, R V T+
= :

(S, T) # 0n
*

aQ V S, Q V TEP V S, Q V T ,

aEPQ=\ :

(S, T ) # 0 n
*

R # Tm

aR V S, R V TER V S, R V T+\ :
T # T

n
*

EP V T, Q V T+
= :

(S, T) # 0n
*

aP V S, P V TEP V S, Q V T .

8 LEDUC AND RAM
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This implies that aQ V S, Q V T=aP V S, P V T for all (P, Q) # 0*. Let us denote
this coefficient by aST . Then

a= :

(S, T ) # 0*
m

* # A� m

aST :
P # T*

EP V S, P V T= :

(S, T ) # 0*
m

* # A� m

aSTEST .

Thus, if a # Z(Am�An) then a is a linear combination of EST . The
elements EST , (S, T ) # 0n

m are independent since the elements EMN ,
(M, N ) # 0n are. K

(1.5) Corollary. Let Am , m�0, be the tower of path algebras corre-
sponding to a multiplicity free Bratteli diagram A and suppose that gi # Ai+1 ,
i�1, are elements such that

(1) For each m, the elements g1 , g2 , ..., gm&1 generate Am ,

(2) gigj=gjgi for all i, j such that |i&j |>1.

Then

gm&1= :
(P, Q) # 0 m

m&2

( gm&1)PQ EPQ

for some constants ( gm&1)PQ # k.

Proof. It follows from the relations on the gi that gm&1 commutes with
Am&2. The result then follows from Proposition (1.4). K

(1.6) Corollary. Let Am , m�0, be the tower of path algebras corre-
sponding to a multiplicity free Bratteli diagram A and suppose that gi # Ai+1 ,
i�1, are elements such that

(1) For each m, the elements g1 , g2 , ..., gm&1 generate Am ,

(2) gi gj=gj gi for all i, j such that |i&j |>1.

(3) gigi+1gi=gi+1gigi+1 for all i�1.

Define Dm=gm&1gm&2 } } } g2g1g1 g2 } } } gm&3 gm&2gm&1 # Am . Then

Dm= :
S # T

m
m&1

DSS ESS ,

for some constants DSS # k.

9RIBBON HOPF ALGEBRA APPROACH
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Proof. Using the braid relation (3) for the elements gi we have

gm&2Dm=gm&1gm&2gm&1 gm&3 } } } g1g1 } } } gm&1

=gm&1gm&2gm&3 } } } g1g1 } } } gm&1gm&2gm&1

=Dm gm&2.

It follows that Dm commutes with gm&2. By induction we have that

gjDm=gm&1 } } } gj+2gjDj+2gj+2gj+3 } } } gm&1

=gm&1 } } } gj+2Dj+2gjgj+2gj+3 } } } gm&1

=Dmgj ,

for all 1� j <m&2. Thus, Dm commutes with Am&1. The result now
follows from Proposition (1.4). K

Remark. All of the above results hold even if the Bratteli diagram is not
multiplicity free since the main result Proposition (1.4) holds in that case.
We have stated these results only for the multiplicity free case in order to
simplify our notation. See [GHJ] for the more general setting.

Centralizers of Tensor Power Representations

Let k be a field. We shall assume that k is characteristic zero and
algebraically closed. Let U be a Hopf algebra over k such that all finite
dimensional representations of U are completely reducible. Let V be a finite
dimensional representation of U and define

Zm=EndU (V}m). (1.7)

Let U� be an index set for the finite dimensional irreducible representations
of U. Let Z� m be an index set for the finite dimensional representations of
Zm . It is natural to view Z� m as a subset of U� since, by Schur�Weyl duality,
the (Zm �U)-module V}m has a decomposition

V �m$ �
* # Z� m

Z*�4* ,

where Z* is the irreducible Zm-module indexed by * and 4* is the
irreducible U-module indexed by *.

For 0<m<n there is a natural inclusion Zm�Zn given by

Zm
/� Zn

a [ a� id}(n&m)

10 LEDUC AND RAM
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where a� id}(n&m) acts as a on the first m factors of V }n and as the iden-
tity on the last m&n tensor factors. By convention we shall set Z0=k. If
V is an irreducible U-module then, by Schur's lemma, Z1$k.

The Bratteli Diagram for Tensor Powers of V

Assume that V is an irreducible U-module. Let * # Z� m for some m.
Then there is a branching rule for tensoring by V which describes the
decomposition

4*�V= �
+ # Z� m+1

c+
*V4+ , (1.8)

as U-modules. The multiplicities c&
*V are nonnegative integers. This decom-

position is multiplicity free if all the multiplicities c&
*V�1. Let & # Z� m+1 . Then

the branching rule for inclusion Zm�Zm+1 describes the decomposition

Z&= �
* # Z� m

c&
*VZ*, (1.9)

as Zm-modules. There is a standard reciprocity result for branching rules
([Bou] Chpt. VIII 95 Ex. 17, see also [R] Theorem 5.9 for a simple
proof), that states that the constants c&

*V appearing in (1.8) and (1.9) are
the same.

We define a Bratteli diagram for tensor powers of V, or equivalently, a
Bratteli diagram for the tower of algebras Zm , as follows. Let the elements
of the set Z� m be the vertices on level m. A vertex * # Z� m is connected to a
vertex + # Z� m+1 by c+

*V edges. This Bratteli diagram is multiplicity free if
the corresponding branching rule for tensoring by V is multiplicity free.

Identification of the Centralizer Algebras Zm with Path Algebras

By working inductively, we can view the algebras Zm as path algebras
for the Bratteli diagram for tensor powers of V. Let us denote this Bratteli
diagram by A and denote the corresponding path algebras by Am . Clearly
Z0$k can be identified with the corresponding path algebra A0 . For each
* # U� let 4* denote the irreducible U module corresponding to *. Suppose
that there is an identification of Zm with the path algebra Am so that

V �m= �
* # Z� m

\ �
T # T*

ETT V}m+ ,

is a decomposition of V}m so that the U-submodule ETTV}m$4* . The
element ETT is a U-invariant projection onto the irreducible U-module
ETT V �m.

Given a tableau T=({(0), ..., {(m&1), *) # T* and a shape & # Zm+1 such
that &�* let T V & be the path given by T V &=({(0), ..., {(m&1), *, &). Since

11RIBBON HOPF ALGEBRA APPROACH
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the branching rule for tensoring by V is multiplicity free, there is a unique
decomposition

(ETTV }m)�V= �

&�*
& # Z� m+1

VT V & , (1.10)

into nonisomorphic irreducible U-modules VT V &$4& . Define ET V &, T V & # Zm+1

to be the unique U-invariant projection onto the irreducible VT V & in the
decomposition (1.10). In this way we can define elements ESS for every
S # Tm+1 and we have that

V}(m+1)= �
& # Z� m+1

\ �
S # T &

ESSV }m+ ,

is a decomposition of V}(m+1) into irreducible U-modules ESSV}(m+1)$4& ,
S # T&. This makes an identification of each basis element ESS , S # Tm+1,
of the path algebra Am+1 with a transformation in Zm+1. Now, for each
pair of paths (P, Q) # 0m+1 choose nonzero transformations

EPQ # EPP Zm+1EQQ and EQP # EQQZm+1EPP

and normalize them so that

EPQ EQP=EPP , (1.11)

as transformations in Zm+1. In this way, one can identify the path algebra
Am+1 with the algebra Zm+1. This identification is not canonical, there is
the following freedom in the choice of the normalization of the transforma-
tions EPQ and EQP : For any nonzero constant : # k, one may

replace EPQ and EQP by :EPQ and (1�:) EPQ respectively, (1.12)

to get another solution.
Suppose that an identification of the centralizer algebras Zm with the

path algebras is given. This identification determines a choice of the
irreducible representations of Zm in the following way. If a # Zm , and

a= :
* # Z� m

:
(S, T ) # 0 *

(a)ST EST ,

then the maps

?* : Zm � Md * (k)

a [ ((a)ST)(S, T ) # 0*

12 LEDUC AND RAM
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for * # Z� m , determine a complete set of nonisomorphic irreducible represen-
tations of Zm . In this paper we shall find path algebra formulas for the gen-
erators of tensor power centralizer algebras, Zm , and thus, in essence, we
are finding the irreducible representations.

2. QUASITRIANGULAR HOPF ALGEBRAS, RIBBON HOPF
ALGEBRAS AND QUANTUM GROUPS

If U is a Hopf algebra, we shall denote the coproduct by 2, the counit
by = and the antipode by S. We shall always assume that both the antipode
S and the skew antipode S&1 exist. If a # U and 2(a)=�a a(1) �a(2) , then
the opposite coproduct is defined by 2op(a)=�a a(2)�a(1) . Recall that if
V and W are U modules, then U acts on the tensor product V�W by

a(v�w)=2(a)(v�w)=:
a

a(1) v�a(2)w,

for all a # U, v # V, and w # W.
A quasitriangular Hopf algebra is a pair (U, R) consisting of a Hopf

algebra U, and an invertible element R # U�U such that

R2(a) R&1=2op(a), for all a # U, (2.1)

(2� id )(R)=R13R23 , (2.2)

(id�2)(R)=R13R12 , (2.3)

where, if R=� ai �bi , then

R12=: ai �bi�1, R13=: ai �1�bi , R23=: 1�ai�bi .

Let (U, R) be a quasitriangular Hopf algebra, let R=� ai�bi # U�U,
R21=� bi �ai , and define

u=: S(bi ) ai # U and z=uS(u). (2.4)

Then, we have the following facts:

(S� id )(R)=R&1, (2.5)

(S�S )(R)=R, (2.6)

u&1=:
j

S&1(dj ) cj , where R&1=:
j

cj �dj , (2.7)

13RIBBON HOPF ALGEBRA APPROACH
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uau&1=S 2(a), for all a # U, (2.8)

2(u)=(R21R)&1 (u�u), (2.9)

z is an invertible central element of U, (2.10)

2(z)=(R21 R)&2 (z�z), (2.11)

These facts are proved in [D, Propositions 2.1, 3.1, 3.2, and the remarks
immediately preceding Proposition 3.2]. The proofs are calculations
involving only the definition of a quasitriangular Hopf algebra.

A ribbon Hopf algebra is a triple (U, R, v) consisting of a quasitriangular
Hopf algebra (U, R), and an invertible element v in the center of U, such
that

v2=uS(u), S(v)=v, =(v)=1,
(2.12)

2(v)=(R21R12)&1 (v�v).

It is important to note that the element v&1u # U is grouplike, i.e.,
2(v&1u)=v&1u�v&1u.

Quantum Groups

Let C[[h]] be the ring of formal power series in an indeterminate h. The
notation ex shall always denote the formal exponential

ex= :
k�0

xk

k!
,

and define q=eh�2. For each positive integer n define

[n]=
qn&q&n

q&q&1 , [n]!=[n][n&1] } } } [2][1], [0]!=1,

_n
k&=

[n]!
[k]! [n&k]!

, for 0�k�n.

Let g be a finite dimensional complex semisimple Lie algebra. Let h be
the Cartan subalgebra of g. Let :i # h* be the simple roots and let
Hi=:6

i # h be the simple coroots so that the Cartan matrix is given by

((:i , :6
j ) )=(aij )=A.

Let Uh(g) be the associative algebra with 1 over C[[h]] generated (as
an algebra complete in the h-adic topology) by the space h and the
elements X1 , ..., Xr , Y1 , ..., Yr with relations

14 LEDUC AND RAM
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[a1 , a2]=0, for all a1 , a2 # h,

[a, Xj ]=(:j , a) Xj , [a, Yj]=(&:j , a) Yj , for all a # h,

Xi Yj&YjXi=$ij
e(h�2) H i&e&(h�2) H i

h
,

:
s+t=1&a ji

(&1)t _1&aji

s & X s
i XjX t

i =0, i{j,

:
s+t=1&a ji

(&1)t _1&aji

s & Y s
i YjY t

i =0, i{j.

There is a Hopf algebra structure on Uh(g) given by

2(Xi )=Xi�e(h�4) Hi+e&(h�4) H i �Xi ,

2(Yi )=Yi�e(h�4) Hi+e&(h�4) H i �Yi ,

=(Xi )==(Yi )==(a)=0, for all a # h,

S(Xi )=&eh�2Xi , S(Yi)=&e&h�2Yi , S(a)=&a, for all a # h.

Given the definition of the coproduct 2 one can easily show that the for-
mulas for the counit = and the antipode S are forced by the definitions of
a Hopf algebra.

There is a Z grading on the algebra Uh(g) determined by defining

deg(h)=0, for all h # h,

deg(Ei )=1, deg(Fi )=&1, for all 1�i�r.

Let Uh(g) �0 be the subalgebra of Uh(g) generated by h and the elements
Xi , 1�i�r. Similarly let Uh(g) �0 be the subalgebra generated by h and
the elements Yi , 1�i�r. Let H� 1 , ..., H� r be an orthonormal basis of h and
let t0=�r

i=1 H� i�H� i . The algebra Uh(g) is a quasitriangular Hopf algebra
and the element R can be written in the form, See [D, Sect. 4],

R=exp \h
2

t0++: a+
i �b&

i , (2.13)

where the elements a+
i # Uh(g) �0, b&

i # Uh(g) �0 are homogeneous elements
of degrees �1 and �&1 respectively.

As in the classical case, each finite dimensional Uh(g)-module, M, is a
direct sum of its weight spaces, i.e.,

M= �
* # h*

M*, where M*=[m # M | am=(*, a) m, for all a # h.]
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Every finite dimensional module is completely reducible and the finite
dimensional irreducible modules 4* of Uh(g) are labeled by the dominant
integral weights *. Each of these modules is a highest weight module of
highest weight *, i.e., there is a unique vector m # 4* (up to constant multi-
ples) such that

am=(*, a) m, for all a # h, and

Xim=0, for all i.

All of the facts in this paragraph can be proved, see [D, remarks after
Proposition 4.2], by showing that since H2(g, Ug)=0, the enveloping
algebra Ug of a finite dimensional complex simple Lie algebra g has no
nontrivial deformations as an algebra and thus there must be an algebra
isomorphism Uh(g)&Ug. Note that this is only on the level of algebras,
Uh(g) and Ug are not isomorphic as Hopf algebras. Thus, the representa-
tion theory of Uh(g), provided we are not considering questions of tensor
products of representations, depends only on its structure as an algebra
and is the same as the representation theory of Ug.

Quantum Groups are Ribbon Hopf Algebras

(2.14) Proposition [D]. Let Uh(g) be a Drinfel 'd�Jimbo quantum
group and let \ be the element of h such that (:i , \)=1 for all simple roots
:i . Let u be as given in (2.4). Then

(1) eh\ae&h\=S2(a) for all a # Uh(g).

(2) e&h\u=ue&h\ is a central element in Uh(g).

(3) (e&h\)2=uS(u)=S(u)u.

(4) e&h\u acts in an irreducible representation 4* of Uh(g) of highest
weight * by the constant exp(&(h�2)(*, *+2\) )=q&(*, *+2\).

(5) 2(e&h\u)=(R21R)&1 (e&h\u�e&h\u).

(6) S(e&h\u)=e&h\u.

(7) =(e&h\u)=1.

Proof. (1) Since both S2 and conjugation by eh\ are algebra
homomorphisms it is sufficient to check this on generators. We shall show
how this is done for the generator Xj . It follows from the fact [ \, Xj ]=
\Xj&Xj\=(:j , \) Xj , that

eh\Xje&h\=eh\e&h( \&(:j , \) )Xj=eh(:j , \)Xj=ehXj=q2Xj=S2(Xj ).

(2) This follows from (1) and (2.8), since e&h\uau&1eh\ =
S&2(S2(a))=a.

16 LEDUC AND RAM
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(4) Let H� 1 , ..., H� r be an orthonormal basis of h. For each element
* # h* let *i=(*, H� i ). Note that if m is a weight vector of weight * in a
Uh(g)-module then H� i m=*im. Let 4* be an irreducible Uh(g)-module of
highest weight * and let v* be a highest weight vector in 4* . Since elements
of Uh(g) �0 which are of degree �1 annihilate v* it follows that

uv*=exp \h
2

:
r

i=1

S(H� i ) H� i+ v*

= `
r

i=1
\ :

k�0
\h

2+
k S(H� i )

k H� k
i

k! + v*

= `
r

i=1
\ :

k�0
\&

h
2+

k H� k
i H� k

i

k! + v*

= `
r

i=1
\ :

k�0
\&

h
2+

k *2k
i

k! + v*

=exp \&
h
2

:
r

i=1

*2
i + v*

=exp \&
h
2

(*, *)+ v*

The result follows since e&h\v*=e&h(*, \)v* .

(5) This follows from (2.9), since

2(e&h\u)=2(ue&h\)=2(u) 2(e&h\)=(R21R)&1 (u�u)(e&h\ �e&h\)

=(R21R)&1 (e&h\u�e&h\ u).

(3) and (6) and (7) follow from equality eh\S(u)=e&h\u which is
proved as follows. Clearly, eh\S(u)=S(ue&h\) is a central element of Uh(g),
so it is sufficient to check that both eh\S(u) and ue&h\ act by the same con-
stant on an irreducible representation 4* of Uh(g). But eh\S(u)=S(ue&h\)
acts on the representation 4* in the same way that ue&h\ acts on the
irreducible module 4** which has highest weight &w0* where w0 is the
longest element of the Weyl group. Thus, ue&h\ acts on the irreducible
module 4** by the constant

e&(h�2)(&w0*, &w 0*)e&h(&w 0*, \)=e&(h�2)(*, *+2\)=q&(*, *+\)

since w0\=&\ and the inner product is invariant under the action
of w0 . K

(2.15) Corollary. The Drinfel'd�Jimbo quantum group (Uh(g), R, e&h\u)
is a ribbon Hopf algebra.

17RIBBON HOPF ALGEBRA APPROACH
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Centralizer Algebras of Tensor Power Representations and the R21R12

Matrix

Let (U, R) be a quasitriangular Hopf algebra. Let V be a U-module and
let R # End(V�V ) be the linear transformation induced by the action of
R on V�V. Let

R8 =_R, (2.16)

where _: V�V � V�V is the linear transformation given by _(v�w)=
w�v. For each 1�i�m&1 define

R8 i=1� } } } �1�R8 �1� } } } �1 # End(V }m) (2.17)

where the R8 appears as a transformation on the i th and (i+1)st tensor
factors.

(2.18) Proposition. The transformations R8 i are elements of the cen-
tralizer Zm=EndU(V }m) and satisfy the following relations

R8 iR8 j=R8 j R8 i , |i&j |>1,

R8 i R8 i+1R8 i=R8 i+1R8 iR8 i+1 , 1�i�m&2

Proof. Let (?}2, V�V ) be the representation of U on V�V. Let us
abuse notation and denote the transformation on V�V induced by the
action of 2(a), a # U, also by 2(a). It follows from the equation

R8 ?}2(a)=_R2(a)=_2op(a) R=_2op(a) _&1_R=2(a) R8 =?}2(a) R8 ,

that R8 # EndU(V�V ). It follows that each R8 i # Zm and that the algebra of
transformations generated by the R8 i is contained in the centralizer Zm .

The fact that the R8 i satisfy the first relation follows immediately from the
definition of the R8 i . The second relation is derived from the relations (2.1)
and (2.2) as follows. In the following calculations we abuse notations so
that all factors in the computation are viewed as elements of End(V}3).
We shall let Rij denote the transformation of V}3 induced by the action
of Rij . We shall let _ij denote the transformation of V }3 which transposes
the i th and the j th tensor factors of V}3. Then, using the equation

R12R13 R23=R12(2� id )(R12) by (2.2)

=(2op � id )(R12)R12 by (2.1)

=R23R13R12 ,

18 LEDUC AND RAM
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we have

R8 1R8 2 R8 1=_12R12_23R23_12R12

=_12_23 _12 _12_23R12_23_12 _12R23 _12 R12

=_13R23R13R12 ,

and

R8 2R8 1 R8 2=_23R23_12R12_23 R23

=_23_12 _23 _23_12 R23_12_23 _23R12 _23 R23

=_13R12 R13R23 ,

It follows that R8 1R8 2 R8 1=R8 2R8 1R8 2 . K

The proof of the following proposition is similar to the proof of Lemma
3.3.1 in [W4].

(2.19) Proposition. (1) If (?W , W ) and (?V , V) are two representa-
tions of U, then (?W �?V )(R21R12) # EndU(W�V ).

(2) Let (?, V ) be a representation of U. Then

(?}(m&1)�?)(R21R12)=R8 m&1R8 m&2 } } } R8 1 R8 1 R8 2 } } } R8 m&1 # EndU(V}m).

Proof. (1) The equality R2(a) R&1=2op(a) is equivalent to
R21 2op(a) R&1

21 =2(a) which in turn implies 2op(a)=R&1
21 2(a) R21 . Thus,

we have R&1
21 2(a) R21=R2(a) R&1, which is the same as

R21R2(a)=2(a) R21R.

(2) Using (2.2), we have, by induction,

(2(m&2)� id)(R12)=(2� id}(m&2))(2(m&3) � id)(R)

=(2� id}(m&2))(R1(m&1)R2(m&1) } } } R(m&2)(m&1))

=R1m R2m } } } R(m&1)m . (2.20)

Similarly, we get that (2(m&2)� id)(R21)=Rm(m&1)Rm(m&2) } } } Rm2 Rm1 .
Let _: V}(m&1)�V � V}(m&1) be the transformation which transposes

the tensor factors V}(m&1) and V. As a transformation in the symmetric
group Sm acting on V}m we have _=_1 } } } m=_12_23 } } } _(m&1)m where
_i (i+1) is the permutation in Sm that switches the i th and the (i+1)st ten-
sor factors of V �m. Let Rij denote the endomorphism of V}m induced by
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multiplying by Rij # U}m. Then, viewing (2(m&2)� id)(R) as a transforma-
tion on V}m, we have

_(2(m&2)� id)(R)=_1 } } } m R1mR2mR3m } } } R(m&1)m

=_12_2 } } } mR1m _&1
2 } } } m_2 } } } mR2m_&1

3 } } } m_3 } } } m

_R3m } } } R(m&2)m_&1
(m&1)m_(m&1)mR(m&1)m

=_12_2 } } } mR1m _&1
2 } } } m_23_3 } } } mR2m_&1

3 } } } m

__34 _4 } } } m R3m } } } _(m&1)mR(m&1)m

=_12R12 _23R23_34R34 } } } _(m&1)mR(m&1)m

=R8 1R8 2 } } } R8 m&1.

In a similar fashion one shows that

(2(m&2)� id)(R21) _&1=Rm1Rm2 Rm3 } } } Rm(m&1)_m } } } 1

=R8 m&1R8 m&2 } } } R8 1 ,

where _&1=_m } } } 1=_(m&1)m } } } _23_12 . Thus, it follows that

(2(m&2)� id)(R21R)=R8 m&1R8 m&2 } } } R8 1R8 1R8 2 } } } R8 m&1 . K

(2.21) Proposition. (1) Let (U, R) be a quasitriangular Hopf algebra
and let z=uS(u) be as given in (2.4). The element z acts on each irreducible
representation 4* of U by a scalar. Denote this scalar by z(*). Then the
element (R21R12)2 acts on the irreducible component of 4& of 4*�4+ by the
scalar

z(*) z(+)
z(&)

.

(2) Let (U, R, v) be a ribbon Hopf algebra. The element v acts on each
irreducible representation 4* of U by a scalar. Denote this scalar by v(*).
Then the element R21 R12 acts on the irreducible component 4& of 4* �4+ by
the scalar

v(*) v(+)
v(&)

.

(3) Let Uh(g) be a Drinfel 'd�Jimbo quantum group. The element
R21 R12 acts on the irreducible component 4& of 4*�4+ by the scalar

q(&, &+2\)&(*, *+2\)&(+, ++2\).
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Proof. (1) Since z is in the center of U, the element z acts on each
irreducible representation 4* of U by a scalar. The element (z�z) acts on
4*�4+ by the constant z(*) z(+). Similarly, 2(z) acts on the irreducible
component 4& of 4*�4+ by the scalar z(&). The result now follows from
the identity 2(z)=(R21R)&2 (z�z).

The proof of (2) is entirely similar to the proof of (1). Now, (3) follows
from (2) by noting that the quantum group is a ribbon Hopf algebra with
v=e&h\u and that the element e&h\u acts on each irreducible representa-
tion 4* of Uh(g) by the scalar q&(*, *+2\). K

(2.22) Corollary. (1) Let (U, R) be a quasitriangular Hopf algebra
and denote the constant given by the action of z=uS(u) on an irreducible
representation 4& by z(&). Suppose that V=4| is an irreducible representa-
tion of U. Let Z� 2 be an index set for the irreducible U-modules appearing the
decomposition of V}2. Then R8 i satisfies the equation

`
& # Z� 2

\R8 4
i &

z(|)2

z(&) +=0.

(2) Let (U, R, v) be a ribbon Hopf algebra and denote the constant
given by the action of v on an irreducible representation 4& by v(&). Suppose
that V=4| is an irreducible representation of U. Then R8 i satisfies the
equation

`
& # Z� 2

\R8 2
i &

v(|)2

v(&) +=0.

(3) ([Re], formula (1.38)) Suppose that V=4| is an irreducible
representation of a Drinfel 'd�Jimbo quantum group Uh(g) and that the
Bratteli diagram for tensoring by V is multiplicity free. Then R8 i satisfies the
equation

`
& # Z� 2

(R8 i\q(1�2)(&, &+2\)&(|, |+2\))=0,

where the sign in the factor (R8 i\q(1�2)(&, &+2\)&(|, |+2\)) is negative if 4&

is an irreducible component of the symmetric part of V}2 and positive if 4&

is an irreducible component of the antisymmetric part �2 (V ) of V }2.

Proof. (1) By Proposition (2.19) part (2), R8 2
1=?}2(R21R). Suppose

that V�V=�T # T 2 VT , is a decomposition of V}2 into irreducibles.
Then, by Proposition (2.21), R8 4

1 acts on the irreducible VT by the constant
z(|)2�z(&) if VT$4& . It follows that R8 4

1 is a central element of Z2 and that
the minimal polynomial of R8 4

1 is

`
& # Z� 2

\t&
z(&)

z(|)2+ .
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The proof of (2) is similar to the proof of (1). Let us complete the
proof of (3). It follows from (2) that R8 1 satisfies the polynomial
>& # Z� 2

(R2
1&q(&, &+2\)&2(|, |+2\))=0. Given that R8 1 is a central ele-

ment of EndU h (g ) (V }2) since the Bratteli diagram is multiplicity free, it
follows that the eigenvalues of R8 1 are \q(1�2)(&, &+2\) &(|, |+2\). Since, R8 1

is a deformation of the transposition which switches the two factors of V}2

we know that if we specialize q=1 the eigenvalues of R8 1 are +1 if 4& is
an irreducible component of the symmetric part of V}2 and &1 if 4& is an
irreducible component of the antisymmetric part �2 (V) of V}2. This
observation determines the signs of the eigenvalues of R8 1 . K

Let V=4| be an irreducible representation of U and let Zm=
EndU(V}m). Recall, from Section 1, that there is a natural way of identi-
fying the path algebras corresponding to the Bratteli diagram for tensor
powers of V with the centralizer algebras Zm . As stated in Section 1 we
shall always assume that the Bratteli diagram for tensor powers of V is
multiplicity free. This is probably not necessary for part (1) of the following
corollary but it is certainly necessary for part (2).

(2.23) Corollary. Let (U, R) be a quasitriangular Hopf algebra and let
V=4| be an irreducible representation of U. Identify the path algebras
corresponding to the Bratteli diagram for tensor powers of V with the cen-
tralizer algebras Zm=EndU (V}m) as in Section 1.

(1) Let Dm=R8 m&1R8 m&2 } } } R8 1 R8 1R8 2 } } } R8 m&1 # Zm be the element
given in Proposition (2.19). Then

D2
m= :

T # Tm

(D2
m)TT ETT , where (D2

m)TT=
z({(m&1)) z(|)

z({(m))
,

for each T=({(0), ..., {(m&1), {(m)) # Tm.

(2) Fix T=({(0), ..., {(m&1), {(m)) # Tm and let T $=({(0), ..., {(m&1))
# Tm&1. Let (T $)+ be the set of tableaux that are extensions of T $, i.e. the
set of S=({(0), ..., {(m&1), _(m)) # Tm. If the values (D2

m)SS are all different
as S runs over all elements of (T $)+ then

ETT= `

S{T
S # (T $)+

ET $T $D2
mET $T $&(D2

m)SS ET $T $

(D2
m)TT&(D2

m)SS

Proof. (1) Recall that the identification of the path algebras with the
centralizer algebras Zm is done so that for each T=({(0), ..., {(m&1), {(m))
# Tm we have that ETTV}m is an irreducible U module isomorphic to
4{ (m) . Furthermore, if we let T $=({(0), ..., {(m&1)) # Tm&1 we know that

ET $T $V}m=ET $T $V }(m&1) �V$4{ (m&1) �4|
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and that, by Proposition (2.21), D2
m=(R12R21)2 acts on each irreducible

component 4{ (m) of the tensor product ET $T $V}(m&1)�V by the constant
z({(m&1)) z(|)�z({(m)). It follows that

D2
mV}m=D2

m :
T $ # Tm&1

ET $T $(V }(m&1) �V )

= :
T $ # Tm&1

D2
m(ET $T $V}(m&1)�V )

= :
T $ # Tm&1

(R21R12)2 (ET $T $V }(m&1) �V )

= :
T $ # Tm&1

(R21R )2 \ :
T # (T $)+

ETTV}m+
= :

T # Tm

z({(m&1)) z(|)
z({(m))

ETTV }m.

The result follows as D2
m is determined by its action on V}m.

(2) It follows from part (1) that

ET $T $D2
mET $T $= :

T # (T $)+

z({(m&1)) z(|)
z({(m))

ETT .

If the Bratteli diagram is multiplicity free and the eigenvalues
z({(m&1)) z(|)�z({(m)) are all different, then the result follows by taking the
spectral projection of ET $T $D2

mET $T $ with respect to a particular eigen-
value. K

The following corollaries follow in exactly the same fashion.

(2.24) Corollary. Let (U, R, v) be a ribbon Hopf algebra and let
V=4| be an irreducible representation of U. Identify the path algebras
corresponding to the Bratteli diagram for tensor powers of V with the cen-
tralizer algebras Zm as in Section 1.

(1) Let Dm=R8 m&1R8 m&2 } } } R8 1 R8 1R8 2 } } } R8 m&1 # Zm be the element
given in Proposition (2.19). Then

Dm= :
T # Tm

(Dm)TT ETT , where (Dm)TT=
v({(m&1)) v(|)

v({(m))
,

for T=({(0), ..., {(m&1), {(m)) # Tm.
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(2) Fix T=({(0), ..., {(m&1), {(m)) # Tm and let T $=({(0), ..., {(m&1))
# Tm&1. Let (T $)+ be the set of tableaux that are extensions of T $, i.e. the
set of S=({(0), ..., {(m&1), _(m)) # Tm. If the values (Dm)SS are all different
as S runs over all elements of (T $)+ then

ETT= `

S{T
S # (T $)+

ET $T $DmET $T $&(Dm)SS ET $T $

(Dm)TT&(Dm)SS

(2.25) Corollary [Re, formula (3.19)]. Let (Uh(g), R, e&h\u) be a
Drinfel 'd�Jimbo quantum group and let V=4| be an irreducible repre-
sentation of U. Identifying the path algebras Am corresponding to the
Bratteli diagram for tensor powers of V with the centralizer algebras Zm as
in Section 1.

(1) Let Dm=R8 m&1R8 m&2 } } } R8 1 R8 1R8 2 } } } R8 m&1 # Zm be the element
given in Proposition (2.19). Then

Dm= :
T # Tm

(Dm)TT ETT ,

where (Dm)TT=q({ (m), { (m)+2\)&({ (m&1), { (m&1)+2\) &(|, |+2\) ,

and {(m) and {(m&1) are determined from T by T=({(0), ..., {(m&1), {(m)) # Tm.

(2) Fix T=({(0), ..., {(m&1), {(m)) # Tm and let T $=({(0), ..., {(m&1))
# Tm&1. Let (T $)+ be the set of tableaux that are extensions of T $, i.e. the
set of S=({(0), ..., {(m&1), _(m)) # Tm. If the values (Dm)SS are all different
as S runs over all elements of (T $)+ then

ETT= `

S{T
S # (T $)+

ET $T $DmET $T $&(Dm)SS ET $T $

(Dm)TT&(Dm)SS
.

3. RIBBON HOPF ALGEBRAS, CONDITIONAL EXPECTATIONS,
AND MARKOV TRACES ON CENTRALIZER ALGEBRAS

Let (U, R, v) be a ribbon Hopf algebra. Let W be a finite dimensional
U-module. Let [wi] be a basis of W and let [wi] be the dual basis in W*.
Let ( , ) be the ordinary pairing between W and W* so that (,, w) =
(w, ,)=,(w) for elements , # W* and w # W. Using this notation, the
action of an element b # End(W ) can be given in the form

bwi=:
j

(bwi , w j ) wj .
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The Hopf algebra U acts on W* via the antipode S in the standard way,

a,=:
j

(a,, wj ) w j=:
j

(,, S(a) wj) w j,

for all a # U and , # W*. We shall often use the relation (a,, wj) =
(,, S(a) wj ) , which follows from this definition. The material in this
section is very much motivated by [W1, Section 1] and [W3].

Quantum Trace and Quantum Dimension

Define the quantum trace of an element b # EndU (W ) by

trq(b)=Tr(v&1ub)=:
i

(v&1ubwi , wi) ,

where the sum is over the basis Wi of W. If a, b # EndU(W ) then both a
and b commute with v&1u; thus, trq(ab)=trq(ba) for all a, b # EndU (W ).
Define the quantum dimension of the U-module W to be

dimq(W )=trq(id),

where id denotes the identity operator on W.

(3.1) Lemma. Let W� be the subset of U� that indexes the irreducible
modules 4+ appearing in the decomposition of W. As a trace on EndU (W ),
the quantum trace trq has weights given by

wt(+)=dimq(4+), + # W� ,

where 4+ are the irreducible U-modules appearing in the decomposition of W.

Proof. By the double centralizer theory we know that as EndU (W)�U

modules, W$�* Z*�4* , where Z* are irreducible modules for
EndU (W ) and 4* are irreducible modules for U. By taking traces on both
sides of this isomorphism we have

trq(b)=Tr(v&1ub)= :
* # W�

'*(b) /*(v&1u)= :
* # W�

'*(b) dimq(4*),

where '* is the irreducible character of EndU (W ) on the module Z* and
/* is the irreducible character of the irreducible U-module 4* . Thus the
trace of a minimal idempotent p+ in the minimal ideal corresponding to +
is

wt(+)=trq( p+)= :
* # W�

'*( p+) dimq(4*)= :
* # W�

$*+ dimq(4*)=dimq(4+). K
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The Projection onto the Invariants

Let V be a U-module and let V* be the dual module to V. Let [ei ] be
a basis of V and let [ei ] be the dual basis in V*. Define

e� : V�V* � V�V*
(3.2)

x�, [ ( (dimq(V ))&1 ,, v&1ux) :
i

ei �ei

Where (,, v&1ux)=,(v&1ux) denotes the evaluation of the functional
, # V* at the element v&1ux # V. It follows from (a) and (b) of the follow-
ing proposition that

(1) e� # EndU(V�V*), and

(2) e� is the U-invariant projection onto the invariants in V�V*.

(3.3) Proposition. (a) For every g # U we have ge� =e� g==(g)e� ,
(b) e� 2=e� .

Proof. (a) Let g # U, x # V, , # V*. Then, by direct computation,

ge� (x�,)=(dimq(V ))&1 (,, v&1ux) g \:
i

ei�ei+
=(dimq(V ))&1 (,, v&1ux) 2(g) \:

i

ei�ei+
=(dimq(V ))&1 (,, v&1ux) :

g, i

g(1)ei�g(2) ei

=(dimq(V ))&1 (,, v&1ux) :
i, j, k

:
g

( g(1) ei , ej )

_( g(2) ei, ek)(ej �ek)

=(dimq(V ))&1 (,, v&1ux) :
i, j, k

:
g

( g(1) ei , e j )

_(ei, S(g(2))ek)(ej �ek)

=(dimq(V ))&1 (,, v&1ux) :
j, k

:
g

( g(1) S(g(2)) ek , e j )(ej �ek)

=(dimq(V ))&1(,, v&1ux) :
j, k

(=(g) ek , e j ) ej�ek

=(dimq(V ))&1 =(g)(,, v&1ux) :
j

ej�e j

==(g) e� (x�,),
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where we are using the identity �g g(1)S(g(2))==(g) which follows from
the definition of the antipode in a Hopf algebra. On the other hand, since
v is in the center of U and u&1xu=S&2(x) for all x # U,

e� g(x�,)=e� \:
g

g(1)x�g(2),+
=(dimq(V ))&1 :

g, i

( g(2) ,, v&1ug(1)x) ei�ei

=(dimq(V ))&1 :
g, i

(,, uu&1 S(g(2)) v&1ug(1) x) ei �ei

=(dimq(V ))&1 :
g, i

(,, v&1uS&1(g (2)) g(1) x) ei�ei

=(dimq(V ))&1 :
i

(,, v&1u=(g)x) ei�ei

==(g) e� (x�,),

where we are using the identity �g S&1(g(2)) g(1)==(g) which follows from
the definition of the skew antipode in a Hopf algebra.

(b) This follows from the following easy computation.

e� 2(x�,)=(dimq(V ))&1 e� \(,, v&1ux) :
i

ei�ei+
=(dimq(V ))&2 (,, v&1ux) :

i

(ei, v&1uei ) :
j

ej�e j

=(dimq(V ))&2 (,, v&1ux) dimq(V ) :
j

ej�e j

=e� (x�,). K

The Conditional Expectation

Let V be a U-module and let V* be the dual U-module to V. For
each m,

let Zm=EndU(V }m) and define Cm+1=EndU(V }(m&1) �V*). (3.4)

Let [ws] be a basis of V}(m&1) and let [ws] be a dual basis in
(V}(m&1))*. Let [ei] be a basis of V and let [ei] be a dual basis in V*.
Then define an operator =m&1: Zm � End(V }(m&1)) by

=m&1(b) wj=(dimq(V ))&1 :
k, p

( (id�v&1u) b(wj�ek), w p�ek) wp . (3.5)
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for each b # Zm . The map =m&1 is called the conditional expectation. Let

e� m=id� id� } } } � id�e� # Cm+1. (3.6)

(3.7) Proposition.

(a) e� mbe� m==m&1(b) e� m=e� m=m&1(b) for all b # Zm .

(b) =m&1(a1ba2)=a1=m&1(b)a2 , for all a1 , a2 # Zm&1 and b # Zm . In
particular, =m&1(a)=a for all a # Zm&1.

(c) =m&1(b) # Zm&1 for all b # Zm .

Proof. Let W=V}(m&1). Let [wt] and [ei ] be bases of W and V
respectively and let [ws] and [ei] be dual bases in W* and V* respec-
tively.

(a) Then

e� mbe� m(ws �ei �e j )

=(dimq(V ))&1 (e j, v&1uei ) :
k

e� m b(ws�ek�ek)

=(dimq(V ))&1 (e j, v&1uei) :
k, t, l

(b(ws�ek), wt�el ) e� m(wt �el �ek)

=(dimq(V ))&2 (e j, v&1uei ) :
k, t, l, p

(b(ws�ek), wt �el )(ek, v&1uel )

_(wt �ep�e p)

=(dimq(V ))&2 (e j, v&1uei) :
k, t, p

( (id�v&1u) b(ws�ek), wt �ek)

_(wt �ep�e p)

==m&1(b) e� m(ws�ei�e j ).

The remaining assertion follows since e� m commutes with elements of
End(W )�End(W�V�V*).

(b) The action of =m&1(a1 ba2) on a basis element wj of W satisfies

=m&1(a1ba2)wj=(dimq(V ))&1 :
k, p

( (id�v&1u)(a1� id)

_b(a2� id)(wj�ek), w p�ek) wp

=(dimq(V ))&1 a1 :
k, p

( (id�v&1u) b(a2wj�ek), w p�ek) wp

=a1 =m&1(b) a2wj .
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(c) Let x # U and let x� # End(W ) be the endomorphism of W deter-
mined by the action of x on W. Then, since b # EndU(W�V ), x� e� mbe� m=
e� mx� be� m=e� mbx� e� m=e� m be� mx� . This implies that x� =m&1(b)e� m==m&1(b) x� e� m .
Since the map End(W ) � End(W�V�V*) given by a [ ae� m is injective,
it follows that x� =m&1(b)==m&1(b)x� . K

Markov Traces and Framing Anomalies

Assume that V is an irreducible U-module and let Zm=EndU(V}m).
Define traces mtm : Zm � k by

mtm(b)=
trq(b)

dimq(V )m . (3.8)

The traces mtm are called Markov traces.
Let R8 be the element of Z2 given in (2.16). Since V is irreducible it

follows from Schur's lemma that Z1$k. Thus, =1 : Z2 � k and

=1(R8 )=
:

dimq(V )
, (3.9)

for some constant : # k. The constant : is called the framing anomaly of R8 .

(3.10) Theorem.

(a) If a # Zm&1 then mtm&1(a)=mtm(a). In particular mtm(1)=1 for
all m.

(b) For each b # Zm , mtm(b)=mtm&1(=m&1(b)).

(c) For each a # Zm&1 , mtm(aR8 m&1)=dimq(V )&1 : mtm&1(a), where
: is the framing anomaly of R8 .

(d) The Markov traces mtm have weights given by

wtm(*)=
dimq(4*)
dimq(V )m , * # Z� m ,

where 4* denotes the irreducible U-module corresponding to *.

Proof. (a) By the definition of the Markov trace and the fact that
v&1u is a grouplike element of U,

mtm(a)=
Trq((v&1u�v&1u)(a� id))

dimq(V )m ,
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by the definition of the quantum trace on V}m. Since traces on tensor
products of modules are the products of the individual traces we may write

mtm(a)=
Tr(v&1ua) Tr(v&1u id)

dimq(V )m ,

where the first Tr in the numerator is on V}(m&1) and the second is on V.
Then, by the definition of quantum dimension, we get

mtm(a)=
Tr(v&1ua) dimq(V )

dimq(V )m =mtm&1(a).

In particular, mtm(1)=trq(id}m)�dimq(V )m=1.

(b) Let W=V}(m&1). Let [ws] be a basis of W and let [ws] be a
dual basis in W*. Let [ei ] be a basis of V and let [ei ] be a dual basis of
V*. Let b # Zm . Since the element v&1u is a grouplike element of U we have

dimq(V ) trq(=m&1(b))=dimq(V ) :
s

(v&1u=m&1(b) ws , ws)

= :
s, k

( (v&1u� id)(id�v&1u) b(ws �ek), ws�ek)

= :
s, k

( (v&1u�v&1u) b(ws �ek), ws�ek)

= :
s, k

(v&1ub(ws �ek), ws�ek)

=trq(b),

where the quantum trace on the left hand side of equation is the quantum
trace on V}(m&1) and the quantum trace on the right side of the equation
is the quantum trace on V}m. The statement follows by converting to
Markov traces.

(c) Let e� m be the element of EndU(V}m�V*) given by e� m=
id}(m&1) �e� , where e� is as in (3.2). Then, since a # EndU(V}(m&1)),
a commutes with e� m and

e� maR8 m&1e� m=ae� m R8 m&1e� m

=a(id}(m&1)� (e� R8 e� ))

=a(id}(m&1)�=1(R8 )e� )

=dimq(V)&1 :ae� m .
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It follows that =m&1(aR8 m&1)=:a and thus that

mtm(aR8 m&1)=mtm&1(=m&1(aR8 m&1))=dimq(V)&1 : mtm&1(a).

(d) This follows immediately from Lemma (3.1) and the definition of
the Markov traces. K

(3.11) Proposition. (1) Let U=(U, R, v) be a ribbon Hopf algebra
and let V=4* be a irreducible U-module. Since v is a central element of U,
the element v acts by a constant v(*) on V=4* . Then the framing anomaly
: of R8 is given by :=v(*)&1.

(2) Let g be a finite dimensional complex simple Lie algebra and let
U=Uh(g) be the corresponding Drinfel 'd�Jimbo quantum group. Suppose
that V=4* is an irreducible representation of highest weight *. Then the
framing anomaly : of R8 is given by :=q(*, *+2\).

Proof. (1) By Proposition (3.7)(a) it is enough to show that
e� 2R8 e� 2=(dimq(V ))&1 v(*)&1 e� 2 as elements of EndU(V�V�V*). Let [ei]
be a basis of V and let [ei ] be a dual basis in V*. It follows from the
identities (2.5), (2.6) and (2.7) that if R=�i ai}bi and (S� id)(R)=
R&1=� j cj�dj , then

:
i

biS 2(ai )=:
j

djS(cj )=:
j

S&1(dj )cj=u&1.

Let x, y # V and let , # V*. Then,

e� 2R8 e� 2(x�y�,)=(dimq(V))&1 (,, v&1uy) e� 2R8 :
k

x�ek�ek

=(dimq(V))&1 (,, v&1uy) e� 2 :
k, i

biek �aix�ek

=(dimq(V))&2 (,, v&1uy) :
k, i, l

(ek, v&1uaix) biek

�el �el

=(dimq(V))&2 (,, v&1uy) :
i, l

(biv&1uaix)�el�el

=(dimq(V))&2 (,, v&1uy) :
i, l

biS2(ai ) v&1ux�el�el

=(dimq(V))&2 (,, v&1uy) :
l

u&1v&1ux�el�el

=(dimq(V))&1 e� 2(v&1x�y�,)

=(dimq(V))&1 v(*)&1 e� 2(x�y�,).
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(2) follows immediately, since, by Proposition (2.14), the element
v=e&hpu acts on an irreducible module 4* of highest weight * by the
constant q&(*, *+2\). K

A Path Algebra Formula for e� m
Assume that V is an irreducible U module and that the branching rule

for tensoring by V is multiplicity free. Let Zm=EndU(V}m) and Cm+1=
EndU(V}m�V*) as in (3.4). Identify the centralizer algebras Zk ,
1�k�m, with path algebras as in Section 1. It can be shown that if the
branching rule for tensoring by V is multiplicity free, then the branching
rule for tensoring by V* is also multiplicity free. It follows that the
sequence of centralizer algebras Z0� } } } �Zm&1�Zm�Cm+1 can be
identified with a sequence of path algebras corresponding to a multiplicity
free Bratteli diagram. Let us review the notation.

(1) U� is a set indexing the irreducible representations of U.

(2) Z� k is a set indexing the irreducible representations of the
algebra Zk .

(3) By the double centralizer theory Z� k is naturally identified with
the subset of U� containing the indexes of representations that appear in the
decomposition of V}k into irreducible U-modules.

(4) Let C� m+1 be an index set for the irreducible representations of
Cm+1 which is naturally identified with the subset of U� containing indexes
of representations that appear in the decomposition of V}m�V* into
irreducible U-modules.

The notation for paths and tableaux will be as in Section 1. Let mtm

denote the Markov trace on Zm and let wtm denote the weights of the
Markov trace.

(3.12) Theorem. (a) Viewing Z� m&1 and C� m+1 as sets with elements in
U� , we have Z� m&1�C� m+1.

(b) One can identify the centralizer algebra Cm+1 with a path algebra
in such way that e� m is given by the formula

e� m= :
(S, T ) # 0m+1

m&1

(e� m)ST EST ,

where, if S=(_(m&1), _(m), _(m+1)), and T=(_(m&1), {(m), _(m+1)), then

(e� m)ST={
- wtm({ (m)) wtm(_(m))

wtm&1(_(m&1))
, if _(m+1)=_(m&1) as elements of U� ,

0, otherwise.
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Proof. Step 1. Let M$=(+(0), ..., +(m)) # Tm and let M"=(+(0), ..., +(m&1)).
Then

=m&1(EM$M$)=
wtm(+(m))

wtm&1(+(m&1))
EM"M"{0.

Proof. Suppose that

=m&1(EM$M$)= :
(U", R") # 0 m&1

aU"R"EU"R" # Zm&1 ,

for some constants aU"R" # k. Suppose that (S", T") # 0m&1 and that
S"=(_(0), ..., _(m&1)). Then

mtm(ES"T"EM$M$)=mtm(ES"S"ES"T"EM$M$)

=mtm(ES"T"EM$M$ES"S")

=$S"M"$T"M"wtm(+(m)).

On the other hand, by Proposition (3.7b)

mtm&1(=m&1(ES"T"EM$M$))=mtm&1(ES"T"=m&1(EM$M$))

=mtm&1(ES"T"=m&1(EM$M$) ES"S")

=mtm&1(ES"T"aS"T"ET"S"ES"S")

=aS"T"wtm&1(_(m&1)).

By Proposition (3.7a), these two expressions are equal. Since the weights of
the Markov trace are nonzero, it follows that

aS"T"={
wtm(+(m))

wtm&1(+(m&1))
, if S"=T"=M",

0, otherwise,

and, if S"=T"=M" then aS"T"{0. The formula for =m&1(EM$M$)
follows. K

Step 2. It follows from Proposition (1.4) that e� m has the form

e� m= :
(S, T ) # 0m+1

m&1

(e� m)ST EST , (3.13)

since, by its definition, e� m commutes with all elements of Zm&1.
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Step 3. Let (S, T) # 0m+1. Suppose S=(_ (0), ..., _(m+1)) and define
S$=(_(0), ..., _(m)) and S"=(_ (0), ..., _(m&1)). Define T $ and T" analo-
gously. Let M$=(+(0), ..., +(m)) # T m and let M"=(+(0), ..., +(m&1)). Then, if
(e� m)SS{0, then

(e� m)SS=
wtm(_ (m))

wtm&1(_ (m&1))
, (3.14)

and

(e� m)SM (e� m)MS=
wtm(+(m)) wtm(_(m))

wtm&1(_(m&1))2 . (3.15)

Proof. It follows from the path algebra definitions and (3.13) that

ESSe� mEM$M$e� mETT=$S"M"$M"T" :
M

(e� m)SM (e� m)MT EST ,

where the sum is over all tableaux M such that M=(+(0), ..., +(m), _ (m+1)).
Since the Bratteli diagram is multiplicity free there is at most one such M.
Thus

ESS e� mEM$M$e� m ETT=$S"M"$M"T"(e� m)SM (e� m)MT EST . (3.16)

Let S and M" be as above. Then

ESS=m&1(EM$M$) e� m ETT=
wtm(+(m))

wtm&1(+(m&1))
ESSEM"M"e� mETT

=
wtm(+ (m))

wtm&1(+(m&1))
$S"M"$M"T"(e� m)ST EST . (3.17)

Since e� mEM$M$e� m==m&1(EM$M$)e� m , it follows that (3.16) and (3.17) are
equal. Assuming that S=T and that S"=M", i.e. _(i )=+(i ), for all
i�m&1, this gives the following equation.

(e� m)SM (e� m)MS=
wtm(+(m))

wtm&1(+ (m&1))
(e� m)SS . (3.18)

The formula in (3.14) follows by setting M=S. The formula in (3.15) now
follows from (3.14) and (3.18) (recall that +(m&1)=_(m&1)). K

Step 4. For each * # Z� m&1 there exist S such that (S, S ) # 0m+1
* and

(e� m)SS{0.

Proof. Fix * # Z� m&1 and let M be such that +(m&1)=*. Assume that
(e� m)SS=0 for all S such that (S, S ) # 0m+1

* . Then (e� m)SM (e� m)MS=0 for
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all S. So, by (3.16), ESS e� mEM$M$e� mESS=0 for all S. This implies that
=m&1(EM$M$)=0 which is a contradiction to Step 1. K

Step 5. If S is such that (e� m)SS{0 then _ (m&1)=_(m+1).

Proof. Let S # Tm+1 be a tableau such that (e� m)SS{0. Then, as
U-modules, 4_ (m+1)$ESSb(V}m�V*) for all b # Cm+1 such that ESSb{0.
In particular, since (e� m)SS{0,

ESSe� mES$S$e� m=cS$ESS ES"S"e� m{0

and we have that

4_ (m+1)$ESS e� mES$S$e� m(V}m�V*)

=cS$ ESSES"S" e� m(V}m �V*)

$ESS (ES"S"V}(m&1)�e� m(V�V*)).

Since ES"S"V}(m&1)$4_ (m&1) and em(V�V*)$4< it follows that 4_ (m+1)

is isomorphic to an irreducible component in the tensor product
4_ (m&1) �4< . Thus 4_ (m+1)$4_ (m&1) , and so _(m+1)=_(m&1) as elements
of U� . K

Let us complete the proof of the theorem. Part (a) follows from step 5.
Recall from Section 1 that there is some freedom in the choice of the matrix
units ESM and EMS when M{S. This freedom allows us to normalize the
matrix units ESM and EMS in any way such that (3.15) holds. In particular,
we can choose that normalization so that the formula is as in the theorem.
The fact that (e� m)SM=0 if _(m&1){_(m+1) follows from steps 3, 4,
and 5. K

4. CENTRALIZER ALGEBRAS OF TENSOR POWERS
OF V|1, TYPE Ar

We shall use the notations for partitions given in [Mac]. In particular,
a partition * of the positive integer m, denoted * |&m, is a decreasing
sequence *=(*1�*2� } } } �*t�0) of non-negative integers such that
*1+ } } } +*t=m. The length l(*) is the largest j such that *j>0. The
Ferrers diagram of * is the left-justified array of boxes with *i boxes in the
ith row. For example,

(5, 3, 3, 1)=
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is a partition of length 4. Given two partitions *, + we write *�+ if *i�+i

for all i. We have that *�+ if the Ferrers diagram of * is a subset of the
Ferrers diagram of +.

The Bratteli diagram given in Fig. 1 is called the Young lattice. The
shapes * # Y� m of Y which are on level m are the partitions of m;

Y� m=[* |&m].

A partition * # Y� m is connected by an edge to a partition + # Y� m+1 if + can
be obtained by adding a box to *. The Young lattice Y is a multiplicity free
Bratteli diagram.

Classically, a standard tableau of shape * |&m is a filling of the boxes in
the Ferrers diagram of * with the numbers 1, 2, ..., m such that the numbers
are increasing left to right in the rows and increasing down the columns.
Each tableau T # T* in the Bratteli diagram Y can be identified in a
natural way with a standard tableau of shape *. Let P be a standard
tableau of shape * and let T=({(0), {(1), ..., {(m)) # T* be the tableau such
that {(i ) is the partition given by the set of boxes of P which contain the
numbers 1, 2, ..., i. One easily shows that this identification is a bijection
between the standard tableaux P of shape * and the tableaux T # T*.

The r-truncated Young lattice is the Bratteli diagram Y(r) which is given
by the sets

Y� m(r)=[* |&m | l(*)�r].

A partition * # Y� m(r) is connected by an edge to a partition + # Y� m+1(r) if
*�+, or equivalently, if + can be obtained by adding a box to *. The
r-truncated Young lattice can be obtained by removing all the partitions
with more than r rows (and the edges connected to them) from the full
Young lattice Y. It is easy to see that tableaux in the r-truncated Young
lattice correspond to standard tableaux of shapes * # Y� (r), in exactly the
same way as tableaux in Y correspond to standard tableaux. Note also that
the full Young lattice can be viewed as the limit of the r-truncated Young
lattices as r goes to infinity.

For the remainder of this section let us fix r, and, unless
otherwise specified, all paths and tableaux shall be from the
Bratteli diagram Y(r).

Fix S=(_(m&2), _(m&1), _(m)) # Tm
m&2 . Suppose that _(m&1) is obtained

by adding a box to the k th row of _(m&2) and that _ (m) is obtained by
adding a box to the l th row of _(m&1). Now suppose that T=(_(m&2),
{(m&1), _(m)) is such that (S, T ) # 0m

m&2. If k=l then we must have that

36 LEDUC AND RAM



File: 607J 160237 . By:XX . Date:23:12:96 . Time:09:20 LOP8M. V8.0. Page 01:01
Codes: 1813 Signs: 727 . Length: 45 pic 0 pts, 190 mm

Figure 1

{(m&1)=_ (m&1). If k{l then either {(m&1)=_(m&1), or {(m&1) is the shape
obtained by adding a box to the l th row of _(m&2). Thus,

there is at most one T{S such that (S, T ) # 0m
m&2. (4.1)

The Centralizer Algebras Zm

For the remainder of this section fix U=Uh(sl(r+1)). Let =1 , ..., =r+1 be
an orthonormal basis of Rr+1. Then h*, the simple roots, :i , the fundamen-
tal weights, |i , and the element 2\ are given by

h*={=*1 =1+ } } } +*r+1=r+1, } :
r+1

i=1

*i=0= ,

:i==i&=i+1, 1�i�r,

|i==1+ } } } +=i&
i

r+1
:

r+1

i=1

=j , 1�i�r,

2\=:
i

2\i=i=r=1+(r&2) =2+ } } } &(r&2) =r&r=r+1.

The finite dimensional irreducible modules 4* of Uh(sl(r+1)) are indexed
by the dominant integral weights,

U� ={*=*1 =1+ } } } +*r=r&
|*|

r+1
:

r+1

j=1

=j , } *i # Z, *1� } } } �*r�0= ,
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where |*|=*1+ } } } +*r . It is sometimes helpful to identify each dominant
integral weight * with the partition *=(*1 , ..., *r). Note that all partitions
in U� have at most r rows. It will also be helpful to note that, if
*=*1=1+ } } } +*r=r&(|*|�(r+1)) � j =j # U� then

(*, *+2\)= :
r

i=1

*2
i &

|*| 2

r+1
+ :

r

i=1

2\i*i . (4.2)

Let V=4|1
the irreducible U-module of highest weight |1 . The decom-

position rule for tensoring by V is given by

4*�V$ �
+ # *+

4+ , (4.3)

where the sum is over all partitions + # U� that are gotten by adding a box
to the partition *. It follows that the Bratteli diagram for tensor powers of
V=V|1 is the r-truncated Young lattice Y(r).

(4.4) Proposition. Let V=V |1 be the irreducible U=Uh(sl(r+1))-
module indexed by the fundamental weight |1 . The matrices R8 i # EndU(V}m)
satisfy the relations

R8 iR8 j=R8 jR8 i , |i&j |>1,

R8 iR8 i+1R8 i=R8 i+1 R8 iR8 i+1 , 1�i�m&2,

(q(1�r+1)R8 i&q)(q(1�r+1)R8 i+q&1)=0, 1�i�m&1.

Proof. The first two relations follow from Proposition (2.18). From
(4.3), we have

V�V$4(12) �4(2)=42|1
�4|2

.

Use (4.2) to show that

(|2 , |2+2\)=2&(4�(r+1))+2\1+2\2=2r&4�(r+1),

(2|1 , 2|1+2\)=4&(4�(r+1))+4\1=4+2r&4�(r+1),

(|1 , |1+2\)=1&(1�(r+1))+2\1=r+1&1�(r+1).

It follows that

q(1�2)(|2 , | 2+2\)&(|1 , |1+2\)=q&1&(1�(r+1)),

q(1�2)(2| 1 , 2| 1+2\)&(|1 , |1+2\)=q1&(1�(r+1)).
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The result now follows from Proposition (2.22) part (3) and the standard
fact that 4(12) is antisymmetric part of V}2 and 4(2) is the symmetric part
of V}2. K

A Path Algebra Formula for R8 i

Let Y=Y(r) be the Bratteli diagram for tensor powers of V=V| 1.
Identify the centralizer algebras Zm=EndU (V}m) with the path algebras
corresponding to the Bratteli diagram Y(r). Recall that the path algebras
have a natural basis EST , (S, T ) # 0m of matrix units.

For each tableau S=(_(0), ..., _(m)) # Tm define

{i (S )=(_(i ), _(i )+2\) &(_ (i&1), _(i&1)+2\)&(|1 , |1+2\). (4.5)

Let (S, T ) be a pair of tableaux

S=(_(0), ..., _(i&1), _(i ), _(i+1), ..., _(m)),

and

T=(_(0), ..., _(i&1), {(i ), _(i+1), ..., _(m)),

in Tm such that S and T are the same except possibly at the shape at level
i&1. In other words the pair (S, T) # 0i+1

i&1. Define

hi (S, T )=
1
2

({i+1(S )&{i (T))+
1

r+1
. (4.6)

These constants are defined so that, if Dm=R8 m&1 R8 m&2 } } } R8 2 R8 1R8 1 R8 2 } } }
R8 m&2R8 m&1, then

Dm= :
S # T m

(Dm)SS ESS , where (Dm)SS=q{ m(S ),

and

q&2h m&1(S, T )=q&(2�r+1)(D&1
m )SS (Dm&1)TT .

The first of these formulas is a consequence of Corollary (2.25).

(4.7) Proposition. Let S=(_(0), ..., _(m)) be a tableau in the Bratteli
diagram Y(r). Then

{m(S )=2(_ (m&1)
k &k+1)+

&2m+2
r+1

,

hm&1(S, S )=_ (m)
k &_ (m&1)

l &k+l,
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where _(m) is obtained by adding a box to the kth row of _(m&1) and _(m&1)

is obtained by adding a box to the lth row of _(m&2).

Proof. Let S=(_(0), ..., _ (m) be a tableau in the Bratteli diagram Y(r).
Then, since _(m) differs from _(m&1) by adding a box in the k th row we
have

_(m&1)= :
r

i=1

_ (m&1)
i =i&

m&1
r+1

:
r+1

j=1

=j ,

and

_(m)=(_ (m&1)
k +1) =k+ :

i{k
1�i�r

_ (m)
i =i&

m
r+1

:
r+1

j=1

=j .

Using (4.2) to compute {m(S ) we get

{m(S )=(_(m), _ (m)+2\)&(_(m&1), _(m&1)+2\) &(=1 , =1+2\)

=\ :
i{k

(_ (m&1)
i )2++(_ (m&1)

k +1)2&
m2

r+1

+\ :
i{k

2_ (m&1)
i \i++2(_ (m&1)

k +1) \k

&\ :
i{k

(_ (m&1)
i )2+&(_ (m&1)

k )2+
(m&1)2

r+1

&\ :
i{k

2_ (m&1)
i \i+&2_ (m&1)

k \k&1+
1

r+1
&2\1

=2_ (m&1)
k +2( \k&\1)+

&2m+2
r+1

.

The formula for {m(S ) follows since 2( \k&\1)=(r&(2k&1))&(r&1)=
&2k&2=2(&k+1).

The formula for hm&1(S, S ) now follows easily since

hm&1(S, S )=
1
2

({m(S )&{m&1(S ))+
1

r+1

=(_ (m&1)
k &k+1)+

&m+1
r+1

&(_ (m&2)
l &l+1)

&
&(m&1)+1

r+1
+

1
r+1

=_ (m)
k &k&_ (m&1)

l +l&
1

r+1
+

1
r+1

. K

40 LEDUC AND RAM



File: 607J 160241 . By:CV . Date:09:01:97 . Time:08:26 LOP8M. V8.0. Page 01:01
Codes: 2941 Signs: 1186 . Length: 45 pic 0 pts, 190 mm

Remark. In terms of standard tableaux, the value of hi (S, S ) is the
``axial distance'' between the box containing i and the box containing i+1.

i

i+1

(4.8) Theorem. One can choose the identification (Section 1) of the cen-
tralizer algebras Zm with the path algebras corresponding to the Bratteli
diagram Y(r) so that the matrices R8 i are given by the formula

R8 i= :
(S, T )=0i+1

i&1

(R8 i )ST EST ,

where for each S # Tm we have

q1�(r+1)(R8 i )SS=
qh i (S, S )

[h i (S, S )]

and for each pair (S, T) # 0i+1
i&1 such that S{T we have

q1�(r+1)(R8 i )ST=
- [hi (S, S )&1][hi (S, S )+1]

[|hi (S, S )|]

Proof. Since R8 i # Zi=EndU (V}(i+1)) commutes with all elements of
Zi&1=EndU(V }(i&1)) it follows from Corollary (1.5) that

R8 i= :
(S, T ) # 0m

m&2

(R8 i )ST EST ,

for some constants (R8 i )ST . In view of the imbeddings Z0�Z1� } } } �Zm ,
it is sufficient to show that the formulas for R8 i hold for i=m&1.

By definition Dm=R8 m&1R8 m&2 } } } R8 2 R8 1 R8 1R8 2 } } } R8 m&2 R8 m&1 and it
follows that

R8 &1
m&1=D&1

m R8 m&1Dm&1 .

The relation (q1�(r+1)R8 i&q)(q1�(r+1)R8 i+q&1)=0 from Proposition (4.4)
can be written in the form q1�(r+1)R8 m&1&q&1�(r+1)R8 &1

m&1=(q&q&1) or,
equivalently, in the form

q1�(r+1)R8 m&1&q&2�(r+1)D&1
m q1�(r+1)R8 m&1Dm&1=(q&q&1). (4.9)
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Let S # Tm and view (4.9) as an equation in the path algebra. Since the
matrices Dm and Dm&1 are diagonal, taking the ESS-entry of this equation
yields

q1�(r+1)(R8 m&1)SS&q&2�(r+1)(D&1
m )SS q1�(r+1)(R8 m&1)SS (Dm&1)SS

=(q&q&1)$SS ,

or, equivalently,

(1&q&2�(r+1)(D&1
m )SS (Dm&1)SS ) q1�(r+1) (R8 m&1)SS=(q&q&1), (4.10)

Since the right hand side of this equation is nonzero, the left hand side is
also nonzero and we may write

q1�(r+1)(R8 m&1)SS=
(q&q&1) $SS

1&q&2�(r+1)(D&1
m )SS (Dm&1)SS

.

Plugging in the following

q&q&1

1&q&2�(r+1)(D&1
m )SS (Dm&1)SS

=
q&q&1

1&q&2hm&1 (S, S )

=
qh m&1 (S, S )(q&q&1)

qh m&1 (S, S )&q&h m&1 (S, S )

=
qh m&1 (S, S )

[hm&1(S, S )]

gives the first formula in Theorem (4.8).
Now let us prove the second formula in Theorem (4.8). Let S # T m

m&2

and suppose that T # T m
m&2 is such that (S, T) # 0m

m&2 and T{S. By the
remark in (4.1), T is unique. It follows that

q2�(r+1)(R8 2
m&1)SS=q2�(r+1)((R8 m&1)SS)2+q2�(r+1)(R8 m&1)ST (R8 m&1)TS .

(4.11)

On the other hand, the relation (q1�(r+1)R8 m&1&q)(q1�(r+1)R8 m&1+q&1)=0
from Proposition (4.4) can be written in the form q2�(r+1)R8 2

m&1&1=
q1�(r+1)R8 m&1(q&q&1), giving that

q2�(r+1)(R8 2
m&1)SS=(q&q&1) q1�(r+1)(R8 m&1)SS+1 (4.12)
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Equating (4.11) and (4.12) and using the formula for q1�(r+1)(R8 m&1)SS

gives

(q1�(r+1)R8 m&1)ST (q1�(r+1)R8 m&1)TS

=1+(q&q&1)(q1�(r+1)R8 m&1)SS&(q1�(r+1)R8 m&1)2
SS

=(q&(q1�(r+1)R8 m&1)SS )(q&1+(q1�(r+1)R8 m&1)SS )

=\q&
qh i (S, S )

[hi (S, S )]+\q&1+
qh i (S, S )

[h i (S, S )]+
=

q(qh i (S, S )&q&h i (S, S ))&qh i (S, S )(q&q&1)
qh i (S, S )&q&h i (S, S )

}
q&1(qh i (S, S )&q&h i (S, S ))+qh i (S, S )(q&q&1)

qh i (S, S)&q&h i (S, S )

=
(qh i (S, S )+1&q&h i (S, S)&1)(q&h i (S, S )+1&qh i (S, S )&1)

qh i(S, S )&q&h i (S, S )

=
[hi (S, S )+1][hi (S, S )&1]

[h i (S, S )]2

It follows from the remarks at the end of Section 1 that we can choose
the normalization of the elements EST so that (R8 m&1)ST and (R8 m&1)TS are
as given in the theorem. K

Remark. If (S, T ) # 0i+1
i&1 such that S{T then hi (S, S )=&hi (T, T ).

Thus, the formula for q1�(r+1)(R8 m&1)ST given in Theorem (4.8) is actually
symmetric in S and T.

Matrix Units

Given a tableau T=({(0), ..., {(m)) # Tm let T $ denote the tableau
T $=({(0), ..., {(m&1)) # Tm&1. Let (T $)+ denote the set of all extensions
of T $ ;

(T $)+=[S # Tm | S$=T $].

Given tableaux S=(_(0), ..., _(m)) and T=({(0), ..., {(m)) in Tm let (R8 m&1)ST

be the constant given by Theorem (4.8) in the case that
((_(m&2), _ (m&1), _(m)), ({(m&2), {(m&1), {(m))) # 0m

m&2 and let (R8 m&1)ST=0
otherwise.

(4.13) Lemma. Let T $=({(0), ..., {(m&1)) # Tm&1 and let (T $)+ be the
set of extensions of T $. Then the values {m(S ) are all different as S ranges
over all elements of (T $)+.
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Proof. Let S=({(0), ..., {(m&1), _(m)) # (T $)+. By the previous lemma,
{m(S )=2({ (m&1)

k &k+1&(m&1)�(r+1)) if _(m) is obtained by adding a
box to the k th row of {(m&1). Since

{ (m&1)
1 � } } } �{ (m&1)

k � } } } �{ (m&1)
r

it follows that

{ (m&1)
1 &

m&1
r+1

> } } } >{ (m&1)
k &k+1&

m&1
r+1

> } } } >{ (m&1)
r &r+1&

m&1
r+1

. K

(4.14) Theorem [RW]. The matrix units EST # Zm , (S, T) # 0m are
given in terms of the R8 i , 1�i�m&1, inductively, by the following formulas.

(1) Let T # Tm. Then ETT=>S # T m, S{T, S$=T $ (ET $T $ R8 m&1ET $T $&
(R8 m&1)SS ET $T $)�((R8 m&1)TT&(R8 m&1)SS

(2) Let (S, T ) # 0m. If shp(S$)=shp(T $) then EST=ES$T $ ETT where
ETT is given by (1).

(3) Let (S, T ) # 0m. If shp(S$){shp(T $) then

EST=
1

(R8 m&1)MN
ES$M$R8 m&1EN$T $ETT ,

where M, N # Tm are of the form M=(+(0), ..., +(m&2), shp(S$), shp(S )) and
N=(+(0), ..., +(m&2), shp(T $), shp(S)).

Proof. (1) Let T $ # Tm&1. It follows from the formula for R8 m&1 that

ET $T $R8 m&1ET $T $= :
S # (T $)+

(R8 m&1)SS ESS .

The identity (1) follows if we show that the values (R8 m&1)SS are all dif-
ferent as S runs over all tableaux in (T $)+. Since hm&1(S, S )=
1
2 ({m(S ) & {m&1(S )) + 1�(r + 1) = 1

2 ({m(S ) & {m&1(T $)) + 1�(r + 1) it
follows that the values (R8 m&1)SS are all different as S runs over all
tableaux in (T $)+ if and only if the values {m(S ) are all different as S runs
over all tableaux in (T $)+. Statement (1) now follows from Lemma (4.13).

(2) follows from the definition (1.3) of the embedding of path
algebras.
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(3) We must show two things:

(a) For each possible choice of M and N the formula determines
EST .

(b) There exist tableaux M and N in Tm of the form M=(+(0), ...,
+(m&2), shp(S$), shp(S )) and N=(+(0), ..., +(m&2), shp(T $), shp(S )).

Suppose that M and N are given. Since shp(S$){shp(T $), it follows from
(4.1) that M and N are the unique extensions of M$ and N$ respectively,
such that shp(M)=shp(N )=shp(S ). By Theorem (4.8) we know that the
values (R8 m&1)MN are nonzero. It follows that

1
(R8 m&1)MN

ES$M$R8 m&1EN$T $=
1

(R8 m&1)MN
ES$M$ :

(U, V ) # 0m

(R8 m&1)UV EUVEN$T $

=
1

(R8 m&1)MN
ES$M$ (R8 m&1)MN ENM EN$T $=EST ,

proving (a). To see that (b) is true we reason as follows. Suppose that
shp(S$) is a partition that is the same as shp(S ) except that there is a box
missing from the k th row. Suppose that shp(T $) is a partition that is the
same as shp(S ) except that there is a box missing from the l th row. Since
shp(S$){shp(T $) we know that k{l. Then there is a unique partition
+(m&2) that is the same as shp(S ) except that there is a box missing from
the l th row and a box missing from the k th row. The partition +(m&2) is
uniquely determined by S and T, and M and N can be determined by fixing
some tableau (+(0), ..., +(m&2)) # Tm&2 of shape +(m&2). K

(4.15) Corollary. The centralizer Zm=EndU (V}m) is generated by
the matrices R8 i , 1�i�m&1.

Proof. It follows from the identification of the centralizer algebras Zm

with the path algebras that the matrix units EST , (S, T ) # 0m span the cen-
tralizer algebras Zm . In view of Theorem (4.14), the matrix units EST ,
(S, T ) # 0m can be written in terms of the R8 i matrices. The statement
follows. K

5. CENTRALIZER ALGEBRAS OF TENSOR POWERS OF
V=4|1

, TYPE Br

The Bratteli diagram is given in Fig. 2. The shapes * # B� m of B which are
on level m are the partitions of m&2k, 0�k�wm�2x;

B� m=[* |&m&2k, 0�k�wm�2x].
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A partition * # B� m is connected by an edge to a partition + # B� m+1 if + can
be obtained from * by adding a box to * or by removing a box from *. The
diagram B is a multiplicity free Bratteli diagram. The tableaux T # T* in
the Bratteli diagram B are called up-down tableaux since they are sequences
of partitions in which each partition differs from the previous one by either
adding or removing a box.

The r-truncated Bratteli diagram B(r) is given by the sets

B� m(r)=[* |&m&2k, 0�k�wm�2x | l(*)�r].

A partition * # B� m(r) is connected by an edge to a partition + # B� m+1(r) if
+ can be obtained by adding or removing a box from *. The Bratteli
diagram B(r) is a multiplicity free Bratteli diagram. It can be obtained from
the Bratteli diagram B by removing all the partitions with more than r
rows (and the edges connected to them). It is easy to see that tableaux in
the r-truncated Bratteli diagram B(r) are up-down tableaux that never pass
through a partition of length greater than r. The Bratteli diagram B can be
viewed as the limit of the Bratteli diagrams B(r), as r goes to infinity.

For the remainder of this section let us fix r, and, unless
otherwise specified, all paths and tableaux shall be from the
Bratteli diagram B(r).

(5.1) Lemma. Fix S=(_m&2, _(m&1), _(m)) # T m
m&2 and assume that

_(m&2){_ (m) as partitions. Then there is at most one T{S such that
(S, T ) # 0m

m&2.

Proof. Given a partition * let us write +=*+=k (resp. +=*&=k) to
denote that + is obtained by adding (resp. removing) a box to (resp. from)
the k th row of *. Fix S=(_m&2, _ (m&1), _(m)) # Tm

m&2 and assume that
_(m&2){_ (m) as partitions. Suppose that _(m&1)=_(m&2)+$1 =k and that
_(m)=_(m&1)+$2=l , where $1 and $2 are either \1. If T exists then
T=(_m&2, {(m&1), _ (m)) is given by {(m&1)=_ (m&2)+$2=l and _(m)=
{(m&1)+$1 =k . The path T exists when { (m&1)=_(m&2)+$2=l is a partition
and not equal to _(m&1). K

The Centralizer Algebras Zm

For the remainder of this section fix g to be a complex simple Lie
algebra of type Br , Cr or Dr and let U=Uh(g) be the corresponding quan-
tum group. We shall use the standard notations ([Bou], pp. 252�258) for
the root systems of Types Br , Cr , and Dr so that =1 , ..., =r are an orthonor-
mal basis of h* and the element 2\ is given by

2\= :
r

k=1

2\k=j= :
r

k=1

( y&2k+1)=k , (5.2)
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where

2r, in Type Br ,

y={2r+1, in Type Cr , (5.3)

2r&1, in Type Dr .

The finite dimensional irreducible representations of Uh(g) which appear as
irreducible summands in the tensor powers of V=4| 1

of Uh(g) are indexed
by the dominant integral weights in the set

U� =[*=*1=1+ } } } +*r=r , | *i # Z, *1� } } } �*r�0].

We shall identify each dominant integral weight * # U� with the partition
*=(*1 , ..., *r). It will be helpful to note that, if *=*1=1+ } } } +*r=r # U�
then

(*, *+2\) = :
r

i=1

*2
i + :

r

i=1

2\i*i . (5.4)

Let V=4| 1
the irreducible U-module of highest weight |1 . In type Cr ,

the decomposition rule for tensoring by V is given by

4*�V$ �
+ # *\

4+ , (5.5)

where the sum is over all partitions + # U� that are gotten by adding or
removing a box from the partition *. It follows that in Type Cr the Bratteli
diagram for tensor powers of V=4| 1

is given by B(r). In Types Br and Dr

the tensor product rule given in (5.5) holds whenever |*|<r&1 but must
be modified slightly when |*|�r&1. In order to avoid this complication

(5.6) For the remainder of this section, we shall assume
that in Types Br and Dr we have that r>>0; in particular,
m<r and i<r whenever the constants m and i are used,

The Elements E8 i

The weights of the Markov traces on Zm=EndU(V }m) are given by

wtm(*)=
dimq 4*

(dimq(V ))m , * # U� . (5.7)
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where the quantum dimension of V=4| 1
is given by

[2r]+1, in Type Br ,

dimq(V )={[2r+1]&1, in Type Cr ,

[2r&1]+1, in Type Dr .

Since all automorphisms of the Dynkin diagram corresponding to g fix
the node corresponding to the fundamental weight |1 it follows that
V=4|1

$V*=(4|1
)*. As in (3.2), define e� # EndU(V�V ) to be the

U-invariant projection onto the invariants, 4(0)�V�V. Define

E8 i=$ dimq(V )(id� } } } � id�e8 � id� } } } � id) # EndU (V}m),

where the factor e� appears as a transformation on the i th and the (i+1)st
tensor factors and

$={1,
&1,

in Types Br and Dr ,
in Type Cr .

(5.8)

By Theorem (3.12), there is a natural identification of the centralizer
algebras Zm with the path algebras corresponding to the Bratteli diagram
B(r) so that

E8 m&1= :
(S, T ) # 0m

m&1

(E8 m&1)ST EST

where, if S=(_(m&2), _(m&1), _(m)) and T=(_(m&2), {(m&1), _(m)), then

(E8 m&1)ST={
$ - dimq(4_ (m&1) ) } dimq (4{ (m&1))

dimq(4_ (m&2))
if _(m&2)=_ (m),

(5.9)

0 otherwise.

where we have replaced the weights of the Markov trace by q-dimensions.

(5.10) Proposition. Let V=4| 1
be the irreducible U=Uh(g)-module

indexed by the fundamental weight |1 . The matrices R8 i and E8 i in
EndU (V}m) satisfy the relations

(a) R8 i R8 j=R8 jR8 i , |i&j |>1,

(b) R8 i R8 i+1R8 i=R8 i+1R8 iR8 i+1 , 1�i�m&2,

(c) (R8 i&z&1)(R8 i&q)(R8 i+q&1)=0, 1�i�m&1.

(d) E8 i R8 \1
i&1E8 i=z\1E8 i and E8 iR8 \1

i+1E8 i=z\1E8 i ,

(e) R8 i&R8 &1
i =(q&q&1)(1&E8 i ),

(f) E8 iR8 \1
i =R8 \1

i E8 i=z�1E8 i ,
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where

q2r, in Type Br ,

z=$q y={&q2r+1, in Type Cr ,

q2r&1, in Type Dr ,

Proof. (a) and (b) follow from Proposition (2.18). From (5.5), we have

V�V$4< �4(1 2) �4(2)=40�42|1
�4|2

.

Use (5.4) to show that
(0, 0+2\)=0, (=1+=2 , =1+=2+2\)=2y&2,

(2=1 , 2=1+2\) =2y+2, and (=1 , =1+2\) =y.

It follows that

q(1�2)(0, 0+2\) &(= 1 , =1+2\)=q&y ,

q(1�2)(=1+=2 , =1+=2+2\) &(=1 , =1+2\)=q&1,

and q(1�2)(2=1 , 2=1+2\)&(= 1 , =1+2\) =q.

Relation (c) now follows from Corollary (2.22); the signs of the eigenvalues
of R8 i are determined by which summands are in �2 (V ),

�2 (V )={4(1 2) ,
4(12) �40 ,

in Types Br and Dr ,
in Type Cr .

(d) follows from Proposition (3.11) part (2) and the fact that
q(=1 , = 1+2\)=q y.

Let us prove (e). By Corollary (2.22), R8 1 acts by the eigenvalue z&1 on
the irreducible summand 40 in V�V. Thus, it follows from relation (c)
that

E8 i=$ dimq(V )
(R8 i&q)(R8 i+q&1)

(z&1&q)(z&1+q&1)
.

Using this formula and the relation

$ dimq(V )=
z&z&1

q&q&1+1,

it can be easily checked that relation (c) is equivalent to relation (e).
The relation R8 1E8 1=zE8 1 , follows by noting that, except for the constant

$ dimq(V ), E8 i is the projection onto the invariants 40�V�V and that R8 i

acts by constant z&1 on 40 . All of the relations in (f) follow silimlarly. K
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A Path Algebra Formula for R8 i

Let B(r) be the Bratteli diagram for tensor powers of V=4|1
(with the

assumptions in (5.6)). Identify the centralizer algebras Zm=EndU(V}m)
with the path algebras corresponding to the Bratteli diagram B(r). Recall
that the path algebras have a natural basis EST , (S, T) # 0m of matrix
units.

For each tableau S=(_(0), ..., _(m)) # Tm define

{i (S )=(_(i ), _(i )+2\) &(_ (i&1), _(i&1)+2\)&(|1 , |1+2\). (5.11)

Let (S, T ) be a pair of tableaux

S=(_(0), ..., _(i&1), _(i ), _(i+1), ..., _(m)),

and

T=(_(0), ..., _(i&1), {(i ), _(i+1), ..., _(m)),

in Tm such that S and T are the same except possibly at the shape at
level i. In other words the pair (S, T ) # 0i+1

i&1 . Define

hi (S, T)= 1
2 ({ i+1(S )&{i (T )). (5.12)

These constants are defined so that, if Dm=R8 m&1 R8 m&2 } } } R8 2 R8 1R8 1 R8 2 } } }
R8 m&2R8 m&1, then

Dm= :
S # Tm

(Dm)SS ESS , where (Dm)SS=q{m (S ) ,

and

q&2h m&1(S, T )=(D&1
m )SS (Dm&1)TT .

The first of these formulas is a consequence of Corollary (2.25).

(5.13) Proposition. Let y be as given in (5.3).

(a) Let S=(_(0), ..., _(m)) be a tableau in the Bratteli diagram B(r).
Then

{m(S )={2(_ (m&1)
k &k+1),

2(&_ (m&1)
k &y+k),

when _ (m)=_(m&1)+=k ,
when _ (m)=_(m&1)&=k .
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(b) Let S=(_(m&2), _ (m&1), _(m)) and T=(_(m&2), {(m&1), _(m)) be
such that (S, T ) # 0m

m&2. Then

hm&1(S, T )={
\(_ (m)

k &k&{(m&1)
l +l ),

if {(m&1)={(m&2)\=l and _(m)=_ (m&1)\=k ,
\({ (m&1)

l &l+_ (m)
k &k+y+1),

if _ (m)=_ (m&1)\=k and {(m&1)={(m&2)�=l .

Proof. Let S=(_(0), ..., _(m)) be a tableau in the Bratteli diagram B(r).
Then, since _(m) differs from _(m&1) by either adding or removing a box in
the k th row,

_(m&1)= :
r

j=1

_ (m&1)
j =j and _(m)=(_ (m&1)

k \1) =k+ :

j{k
1� j �r

_ (m&1)
j =j .

Using (5.4) to compute {m(S ) we get

{m(S )=(_(m), _ (m)+2\)&(_(m&1), _(m&1)+2\) &(=1 , =1+2\)

=\ :
j{k

(_ (m&1)
j )2++(_ (m&1)

k \1)2+\ :
j{k

2_ (m&1)
j \j +

+2(_ (m&1)
k \1) \k&\ :

j{k

(_ (m&1)
j )2+&(_ (m&1)

k )2

&\ :
j{k

2_ (m&1)
j \j+&2_ (m&1)

k \k&1&2\1

=\2_ (m&1)
k +2(\\k&\1).

The formula for {m(S ) follows since \k&\1=( y&2k+1)&( y&1)=
2(&k+1) and &\k&\1=&( y&2k+1)&( y&1)=2(&y+k).

(b) The formulas for hm&1(S, T ) now follow from the definition of
hm&1 and the formula for {m in (a). K

(5.14) Theorem. One can choose the identification (Section 1) of the
centralizer algebras Zm with the path algebras corresponding to the Bratteli
diagram B(r) (with the assumption in (5.6)) so that the matrices R8 i are given
by the formula

R8 i= :
(S, T ) # 0 i+1

i&1

(R8 i )ST EST ,
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where, for each S=(_(i&1), _(i ), _(i+1)),

(R8 i )SS={
qh i (S, S )

[hi (S, S )]
,

qh i (S, S )

[hi (S, S )] \1&
$ dimq(4_ (i ))
dimq(4_ (i&1))+ ,

if _(i&1){_(i+1),

if _ (i&1)=_ (i+1),

and for each pair (S, T)=((_(i&1), _(i ), _(i+1)), (_(i&1), {(i ), _(i+1))) # 0i+1
i&1

such that S{T,

(R8 i )ST={
- [hi (S, S )&1][hi (S, S )+1]

[ |hi (S, S )|]
,

&
qh i (S, T )

[h i (S, T )]
$ - dimq(4_ (i )) } dimq(4{ (i ))

dimq(4_ (i&1))
,

if _ (i&1){_(i+1),

if _(i&1)=_(i+1),

where hi (S, T ) and $ are given by (5.11) and (5.12) respectively.

Proof. Since R8 i # Zi=EndU (V}(i+1)) commutes with all elements of
Zi&1=EndU (V}(i&1)) it follows from Proposition Corollary (1.5) that

R8 i= :
(S, T ) # 0 i+1

i&1

(R8 i )ST EST ,

for some constants (R8 i )ST . In view of the imbeddings Z0�Z1� } } } �Zm ,
it is sufficient to show that the formulas for R8 i hold for i=m&1.

By definition Dm=R8 m&1R8 m&2 } } } R8 2 R8 1 R8 1R8 2 } } } R8 m&2 R8 m&1 and it
follows that R8 &1

m&1=D&1
m R8 m&1Dm&1. Thus, we may rewrite the relation

(5.10e) in the form

R8 m&1&D&1
m R8 m&1Dm&1=(q&q&1)(1&E8 m&1). (5.15)

Let (S, T ) # 0m and view (5.15) as an equation in the path algebra. Since
the matrices Dm and Dm&1 are diagonal, taking the EST-entry of this
equation yields

(R8 m&1)ST&(D&1
m )SS (R8 m&1)ST (Dm&1)TT=(q&q&1)($ST&(E8 m&1)ST ),

or, equivalently,

(1&(D&1
m )SS (Dm&1)TT )(R8 m&1)ST =(q&q&1)($ST&(E8 m&1)ST ), (5.16)

Hence,

(R8 m&1)ST=
(q&q&1)($ST&(E8 m&1)ST )

1&(D&1
m )SS (Dm&1)TT

, if 1&(D&1
m )SS (Dm&1)TT{0.
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Plugging in the following

q&q&1

1&(D&1
m )SS (Dm&1)TT

=
q&q&1

1&q&2hm&1 (S, T )

=
qh m&1 (S, T ) (q&q&1)

qhm&1(S, T)&q&hm&1(S, T )

=
qhm&1 (S, T )

[hm&1 (S, T )]

we get

(R8 m&1)ST=
qhm&1 (S, T )

[hm&1(S, T )]
($ST&(E8 m&1)ST),

if 1&(D&1
m )SS (Dm&1)TT{0.

All except the last of the formulas in Theorem (5.14) now follow
immediately from (5.9) and the following lemma.

(5.17) Lemma. Let (S, T ) # 0m
m&2 m. If S=T or if _(m&2){_(m) then

1&(D&1
m )SS (Dm&1)TT{0.

Proof. Consider the equation (5.16).

Case 1. If S{T and _(m&2)=_(m) then $ST=0 and (E8 i )ST{0 since
the weights wtk(+) are all nonzero. Thus the right hand side of (5.16) is
nonzero. This implies that 1&(D&1

m )SS (Dm&1)TT is nonzero.

Case 2. If S=T and _(m&2){_(m) then (E8 i )ST=0 and $ST{0.
Thus the right hand side of (5.16) is nonzero. This implies that
1&(D&1

m )SS (Dm&1)TT is nonzero.

Case 3. Suppose S=T and _(m&2)=_ (m). Clearly 1&(D&1
m )SS

(Dm&1)SS is nonzero if and only if hm(S, S ){0. Then, by Proposition
(5.13), there is some k such that hm (S, S )=\(2_ (m&1)

k &2k+y ). This
value is nonzero in Types Cr and Dr since y is odd, and is nonzero in
type Br since, by the assumption in (5.6), 2k< y and _ (m&1)

k �0. K

Now let us prove the last formula in Theorem (5.14). Let S # Tm
m&2

and suppose that T # Tm
m&2 is such that (S, T ) # 0m

m&2 and T{S. By
Lemma (5.1), T is unique. It follows that

(R8 2
m&1)SS= :

L # Tm

(R8 m&1)SL (R8 m&1)LS

=((R8 m&1)SS )2+(R8 m&1)ST (R8 m&1)TS (5.18)
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On the other hand

R8 2
m&1=R8 m&1(R8 m&1&R8 &1

m&1)

=R8 m&1(q&q&1)(1&E8 m&1)

=(q&q&1)(R8 m&1&z&1E8 m&1),

since E8 m&1R8 m&1=z&1E8 m&1 . Since _(m&2){_(m), it follows that
(E8 m&1)SS=0 and thus that

(R8 2
m&1)SS=(q&q&1)(R8 m&1)SS+1. (5.19)

Equating (5.18) and (5.19) and using the formula for (R8 m&1)SS gives

(R8 m&1)ST (R8 m&1)TS=(q&q&1)(R8 m&1)SS+1&(R8 2
m&1)SS

=
[hm&1 (S, S )&1][hm&1 (S, S )+1]

[hm&1 (S, S )]2 ,

exactly as in the proof of Theorem (4.8). It follows from the remarks at the
end of Section 1 that we can choose the normalization of the elements EST

so that (R8 m&1)ST and (R8 m&1)TS are as given in the theorem. K

Matrix Units

Given a tableau T=({(0), ..., {(m)) # Tm let T $ denote the tableau
T $=({(0), ..., {(m&1)) # Tm&1). Let (T $)+ denote the set of all extensions
of T $ ;

(T $)+=[S # Tm | S$=T $].

Given tableaux S=(_(0), ..., _(m)) and T=({(0), ..., {(m)) in Tm let (R8 m&1)ST be
the constant given by Theorem (5.14) in the case that ((_(m&2), _(m&1), _(m)),
({(m&2), {(m&1), {(m))) # 0m

m&2 and let (R8 m&1)ST=0 otherwise.

(5.20) Lemma. Let T $=({(0), ..., {(m&1)) # Tm&1 and let (T $)+ be the
set of extensions of T $. Then the values {m(S ) are different as S ranges over
all elements of (T $)+.

Proof. Let S=({(0), ..., {(m&1), _(m)) # (T $)+. By Proposition (5.13),

{m(S )=2({ (m&1)
k &k+1) or {m(S )=2(&{ (m&1)

k &y+k),
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for some positive integer k. Let l be the largest value of k such that
S # (T $)+. By the assumption in (5.6), 2l&1<y. Since

{ (m&1)
1 � } } } �{ (m&1)

k � } } } �{ (m&1)
l , and

&{ (m&1)
l � } } } �&{ (m&1)

k � } } } �&{ (m&1)
1 ,

it follows that

{ (m&1)
1 > } } } >{ (m&1)

k &k+1> } } } >{ (m&1)
l &l+1, and

&{ (m&1)
l &y+l> } } } >&{ (m&1)

k &y+k> } } } >&{ (m&1)
1 &y+1.

Since { (m&1)
l �&{ (m&1)

l and &l+1>&y+l, it follows that

{ (m&1)
l &l+1>&{ (m&1)

l &y+l.

The result follows. K

The proofs of the following results are essentially the same as the proofs
of Theorem (4.14) and Corollary (4.15).

(5.21) Theorem. The matrix units EST # Zm , (S, T ) # 0m are given in
terms of the R8 i , 1�i�m&1, inductively, by the following formulas.

(1) Let T # Tm. Then ETT=>S # Tm , S{T, S$=T $ (ET $T $ R8 m&1ET $T $&
(R8 m&1)SS ET $T $)�((R8 m&1)TT&(R8 m&1)SS )

(2) Let (S, T ) # 0m. If shp(S$)=shp(T $) then EST=ES$T $ ETT where
ETT is given by (1).

(3) Let (S, T ) # 0m. If shp(S$){shp(T $) then

EST=
1

(R8 m&1)MN
ES$M$R8 m&1EN$T $ETT ,

where M and N are tableaux in Tm of the form M=(+ (0), ..., +(m&2),
shp(S$), shp(S )) and N=(+(0), ..., +(m&2), shp(T $), shp(S )).

(5.22) Corollary. The centralizer Zm=EndU (V}m) is generated by
the matrices R8 i , 1�i�m&1.

6. IRREDUCIBLE REPRESENTATIONS OF THE IWAHORI�HECKE
ALGEBRAS OF TYPE A, THE BIRMAN�WENZL ALGEBRAS

AND THE BRAUER ALGEBRAS

The Iwahori�Hecke Algebras of Type A, Hm(q2)

The Iwahori�Hecke algebra of type A, denoted Hm(q2), is the algebra
generated over C(q) by 1, g1 , ..., gm&1 subject to the relations
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(B1) gi gi+1gi=gi+1gigi+1 ,

(B2) gi gj=gjgi if |i&j |�2,

(IH) g2
i =(q&q&1) gi+1.

The Iwahori�Hecke algebra Hm(q) is often defined as the algebra generated
over C(q) by 1, g$1 , ..., g$m&1 subject to the relations

(B1) g$i g$i+1g$i=g$i+1g$ig$i+1 ,

(B2) g$i g$j=g$jg$i if |i&j |�2,

(IH) ( g$i )
2=(q&1) g$i+q.

One can pass from one presentation to the other by setting gi=g$i �q.

(6.1) Corollary. Let U be the Drinfel 'd�Jimbo quantum group
Uh(sl(r+1)) and let V=4|1

be the irreducible U-module indexed by the
fundamental weight |1 . The centralizer Zm=EndU (V }m) is a quotient of
the Iwahori�Hecke algebra of type A, Hm(q2).

Proof. This follows immediately from Proposition (4.4) and Corollary
(4.15). K

In fact, the classical Schur�Weyl duality gives that Zm is isomorphic to
Hm(q2) if U=Uh(sl(r+1)), r�m.

The Young lattice Y is the Bratteli diagram given in Fig. 1. The shapes
of Y which are on level m are the partitions of m;

Y� m=[* |&m].

A partition * # Y� m is connected by an edge to a partition + # Y� m+1 if + can
be obtained by adding a box to *. Each tableau T # T* in the Bratteli
diagram Y can be identified in a natural way with a standard tableau of
shape *.

Let S=(_(0), ..., _(m)) be a standard tableau, i.e. a tableau in the Bratteli
diagram Y. Define

hm&1 (S, S )=_ (m)
k &_ (m&1)

l &k+l, (6.2)

when _(m) is obtained by adding a box to the k th row of _(m&1) and _(m&1)

is obtained by adding a box to the l th row of _(m&2).
The following result follows immediately from Theorem (4.8) and

Corollary (6.1).
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(6.3) Theorem. There is an identification of the Iwahori�Hecke algebras
Hm(q2) with the path algebras corresponding to the Young lattice so that the
generators gi are given by the formula

gi= :
(S, T ) # 0i+1

i&1

( gi )ST EST ,

where for each S # Tm

( gi )SS=
qh i (S, S )

[hi (S, S )]
,

and for each pair (S, T) # 0i+1
i&1 such that S{T we have

( gi )ST=
- [hi (S, S )&1][hi (S, S )+1]

[|h i (S, S )|]
,

where hi (S, S ) is defined by (6.2).

The following corollaries are immediate consequences of the path
algebra setup.

(6.4) Corollary. ([H], [W2]) For each * # Y� m let d*=Card(T*) be
the number of standard tableaux of shape *. Define representations

?* : Hm(q2) � Md* (C(q))

a [ (?*(a)ST )(S, T ) # 0*

of Hm(q2) by the following formulas:
For each S # T*,

?*( gi )SS=
qh i (S, S )

[hi (S, S )]

and for each pair (S, T ) # 0* such that S{T,

?*( gi )ST={
- [hi (S, S)&1][hi (S, S )+1]

[|hi (S, S)|]
, if _( j )={( j ) for all j{i,

0, otherwise,

where S=(_(0), ..., _(m)), T=({ (0), ..., {(m)) and h i (S, S ) is defined by (6.2).
Then the representations ?*, * # Y� m , are nonisomorphic irreducible represen-
tations of Hm(q2).

58 LEDUC AND RAM



File: 607J 160259 . By:CV . Date:09:01:97 . Time:08:27 LOP8M. V8.0. Page 01:01
Codes: 2726 Signs: 1460 . Length: 45 pic 0 pts, 190 mm

(6.5) Corollary. For each * # Y� m let Z* be a vector space with basis
vS , S # T *. If S=(_(0), ..., _(m)=*) # T * then let T be a tableau of the form
T=(_(0), ..., _(i&1), {(i ), _(i+1), ..., _(m)) such that { (i ){_ (i ). In view of (4.1),
if T exists then it is unique. Let ?*( gi )SS and ?*( gi )ST be as given in the
previous corollary. Define an action of Hm(q2) on Z* by defining

gi vS={?*( gi )SS vS+?*( gi )ST vT ,
?*( gi )SS vS ,

if T exists,
if T does not exist,

for each S # T*. Then the Z*, * # Y� m , are a complete set of nonisomorphic
irreducible Hm(q2)-modules.

The Birman�Wenzl Algebras BWm(z, q)

Let z and q be indeterminates. We define the Birman�Wenzl algebra
BWm(z, q) (defined in [BW] and [M1]) as the algebra generated over
C(z, q) by 1, g1 , g2 , ..., gm&1 , which are assumed to be invertible, subject to
the relations

(B1) gi gj=gjgi if |i&j |�2,

(B2) gi gi+1 gi=gi+1gigi+1,

(BW1) ( gi&z&1)( gi+q&1)( gi&q)=0,

(BW2) eig\1
i&1ei=z\1ei and eig\1

i+1ei=z\1ei ,

where ei is defined by the equation

(q&q&1)(1&ei )=gi&g&1
i . (6.6)

Letting

x=
z&z&1

q&q&1+1, (6.7)

one has the following relations

e2
i =xei , (6.8)

ei g\1
i =g\1

i ei=z�1ei , (6.9)

(6.10) Corollary. Let U be the Drinfel 'd�Jimbo quantum group
Uh(so(2r+1)) and let V=4|1

be the irreducible U module indexed by the
fundamental weight |1 . Then centralizer Zm=EndU (V}m) is isomorphic to
a quotient of the Birman�Wenzl algebra, BWm(q2r, q).

Proof. This follows immediately from Proposition (5.10), Corollary
(5.22) and the definition of the Birman�Wenzl algebras. K
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Recall the Bratteli diagram B given in Fig. 2. The shapes * # B� m of B
which are on level m are the partitions in the set

B� m=[* |&m&2k, 0�k�wm�2x].

A partition * # B� m is connected by an edge to a partition + # B� m+1 if + can
be obtained from * by adding a box to * or removing a box from *. The
tableaux T # T* in the Bratteli diagram B are called up-down tableaux since
they are sequences of partitions in which each partition differs from the
previous one by either adding or removing a box.

For the remainder of this section, unless otherwise
specified, all paths and tableaux shall be from the Bratteli
diagram B.

Let y be a formal symbol and for each integer d make the following
notations:

[d]=
qd&q&d

q&q&1 , [ y+d]=
zqd&z&1q&d

q&q&1 ,

[&y+d]=
z&1qd&zq&d

q&q&1 , _1
d&=

qd

[d]
, (6.11)

_ 1
y+d&=

zqd

[ y+d]
, _ 1

&y+d&=
z&1qd

[&y+d]
.

Let * be a partition. Let *i denote the length of the i th column and let
*$j denote the length of the jth column. Define the hook length at a box
(i, j ) # * to be

h(i, j )=*i&i+*$j&j+1,

and, for each box (i, j ) # *, define

d(i, j )={*i+*j&i&j+1,
&*$i&*$j+i+j&1,

if i�j,
if i>j.

(6.12)

Following [W3] we define rational functions Q*(z, q) as follows

Q*(z, q)= `
( j, j ) # *

[ y+*j&*$j]+[h( j, j )]
[h( j, j )]

`

i{j
(i, j ) # *

[ y+d(i, j )]
[h(i, j )]

. (6.13)

The important property of these functions ([W3], Theorem 5.5) is that, if
U=Uhso(2r+1), then for all * # U� , Q*(q2r, q)=dimq(4*), where 4* is the
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irreducible U-module corresponding to the partition *. Thus, Q*(z, q) is a
two parameter version of the quantum dimension.

Now let us define two parameter versions of the constants {m(S ) and
hm&1(S, T ) which are given in Proposition (5.13).

Let S=(_(0), ..., _(m)) be a tableau in the Bratteli diagram B. Define

{� m(S )={q2(_ k
(m&1)&k+1),

z&2q2(&_ k
(m&1)+k),

when _(m)=_(m&1)+=k ;
when _(m)=_(m&1)&=k ,

(6.14)

Let S=(_(m&2), _(m&1), _(m)) and T=(_(m&2), {(m&1), _(m)) be such that
(S, T ) # 0m

m&2. Then define

hm&1(S, T )={
\(_ (m)

k &k&{(m&1)
l +l ),

if {(m&1)={(m&2)\=l and _(m)=_ (m&1)\=k ,
\( y+{ (m&1)

l &l+_ (m)
k &k+1),

if _(m)=_(m&1)\=k and {(m&1)={(m&2)�=l .

(6.15) Theorem. There is an identification of the Birman�Wenzl
algebras BWm(z, q) with the path algebras corresponding to the Bratteli
diagram B. With this identification:

(a) The elements Dm=gm&1 gm&2 } } } g1 g1 } } } gm&2 gm&1 are given by
the formula,

Dm= :
S # Tm

(Dm)SS ESS , where (Dm)SS={� m(S ).

(b) The elements ei are given by the formula,

ei= :
(S, T ) # 0 i+1

i&1

(ei )ST EST

where, if S=(_(i&1), _(i ), _(i+1)) and T=(_(i&1), {(i ), _(i+1)), then

(ei )ST={
- Q_ (i ) (z, q) Q{ (i ) (z, q)

Q_ (i&1) (z, q)
if _(i&1)=_(i+1),

0 otherwise.

(c) The generators gi are given by the formula

gi= :
(S, T ) # 0 i+1

i&1

( gi )ST EST ,
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where, for each S=(_(i&1), _(i ), _(i+1)),

( gi )SS={_
1

hi (S, S )& ,

_ 1
hi (S, S )&\1&

Q_ (i ) (z, q)
Q_ (i&1) (z, q)+ ,

if _(i&1){_(i+1),

if _(i&1)=_(i+1)

and for each pair (S, T )=((_(i&1), _(i ), _(i+1), (_(i&1), {(i ), _(i+1))) # 0i+1
i&1

such that S{T,

( gi )ST={
- [hi (S, S )&1][h i (S, S )+1]

[|hi (S, S )|]
,

&_ 1
hi (S, T)&

- Q_ (i ) (z, q) Q{ (i ) (z, q)
Q_ (i&1) (z, q)

,

if _(i&1){_(i+1),

if _(i&1)=_(i+1),

where hi (S, T ) is given by (6.14).

Proof. If z is specialized to q2r, r>m, then the formulas given above
coincide with the formulas given in (2.25), (5.9), and Theorem (5.14). In
view of the results in Corollary (2.25), Theorem (3.12), and Theorem (5.14)
it follows that this theorem holds whenever z is specialized to q2r, r>m.
Thus, for an infinite number of specializations of the parameter z, the
theorem holds. This is sufficient to guarantee that the theorem holds over
C(z, q). K

(6.16) Corollary. For each * # B� m let d*=Card(T *) be the number of
up-down tableaux of shape *. Define representations

?* : BWm(z, q) � Md* (C(z, q))

a [ (?*(a)ST )(S, T ) # 0 *

of BWm(z, q) by defining
For each S # T*,

?*( gi )SS={_
1

hi (S, S )& ,

_ 1
hi (S, S )&\1&

Q_ (i ) (z, q)
Q_ (i&1) (z, q)+ ,

if _(i&1){_ (i+1),

if _(i&1)=_(i+1),
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and for each pair (S, T ) # 0* such that S{T,

?*( gi )ST=

- [hi (S, S )&1][hi (S, S)+1]
[|hi (S, S )|]

if _( j )={( j ) for all j{i and _ (i&1){_(i+1),

&_ 1
hi (S, T )&

- Q_ (i ) (z, q) Q{ (i ) (z, q)
Q_ (i&1) (z, q)

,

if _( j )={( j ) for all j{i and _ (i&1)=_(i+1),

0, otherwise,

where S=(_(0), ..., _(m)), T=({(0), ..., {(m)) and h i (S, S ) is given by (6.14).
Then the representations ?*, * # B� m , are nonisomorphic irreducible represen-
tations of BWm(z, q).

Let * # B� m . If S=(_ (0), ..., _(m)) # T * such that _(i&1){_(i+1) then let siS
be the tableau

siS=(_(0), ..., _(i&1), {(i ), _(i+1), ..., _ (m))

such that {(i ){_(i ). In view of Lemma (5.1), if siS exists then it is unique.
If S=(_(0), ..., _(m)) # T* such that _(i&1)=_(i+1) then define

ei S=[T=({(0), ..., {(m)) # T * | S{T and {( j )=_ ( j ) for all j{i].

With this notation we have the following.

(6.17) Corollary. For each * # B� m(r) let Z* be a vector space with
basis vS , S # T *. Let constants ?*( gi)ST , (S, T ) # 0*, be as given in
Corollary (6.16). Define an action of BWm(z, q) on Z* by defining

gi vS={
?*( gi )SS vS+?*( gi )S, s i Svs iS ,

if _(i&1){_(i+1) and siS exists,

?*( gi )SS vS ,

if _(i&1){_(i+1) and siS does not exist,

?*( gi )SS vS+ :
T # e i S

?*( gi )ST vT ,

if _(i&1)=_(i+1).

for each S=(_(0), ..., _(m)) # T*. Then the Z*, * # B� m(r), are nonisomorphic
irreducible BWm(z, q)-modules.
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The Brauer Algebra

An m-diagram is a graph on two rows of m-vertices, one above the other,
and m edges such that each vertex is incident to precisely one edge. The
number of m-diagrams is (2m)!!=(2m&1)(2m&3) } } } 3 } 1. We multiply
two m-diagrams d1 and d2 by placing d1 above d2 and identifying the ver-
tices in the bottom row of d1 with the corresponding vertices in the top row
of d2 . The resulting graph contains m paths and some number # of closed
cycles. Let d be the m-diagram whose edges are the paths in this graph
(with the cycles removed). Then the product d1d2 is given by d1d2=x#d.
For example, if

then

Let x be an indeterminate. The Brauer algebra Bm(x) (defined originally by
R. Brauer [Br]) is the C(x)-span of the m-diagrams. Diagram multiplica-
tion makes Bm(x) an associative algebra whose identity idm is given by the
diagram having each vertex in the top row connected to the vertex just
below it in the bottom row. By convention B0(x)=B1(x)=C(x).

The group algebra C(x)[Sm] of the symmetric group Sm is embedded in
Bm(x) as the span of the diagrams with only vertical edges. For
1�i�m&1, let

Then e2
i =xei , and the elements of the set [si , ei | 1�i�m&1] generate

Bm(x). Note that the si correspond to the simple transpositions (i, i+1) of
Sm and that the si , 1�i�m&1, generate C(x)[Sm].

For each complex number ! # C one defines a Brauer algebra Bm(!) over
C as the linear span of m-diagrams where the multiplication is given as
above except with x replaced by !. R. Brauer [Br] originally introduced the

64 LEDUC AND RAM



File: 607J 160265 . By:CV . Date:09:01:97 . Time:08:27 LOP8M. V8.0. Page 01:01
Codes: 2903 Signs: 2003 . Length: 45 pic 0 pts, 190 mm

Brauer algebra Bm(n) in his study of the centralizer of the tensor represen-
tation of the complex orthogonal group O(n)=[ g # Mn(C) | ggt=I]. Let
V=Cn be the standard or fundamental representation for O(n). The tensor
space V}m is a completely reducible O(n)-module with irreducible sum-
mands labeled by partitions in the set

B� m(n)=[* |&(m&2k) | 0�k�wm�2x, *$1+*$2�n].

Note that when n is sufficiently large B� m(n)=B� m where B� m is as defined in
Section 5. Brauer gives an action of Bm(n) on V }m which commutes with
the action of O(n). This action is such that si is the permutation which
transposes the i th and the (i+1)st tensor factors of V}m and e1 is (2r+1)
times the projection onto the invariants in the first two tensor factors of
V}m (see [R1] for details). Brauer showed that the action of the Brauer
algebra generates the full centralizer of the orthogonal group action on
V}m. Provided we assume that r�m, all of these results hold if the group
O(n) is replaced by the group SO(2r+1).

Let r�2 and set G=SO(2r+1). Let V� =C2r+1 be the standard module
for G and let Z� 2=EndG (V� �V� ). As SO(2r+1) modules,

V� �V� $V (0) �V (12) �V (2),

where V* denotes the irreducible G-module indexed by the partition *. Let
E� << , E� (1 2)(12) , and E� (2), (2) be the G-invariant projections onto the
irreducible summands V<, V (1 2), and V (2) respectively. We have chosen
this notation so that it is suggestive of the identification of the centralizer
algebra Z� 2 with a path algebra corresponding to the Bratteli diagram B. It
can easily be shown that B2(2r+1) is isomorphic to Z� 2 and that under this
isomorphism

e1=(2r+1) E� << ,
(6.19)

s1=E� <<+E� (2), (2)&E� (12)(1 2) .

Let U=Uh(so(2r+1)) and V=4|1
be the irreducible U-module indexed

by the fundamental weight |1 . As U modules,

V�V$4(0) �4(12)�4(2) ,

where 4* denotes the irreducible U-module indexed by the partition *.
Let E<< , E(1 2)(1 2) , and E(2), (2) be the U-invariant projections onto the
irreducible summands 4< , 4(1 2) , and 4(2) respectively. It follows from (5.9)
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and Theorem (5.14), or by direct calculation, that the elements
R8 1 , E8 1 # Z2=EndU (V�V ) are given by

E8 1=([2r]+1) E<< ,
(6.20)

R8 1=q&2rE<<+qE (2), (2)&q&1E(12)(12) .

By comparing (6.19) and (6.20) we see that, at q=1, the transformations
R8 1 and E8 1 are the transformations s1 and e1 respectively. The transforma-
tions R8 i and E8 i in Zm=EndU (V}m) are the same transformations as R8 1

and E8 1 respectively, except that they act on the i th and the (i+1)st tensor
factors of V}m instead of the first and second tensor factors. Similarly, the
transformations s� i and e� i in Z� m=EndG (V� }m) are the same transforma-
tions as s1 and e1 respectively, except that they act on the i th and the
(i+1)st tensor factors of V� }m instead of the first and second tensor fac-
tors. Since, at q=1, the transformations R8 1 and E8 1 are the same as s1 and
e1 respectively, it follows that, at q=1, R8 i and E8 i are the same as si and
ei respectively. Hence, at q=1, the centralizer algebras Zm=EndU (V}m)
are the centralizer algebras Z� m=EndG(V� }m).

Following [El-K], for each partition *, define polynomials

P*(x)= `
(i, j ) # *

x&1+d(i, j )
h(i, j )

, (6.21)

where the constants d(i, j ) and h(i, j ) are as given in (6.12). These poly-
nomials have the important property that P*(2r+1)=dim(V*), for each
irreducible representation V* of the orthogonal group SO(2r+1).

Let S=(_(m&2), _ (m&1), _(m)) and T=(_ (m&2), {(m&1), _(m)) be such that
(S, T ) # 0m

m&2. Then define

hm&1(S, T )={
\(_ (m)

k &k&{(m&1)
l +l ),

if {(m&1)={(m&2)\=l and _(m)=_ (m&1)\=k ,
\(x+{ (m&1)

l &l+_ (m)
k &k),

if _(m)=_(m&1)\=k and {(m&1)={(m&2)�=l .

(6.22) Theorem. There is an identification of the Brauer algebras Bm(x)
with the path algebras corresponding to the Bratteli diagram B. With this
identification:

(a) The elements ei are given by the formula

ei= :
(S, T ) # 0 i+1

i&1

(ei )ST EST
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where, if S=(_(i&1), _(i), _(i+1)) and T=(_(i&1), {(i ), _(i+1)), then

(ei )ST={
- P_ (i ) (x) P{ (i ) (x)

P_ (i&1) (x)
if _(i&1)=_(i+1),

0 otherwise.

(b) The elements si are given by the formula

si= :
(S, T) # 0i+1

i&1

(si )ST EST ,

where, for each S=(_(i&1), _(i ), _(i+1)),

(si )SS={
1

hi (S, S )
,

1
hi (S, S ) \1&

P_ (i ) (x)
P_ (i&1) (x)+ ,

if _ (i&1){_(i+1),

if _(i&1)=_(i+1),

and for each pair (S, T)=((_(i&1), _(i ), _(i+1)), (_(i&1), {(i ), _(i+1))) # 0i+1
i&1

such that S{T,

(si )ST={
- (h i (S, S )&1)(hi (S, S )+1)

|h i (S, S )|
,

&
1

hi (S, T )
- P_ (i ) (x) P{ (i ) (x)

P_ (i&1) (x)
,

if _(i&1){_ (i+1),

if _ (i&1)=_ (i+1),

where hi (S, T ) is as given just before Theorem (6.22).

Proof. It follows from the discussion above that, at q=1, the cen-
tralizer algebras Zm are the same as the centralizer algebras Z� m . Note that
the formulas in Theorem (5.14) all specialize to well defined rational num-
bers at q=1. Thus, there is an identification of the centralizer algebras Z� m

with the path algebras corresponding to the centralizer algebras so that the
elements ei and si are given by the formulas in Theorem (5.14) evaluated
at q=1. These specializations are well defined and are equal to the for-
mulas in the statement of Theorem (6.15) except with x replaced by 2r+1.

The centralizer algebras Z� m are quotients of the Brauer algebras
Bm(2r+1). If r>m these algebras are isomorphic [Br]. Thus, it follows
from the previous paragraph that there is an identification of the Brauer
algebras Bm(2r+1), r>m, with the path algebras corresponding to the
centralizer algebras so that the elements ei and si are given as in the above
statement except with x replaced by 2r+1. So Theorem (6.15) is true for
an infinite number of specializations of the parameter x. The result
follows. K
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