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We show how the ribbon Hopf algebra structure on the Drinfel’d-Jimbo quan-
tum groups of Types A, B, C, and D can be used to derive formulas giving explicit
realizations of the irreducible representations of the Iwahori-Hecke algebras of
type A and the Birman-Wenzl algebras. We use this derivation to give explicit
realizations of the irreducible representations of the Brauer algebras as well. The
derivation is accomplished by way of a combination of techniques from operator
algebras, quantum groups, and the theory of 3-manifold invariants. Although our
applications are in the cases of the quantum groups of Types A, B, C, and D, most
of the aspects of our approach apply in the general setting of ribbon Hopf algebras.
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0. INTRODUCTION

The Iwahori-Hecke algebras of Type A and the Birman-Wenzl-
Murakami algebras arise naturally in the following setting: Let U be a
quantum group corresponding to a finite dimensional complex simple Lie
algebra of Type A, B, C, or D, and let V' be the irreducible representation
of U corresponding to the fundamental weight w,. Then the centralizer
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algebra Z,, = End, (V' ®™) is isomorphic to a quotient of either the Iwahori—
Hecke algebra or the Birman—Wenzl algebra.

The purpose of this paper is to give a unified approach for determining
explicit realizations of the irreducible representations of the Iwahori-Hecke
algebras of Type A and the Birman—Wenzl-Murakami algebras. Indeed, the
formulas for the irreducible representations which we find are equivalent to
those in [H] and [ W2] in the case of the Iwahori-Hecke algebras of type
A and to those in [M2] for the case of the Birman—Wenzl-Murakami
algebras. However, we have found that in all three of these previous works
the appropriate formulas are stated without derivation and then proved to
be correct. In this paper we show that there is indeed a consistent method
by which one may actually derive the appropriate formulas.

Our method is motivated strongly by the machinery which has developed
in the context of operator algebras, quantum groups, and link invariants, in
particular the work of Reshetikhin [ Re], Drinfel’d [ D], Wenzl [ W3], and
Turaev [ 7]. See also the papers [ RT, RT2, TW, W4, and BW]. Although
we have applied our methods in the particular case of the quantum groups
corresponding to finite dimensional simple Lie algebras of types A, B, C,
it is clear that main aspects of our approach hold in the setting of quasi-
triangular Hopf algebras and ribbon Hopf algebras. The following list
describes the central features in our approach.

(1) From operator algebras: We have used the path model approach
for towers of algebras in [ GHJ] in order to work with infinite families of
centralizer algebras all at once. In some sense the path algebra mechanism
reduces all of the “difficult” parts of the derivation to simple computations
with matrix units in direct sums of ordinary n x n matrix algebras.

(2) From quantum groups: The Drinfel’d-Jimbo quantum groups
carry the structure of quasitriangular Hopf algebras and ribbon Hopf
algebras [ D]. We have been able to use this structure to get very specific
information about certain elements in the centralizer algebra. The
quasitriangular structure guarantees that the product %,, %,,, where Z is
the #-matrix, is always an clement of the centralizer algebra and the
ribbon structure allows us to determine the eigenvalues of this element.
These eigenvalues turn out to be determined by the Casimir element
from the corresponding Lie algebra. This idea is the central idea in
[Re].

(3) Combining tools from 3-manifold invariants and operator
algebras: We show that the Markov traces used to derive link invariants
and 3-manifold invariants are equivalent to certain traces on towers of
algebras that arise from Wenzl’s approach to the Jones basic construction.
This was observed in [ W3] for the case of quantum groups of type B using
the explicit form of the R matrix. In our approach we have obtained this
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result for any ribbon Hopf algebra. This idea allows one to give an easy
derivation of the framing anomalies for the Reshetikhin—Turaev 3-manifold
invariants.

In the first three sections of this paper we develop these tools in the con-
text of centralizer algebras. Although the main objects have all appeared in
previous work ([Re, T, D, W3]), we have felt it necessary to give a con-
sistent presentation in the context of centralizer algebras since it is not
necessarily clear from the previous work how these techniques apply to our
situation.

Our paper is organized as follows:

In Section 1 we review the path algebra setup. In the second half of
Section 1 we show that if 2l is a Hopf algebra such that all finite dimen-
sional representations of 1l are completely reducible and if V' is a U-module
then the centralizer algebras Z,, = End, (V' ®™) can be identified with path
algebras in a natural way.

In Section 2 we begin by reviewing the definitions of quasitriangular
Hopf algebras, ribbon Hopf algebras, and the Drinfel’d-Jimbo quantum
groups. Then, letting Ul be a quasitriangular Hopf algebra and letting V be
a U-module, we show how to determine explicitly the image of the element
R, R, both as an element of the centralizer algebra Z,, = End(V ©") and
as an element of the corresponding path algebra.

In Section 3 we let U be a ribbon Hopf algebra and let V' be a U-module.
Then there is a natural projection ¢ € End, (V' ® V*) onto the invariants in
the U-module V'® V*. This projection gives rise to a natural trace on the
centralizer algebras Z,,, and it turns out that this trace is always a Markov
trace with respect to the corresponding #-matrix. We are able to determine
explicit formulas for the image of the element ¢ in the path algebras corre-
sponding to the centralizer algebras Z,,.

In Section 4 we apply the results of the first three sections to compute
the irreducible representations, in terms of path algebras, of the centralizer
algebras corresponding to the quantum groups U,(sl(r+ 1)) and the
fundamental representation.

In Section 5 we apply the results of the first two sections to compute the
irreducible representations, in terms of path algebras, of the centralizer
algebras corresponding to the quantum groups corresponding to complex
simple Lie algebras of Types B, C, D, and the fundamental representation.
This derivation is only slightly more complex than that for the Type A case
given in Section 4.

We finish in Section 6 by deriving, explicitly, irreducible representations
of the Iwahori-Hecke algebras, the Birman—Wenzl-Murakami algebras,
and the Brauer algebras.

Some further remarks on the results in this paper:
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(1) All of the representations obtained in this paper are, in some
sense, analogues of Young’s orthogonal representations for the symmetric
group. This is due to the way that we inductively identify the centralizer
algebras Z,, with path algebras.

(2) Hoefsmit determined explicit irreducible representations of the
Iwahori-Hecke algebras of Type A in [ H]. One of the consequences of our
approach is that the mysterious axial distances which have appeared in the
work of Hoefsmit are completely explained in terms of the values of the
Casimir element of the complex simple Lie algebras of type A acting on
irreducible representations. Similarly, some of the constants appearing in
the formulas for the irreducible representations of the Birman—Wenzl-
Murakami algebras are obtained from the values of the Casimir elements
of the complex simple Lie algebras of type B or C acting on irreducible
representations. In fact, the only other values that are needed in order to
give closed form formulas for the irreducible representations are the “quan-
tum dimensions” of the irreducible representations of the corresponding Lie
algebra. These are determined by the Weyl character formula.

(3) Although our formulas for the irreducible representations of the
Birman—-Wenzl-Murakami algebra are equivalent to those in [M2] we
have found ours to be more tractable, in particular, it is a trivial matter to
specialize appropriately to give formulas, to our knowledge new ones, for
the irreducible representations of the Brauer algebras [ Br, W1].

(4) We have found that it is quite easy to derive the formulas for the
basic construction element (which was obtained by various authors [RW,
Theorem 1.4; GHJ, (2.6.5.4); Su]) by simple path algebra (matrix algebra)
computations and thus we give an alternate and elementary proof of some
of the results in [ W1, Section 1]. This result appears in our Theorem (3.12).

(5) In Sections 4 and 5 we give formulas for matrix units in the
centralizer algebras corresponding to quantum groups of types A, B, C,
and D. Similar formulas have been given in [RW]. The formulas we give
here, in the cases of types B, C, and D, are new formulas for the same
matrix units that were given in [RW].

1. PATH ALGEBRAS AND TENSOR POWER
CENTRALIZER ALGEBRAS

Bratteli Diagrams

A Bratteli diagram A is a graph with vertices from a collection of sets
A,,, m=0, and edges that connect vertices in 4,, to vertices in 4,,, ;. We
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assume that the set 4, contains a unique vertex denoted . It is possible
that there are multiple edges connecting any two vertices. We shall call the
vertices shapes. The set A,, is the set of shapes on level m. If A€ A,, is con-
nected by an edge to a shape ue A4,,, , we write 1 <u.

A multiplicity free Bratteli diagram is a Bratteli diagram such that there
is at most one edge connecting any two vertices. Alternatively we could
define a multiplicity free Bratteli diagram to be a ranked poset 4 which is
ranked by the nonnegative integers and such that there is a unique vertex
on level 0 called ¥. Identifying the poset 4 with its Hasse diagram we see
that these two definitions are the same since the poset condition implies
that the resulting Bratteli diagram is multiplicity free. In order to make
sure that we do not make careless statements in this paper.

Assume throughout this paper that all Bratteli diagrams are
multiplicity free.

We make this assumption to simplify our proofs and our notation. See
[GHIJ] for the more general setting.

The Bratteli diagrams which we will be most interested in, see Figures 1
and 2, are multiplicity free and arise naturally in the representation theory
of centralizer algebras. Other examples of Bratteli diagrams arise from
differential posets [St] and towers of C* algebras [ GHIJ]. The Bratteli
diagrams in Figures 1 and 2 are described further in Sections 4 and 5
respectively.

Paths and Tableaux

Let A be a multiplicity free Bratteli diagram and let e 4,, and ue 4,
where m <n. A path from J to u is a sequence of shapes 1), m<i<n,

P= (}v(m)’ )L(m+ 1)’ .y )L(n))

such that 2= < "+ V< ... <A™ =y and 17 e 4,. In the poset sense
the path P is a saturated chain from 4 to u. (If we are working in the non-
multiplicity free setting we must distinguish paths which “travel” from A"
to AYTY along different edges.) A tableau T of shape / is a path from ¢
to 4

T=(A0, 40, 40m)

such that @ =10<iV< ... <A =) and 1" e A, for each 1 <i<m.
We write shp(7)= A if T is a tableau of shape 1. We say that the length
of T'is mif shp(T)e A,,.
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Let us make the following (hopefully suggestive) notations.

T * is the set of tableaux of shape /4,

J " is the set of tableaux of length m,

J 4 1s the set of paths from 4 to g,

J 7 1s the set of paths from 4 to any shape on level m,

g7 is the set of paths from shp(7) to any shape on level m.

Similarly, we define

Q% is the set of pairs (S, T) of paths S, Te T,

Q" is the set of pairs (S,7) of paths S,7€7 " such that
shp(S) = shp(T),

Q% is the set of pairs (S, T') of paths S, Te 74,

Q7 is the set of pairs (S,7T) of paths S,TeJ 7 such that
shp(S) =shp(T).

Path Algebras

For each m define an algebra 4,,
(S, T)e 2" and multiplication given by

over a field k with basis Eg,

EqrEpp=0rpEsp. (1.1)

Note that 4, ~ k. Every element a € 4,, can be written in the form

a= Z asrEgr,

(S, T)eQ™

for some constants a g€ k. In this way we can view each element ae 4,, as
weighted sum of pairs of paths, where the weight of a pair of paths
(S, T)e Q2™ is the constant ag,. We shall refer to the collection of algebras
A,, as the tower of path algebras corresponding to the Bratteli diagram A.
Each of the algebras 4,, is isomorphic to a direct sum of matrix algebras

Am = @ Md,"(k)a

ledAm

where M ,(k) denotes the algebra of d x d matrices with entries from k and
d, = Card(7 *). Thus, the irreducible representations of 4,, are indexed by
the elements of A,,. Furthermore, the dimensions of these irreducible
representations are equal to Card(.7 %), and thus, the set of tableaux 7 * is
a natural index set for a basis of the irreducible A4,,-module indexed by
Jed,,
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The Inclusions A,, < A,, m<n

Given a path T'=(4, ..., 1) from A to u and a path S=(u, .., v) from u
to v define

T 5 S =2y oy fly oy V) (1.2)

to be the concatenation of the two paths (the shape u is not repeated since
that would not produce a path).

Let 0<m<n. Define an inclusion of A4,,= A4, as follows: For each
(P, Q)e Q™ view Ep, as an element of 4, by the formula

Evo= Y Ep.rour where A =shp(P)=shp(Q). (1.3)

N
TeT

In particular we have an inclusion of A4,, , into 4,, for every m > 0. Let
JeA, and let V* be the irreducible representation of 4,, corresponding
to 4. Then the restriction of V* to 4,,_, decomposes as

Vil = @ 7
HEAT
where A~ ={ueAd, ,|u<i}. The multiplicity free condition on the
Bratteli diagram guarantees that this decomposition is multiplicity free.
The Centralizer of A,, Contained in A,,, 0 <m<n

Define
Z(A,,=A,)={acA,|ab=ba for all be 4,,}.

Let us extend the notation in (1.3) and define

EST= Z 'EP*S,P*T’

PeT

for each pair (S, T)eQ¥, L€ A,, ueA,, the following result appears in
[ GHJ, Proposition 2.3.12].

(1.4) PROPOSITION. The elements Egy, (S, T)eQ%, JeA,,, ued,, are a
basis of Z(A,, < A4,,).

m —

Proof. First let us show that the elements Eg;€ Z(A,, S 4,). Let ye 4,
and let Q, Re .7 7. Then
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Ueg!"
7

ESTEQR=< "EP*S,P*T>< Z EQ*U,R*U)
E

:EQ*S,Q*T Q*T,R*T:EQ*S,R*T'
o

Similarly one shows that £, E ;=
Now we show that if ae #(4,,
E ;. Suppose

E
E,. s r.r gvingthat Eg.e Z(A,, = 4,).
= A,) then « is a linear combination of

a= Y aynEyyeZ(4,S4,).

(M, N)eQ"

Let € A,, and let Pe 7% Then

aEPP:< Y aMNEMN><Z Epm,mr)

(M, N)eQ" Tes"

= Z Ay parErr pir
(M,PxT)eQ"

E,,Pa=< > EP*S,P*S>< > “MNEMN>

N

seT! (M, N)e@n
= Z aP*S,NEP*S,N
(P* S, N)yeQn

This implies that a,, ,,,=0 unless M=Px*S for some Se7 and
ap,s y="0unless N=P« T, for some Te 7. Thus, a must be of the form

a= Z aP*&P*TEP*S,P*T'
pegm
(5, TyeQ!

If e 4,, and (P, Q) € Q* then

EPQa=< z EP*S,Q*S>< Z aR*S,R*TER*S,R*TER*S,R*T>

Se7 Reg™
(5. T)eQ}

= Z aQ*S,Q*TEP*S,Q*T’

(S, T)e Q!
aEPQ:< Z aR*S,R*TER*S,R*T>< Z EP*T,Q*T>
ReT ™ TeT"
(S, T)eQ)

= Z aP*S,P*TEP*S,Q*T‘
(S.T)eQ)
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This implies that a,,, 5 o, 7=dp, s p. 7 for all (P, Q)€ Q” Let us denote
this coefficient by ag,. Then

a= Z dsr Z EP*S,P*Tz Z asrEst.

red, PeT* redp
(5, T)e QY (5. T)eQY

Thus, if aeZ(A,,=A4,) then a is a linear combination of Eg;. The
elements Eg;, (S, T)eQ) are independent since the elements E,,,
(M, N)e Q" are. ||

(1.5) CoroLLARY. Let A,,, m=0, be the tower of path algebras corre-
sponding to a multiplicity free Bratteli diagram A and suppose that g;€ A, ,,
i=1, are elements such that

(1) For each m, the elements g,, g, ..., 2,1 generate A,,,
(2) g.g;j=g;g; for all i,j such that |i—j| > 1.
Then
En—1= z (grn—l)PQEPQ
(P,Q)e2y ,
for some constants (g,, ) po €k.

Proof. 1t follows from the relations on the g; that g,, _; commutes with
A,,_,. The result then follows from Proposition (1.4). ||

(1.6) CorOLLARY. Let A,,, m=0, be the tower of path algebras corre-
sponding to a multiplicity free Bratteli diagram A and suppose that g;€ A, ,,
i=1, are elements such that

(1) For each m, the elements g,, g5, ..., g,,_, generate A,,,
(2) g:g,=g;8: for all i,j such that |i—j|> 1.
(3) 8i&i+18:1=8:i+18i8i+1 for all i=1.

Deﬁne szgmflgm72”'g2g1g1g2 o 8m—38m—28m—1 EAm' Then

Dm: Z DSSESS9

i
SeT

for some constants Dgg€ k.
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Proof. Using the braid relation (3) for the elements g; we have

gm72Dm:gmflgm72gm71gm73 8181 8m—1
=8m—18m—28m—-3"""8181" " 8m—18m—28m—1
:Dmgm—2'

It follows that D,, commutes with g,, ,. By induction we have that

ngm:gmfl "'gj+2ngj+2gj+2gj+3"'gm—l
=gm-1"8+2D;1288+28+3 " &n-1
=Dmg_/"

for all 1<j<m—2. Thus, D,, commutes with A,,_,. The result now
follows from Proposition (1.4). ||

Remark. All of the above results hold even if the Bratteli diagram is not
multiplicity free since the main result Proposition (1.4) holds in that case.
We have stated these results only for the multiplicity free case in order to
simplify our notation. See [ GHJ] for the more general setting.

Centralizers of Tensor Power Representations

Let k be a field. We shall assume that k is characteristic zero and
algebraically closed. Let U be a Hopf algebra over k such that all finite
dimensional representations of Ul are completely reducible. Let V be a finite
dimensional representation of 2l and define

%, =Endy(V®™). (1.7)

Let Il be an index set for the finite dimensional irreducible representations
of U. Let Z,, be an index set for the finite dimensional representations of
7,,. It is natural to view Z,, as a subset of I since, by Schur—Weyl duality,
the (Z,, ® W)-module V®™ has a decomposition

vems~ @ #'@4,,
Ae:}’m

where Z* is the irreducible %,,-module indexed by A and A4, is the
irreducible U-module indexed by A.
For 0 <m < n there is a natural inclusion Z,, = %, given by

Z, — Z,

aHa@id@(n—m)
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where a ®1d®" =" acts as a on the first m factors of V®" and as the iden-
tity on the last m —n tensor factors. By convention we shall set Z,=k. If
V' is an irreducible U-module then, by Schur’s lemma, %, k.

The Bratteli Diagram for Tensor Powers of V

Assume that ¥V is an irreducible -module. Let 1€ Z,, for some m.
Then there is a branching rule for tensoring by V which describes the
decomposition

AA® V= @ C/)fVA/U (18)
HE i}},,+1
as U-modules. The multiplicities ¢}, are nonnegative integers. This decom-
position is multiplicity free if all the multiplicities ¢, <1. Letve &, ;. Then
the branching rule for inclusion %,,< %,,,, describes the decomposition

2= @ e}, 2% (19)

ey

as Z,-modules. There is a standard reciprocity result for branching rules
([Bou] Chpt. VIII §5 Ex. 17, see also [R] Theorem 5.9 for a simple
proof), that states that the constants ¢!, appearing in (1.8) and (1.9) are
the same.

We define a Bratteli diagram for tensor powers of V, or equivalently, a
Bratteli diagram for the tower of algebras %,,, as follows. Let the elements
of the set Z,, be the vertices on level m. A vertex /e %, is connected to a
vertex ue Z, ., by ¢, edges. This Bratteli diagram is multiplicity free if
the corresponding branching rule for tensoring by V' is multiplicity free.

Identification of the Centralizer Algebras Z,, with Path Algebras

By working inductively, we can view the algebras %, as path algebras
for the Bratteli diagram for tensor powers of V. Let us denote this Bratteli
diagram by A4 and denote the corresponding path algebras by 4,,. Clearly
%=k can be identified with the corresponding path algebra 4,. For each
Jel let A, denote the irreducible 2l module corresponding to /. Suppose
that there is an identification of %,, with the path algebra 4,, so that

V®n1= @ < @ ETTV®m>a
redy, \Teg*
is a decomposition of V®" so that the U-submodule E,, V®"~A,. The
element E;; is a U-invariant projection onto the irreducible U-module
Err VO,
Given a tableau T=(z?, ...t~ Y, ])e 7 * and a shape ve Z,,, , such
that v A let T % v be the path given by T v= (", .., ™=, 4, v). Since
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the branching rule for tensoring by V' is multiplicity free, there is a unique
decomposition

(ErrVEM®V= @ Vi, (1.10)

\’Efjm+l
V>
into nonisomorphic irreducible M-modules V., , = A,. Define £, ;. € Z,, .,
to be the unique U-invariant projection onto the irreducible V., in the
decomposition (1.10). In this way we can define elements Egg for every
Se7™*! and we have that

V@(m+1): @ < @ ESSV®m>a

ve;’}?,,wl SeTV

is a decomposition of ¥ ®*+ D into irreducible 2-modules E o VO™ + D~ 4 |
Se 7. This makes an identification of each basis element Egg, Se 7™ +1,
of the path algebra 4,,,, with a transformation in Z,, ;. Now, for each
pair of paths (P, Q) e Q™ *' choose nonzero transformations

Epo€EppZi1Epp and Eop€EppZ, 1 Epp
and normalize them so that
EPQEQPzEPPa (1.11)

as transformations in %,,, ;. In this way, one can identify the path algebra
A, ., with the algebra Z,, . This identification is not canonical, there is
the following freedom in the choice of the normalization of the transforma-
tions E», and E,p: For any nonzero constant a € k, one may

replace Ep, and E,p by aEpy, and (1/a) E g, respectively,  (1.12)

to get another solution.

Suppose that an identification of the centralizer algebras %,, with the
path algebras is given. This identification determines a choice of the
irreducible representations of %,, in the following way. If ¢ € %,,, and

a= Z Z (a&)sr Esrs

i€y (S, T)eR’
then the maps
7,

m

- M, (k)

ar— ((a)sr)(s, T)e Q%
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for /.e Z,,, determine a complete set of nonisomorphic irreducible represen-
tations of %,,. In this paper we shall find path algebra formulas for the gen-
erators of tensor power centralizer algebras, Z,,, and thus, in essence, we
are finding the irreducible representations.

2. QUASITRIANGULAR HOPF ALGEBRAS, RIBBON HOPF
ALGEBRAS AND QUANTUM GROUPS

If U is a Hopf algebra, we shall denote the coproduct by 4, the counit
by ¢ and the antipode by S. We shall always assume that both the antipode
S and the skew antipode S~ exist. If ael and 4(a)=Y, a;,®a,,), then
the opposite coproduct is defined by 4”(a) =3, a, ®a,,. Recall that if
V and W are ! modules, then U acts on the tensor product V'® W by

av@w)=A(a)v@w) =) a4 v@a W,

for all ael, ve V, and we W.
A quasitriangular Hopf algebra is a pair (U, #) consisting of a Hopf
algebra U, and an invertible element # € U ® U such that

RA(a) R = 4P(a), forall aeU, (2.1)
(A®id)(%)=%13é%23: (2-2)
(id®4’)(%)=@13<@12: (2-3)

where, if Z=3 a;® b;, then
ﬂlzzzai(@bi@l, %13:Zai®1®b,—, %23=Zl®a,-®b,—.

Let (U, ) be a quasitriangular Hopf algebra, let Z=> a,® b, e U 1,
Ry = b;®a;, and define

u=y S(b;,)a;ell and  z=uS(u). (2.4)

Then, we have the following facts:

(S@id)(R)=2"", (2.5)
(S®S)(Z2)=4, (2.6)

<

J

=Y 85"d;)c;,where 27" =) ¢;,®d,, (2.7)
J
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uau~' = S?(a), forall ael, (2.8)
Au)= (% R)"" (u®u), (29)

z is an invertible central element of I, (2.10)
A(z)= (A #)* (z®2), (2.11)

These facts are proved in [ D, Propositions 2.1, 3.1, 3.2, and the remarks
immediately preceding Proposition 3.2]. The proofs are calculations
involving only the definition of a quasitriangular Hopf algebra.

A ribbon Hopf algebra is a triple (U, £, v) consisting of a quasitriangular
Hopf algebra (U, #), and an invertible element v in the center of A, such
that

v> =uS(u), S(v)=v, g(v)=1,

(2.12)
A() = (R Z15) "' (v ®@W).

It is important to note that the element v 'uell is grouplike, ie.,
Av w)y=v 'u®@v'u
Quantum Groups

Let C[[/2]] be the ring of formal power series in an indeterminate /. The
notation e* shall always denote the formal exponential

=y —,
k=0 k'
and define ¢ = ¢ For each positive integer n define

n —n

(== Dlt=[alln=11- (21010, [0]!=1,
n [n]!
{k}:[k]![n—k]!’ for 0<k<n.

Let g be a finite dimensional complex semisimple Lie algebra. Let ) be
the Cartan subalgebra of g. Let o,ebh* be the simple roots and let
H,=0o €l be the simple coroots so that the Cartan matrix is given by

(<O('ia O('jv >) = (aii) =A.

Let U, (g) be the associative algebra with 1 over C[[/4]] generated (as
an algebra complete in the fh-adic topology) by the space ) and the
elements X, .., X,, Y,, .., Y, with relations
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[a,,a,]=0, forall a,;,a,el,

[Cl, X/’]:<(xj9a> X}a [a: Y/']:<_<Xj:a> Yja for all aeb,
e(/r/Z)H,vie—(h/2)H,-

Xl’Yj_Y/'széii h >

1 —a.
) (—Uf{ saﬂ}X?’X;Xﬁ:Oa i)

s+t=1—aj
l—a; , L.
Yo (=1 TLYIY,Yi=0,  i#).
s+t=1—aj 5

There is a Hopf algebra structure on I,(g) given by

AX) =X, Qe "Wy e WM HiQ X,
AY)=Y, QWi e WHHiQy,
&X,)=¢e(Y;)=¢(a)=0, forall aeb,
S(X,)=—e"?X,, S(Y,)=—e"?Y, S(a)= —a, forall aeh.

Given the definition of the coproduct 4 one can easily show that the for-
mulas for the counit ¢ and the antipode S are forced by the definitions of
a Hopf algebra.

There is a Z grading on the algebra [,(g) determined by defining

deg(h) =0, forall heb,
deg(E;)=1, deg(F;,)=—1, forall 1<i<r.

Let ,(g)=° be the subalgebra of 1, (qg) generated by b and the elements
X,, 1<i<r. Similarly let 2,(g) <° be the subalgebra generated by ) and
the elements Y,, 1 <i<r. Let A,, .., H, be an orthonormal basis of j and
let to=Y"_, H,® H,. The algebra 1,(g) is a quasitriangular Hopf algebra
and the element # can be written in the form, See [ D, Sect. 4],

R = exp <gt0>+2ai+ ®b;, (2.13)

where the elements a;" € W,(g) =° b, € U, (g) =° are homogeneous elements
of degrees >1 and < —1 respectively.

As in the classical case, each finite dimensional U,(g)-module, M, is a
direct sum of its weight spaces, i.e.,

M= @ M, where M*={meM |am=<{A a)ym, for all aeh.}

Leb*
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Every finite dimensional module is completely reducible and the finite
dimensional irreducible modules 4, of U, (g) are labeled by the dominant
integral weights A. Each of these modules is a highest weight module of
highest weight /, i.e., there is a unique vector me A, (up to constant multi-
ples) such that

am= A, aym, forall ael, and

X;m=0, for all i.

All of the facts in this paragraph can be proved, see [ D, remarks after
Proposition 4.2], by showing that since H?*(g, Ug)=0, the enveloping
algebra g of a finite dimensional complex simple Lie algebra g has no
nontrivial deformations as an algebra and thus there must be an algebra
isomorphism ,(g) ~ Ug. Note that this is only on the level of algebras,
U,(g) and Ug are not isomorphic as Hopf algebras. Thus, the representa-
tion theory of ,(g), provided we are not considering questions of tensor
products of representations, depends only on its structure as an algebra
and is the same as the representation theory of Ug.

Quantum Groups are Ribbon Hopf Algebras

(2.14) ProrposiTION [D]. Let U,(g) be a Drinfel’d-Jimbo quantum
group and let p be the element of ) such that {o;, p> =1 for all simple roots
;. Let u be as given in (2.4). Then

(1) e"ae""=S%a) for all aeW,(qg).

(2) e "u=ue " is a central element in 2U,(q).

(3) (e ") =uS(u)=S(u)u

(4) e "Pu acts in an irreducible representation A, of W,(a) of highest
weight A by the constant exp(—(h/2){ ), 1 +2p>)=q <**+2>,

(5) Ae "u)= (R R) " (e ""u®e ""u).

(6) S(e "u)y=e "y,

(7) ele "u)=1.

Proof. (1) Since both S? and conjugation by e"” are algebra
homomorphisms it is sufficient to check this on generators. We shall show

how this is done for the generator X,. It follows from the fact [ p, X;] =
pX;—X;p =<, p) X;, that

I —h hp ,—h(p—<aj, _ . — oY — 2V — Q2
eﬂX/e P — ohro—h(p <1/p>)A/j_el<a/l)>Xj_er_qX}_S(Xj)‘

(2) This follows from (1) and (28), since e "uau='e" =
S72(S*(a))=a.
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(4) Let H,,.., A, be an orthonormal basis of h. For each element
Jeb* let A,={J, H,>. Note that if m is a weight vector of weight 1 in a
1,(g)-module then H,m=A,m. Let A, be an irreducible 2,(g)-module of
highest weight / and let v, be a highest weight vector in A4 ,. Since elements
of U, (g) =® which are of degree >1 annihilate v, it follows that

uv, = exp <g Y S(FI,-)I:I,-> v,

i=1

The result follows since e "p, =e <412y,
(5) This follows from (2.9), since

A(e™"u)=A(ue ") = A(u) A(e ") = (R R) " (u@u)(e " @e ")
= (B )" (e ""u@e " u).

(3) and (6) and (7) follow from equality e"S(u)=e""u which is
proved as follows. Clearly, ¢"*S(u) = S(ue ~"7) is a central element of 1[,(g),
so it is sufficient to check that both ¢””S(u) and ue ~" act by the same con-
stant on an irreducible representation 4, of ,(g). But e"”S(u) = S(ue ")
acts on the representation A, in the same way that ue " acts on the
irreducible module 4F which has highest weight —w,4 where w, is the
longest element of the Weyl group. Thus, ue "7 acts on the irreducible
module 4 ¥ by the constant

ef(h/2)< —WwoA, 7w0/1>e —h{—=wod, p> _ ef(h/2)</l, A+2p> _ o —<AA+p>

q

since wop = —p and the inner product is invariant under the action
of wy. |

(2.15) COROLLARY. The Drinfel’d-Jimbo quantum group (2,(g), #,e~""u)
is a ribbon Hopf algebra.
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Centralizer Algebras of Tensor Power Representations and the R, R,
Matrix

Let (U, #) be a quasitriangular Hopf algebra. Let ' be a U-module and
let ReEnd(V'® V') be the linear transformation induced by the action of
Zon VV. Let

R=0R, (2.16)

where o: V® V- V® V is the linear transformation given by (v ® w) =
w®v. For each 1 <i<m —1 define

R=1® - ®I®R®I® --- ®1 eEnd(V®") (2.17)

where the R appears as a transformation on the ith and (i+ 1)st tensor
factors.

(2.18) PROPOSITION. The transformations R, are elements of the cen-
tralizer %,,=Endy(V ®™) and satisfy the following relations

R;R;= R;R;, li—jl>1,
RviRi+1Rvi:Ri+1RviRi+la I<i<m-—2

Proof. Let (n®2 V® V) be the representation of 2l on V® V. Let us
abuse notation and denote the transformation on V'® V induced by the
action of 4(a), a e, also by 4(a). It follows from the equation

Rn®%(a)=0RA(a)=04(a) R=04%(a) 6 '6R=A(a) R=n®*a) R,

that Re End, (V' ® V). It follows that each R, Z,, and that the algebra of
transformations generated by the R, is contained in the centralizer Z,,.

The fact that the R, satisfy the first relation follows immediately from the
definition of the R;. The second relation is derived from the relations (2.1)
and (2.2) as follows. In the following calculations we abuse notations so
that all factors in the computation are viewed as elements of End(V ®?).
We shall let R; denote the transformation of ¥®? induced by the action
of #;. We shall let o;; denote the transformation of V' ®3 which transposes
the ith and the jth tensor factors of ¥"®3. Then, using the equation

Ri:R 3R = R5(AQid)(A,) by (2.2)
= (4" ®id)(%12) Ry, by (2.1)
:R23R13R12,
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we have

RiR, R, =0,R,0,3R»01,R)

=0120253013 01203 R 1,030, 65,R»36, Ry,
~——— ~——
=013R1R 3R,

and

Ry,R R, =0,3R»30,R 1,03 R;
=03012023 023012R301,023 023R 1,023 Ry
——— ————

=0 ;3R R 3R,

It fOHOWS that RleRl = RleRz. I
The proof of the following proposition is similar to the proof of Lemma

33.1 in [W4].

(2.19) ProrosiTiON. (1) If (7, W) and (my, V) are two representa-
tions of U, then (7, @ 7, )( %y #1,) € Endy( WR V).

(2) Let (m, V) be a representation of W. Then
(@D Q) ( Ry A1) = R’mf 1 R’m72 e Rl va Rz T R{mfl € Endy(V®™).

Proof. (1) The equality RA(a)# '=4°(a) is equivalent to
Ry, AP(a) R5,' = A(a) which in turn implies 47 (a) =R, A(a) #,,. Thus,
we have 2,,' A(a) B,y = RA(a) # ', which is the same as

Ry RA(a) = A(a) Ry R.
(2) Using (2.2), we have, by induction,
(472 @id)(#1,) = (4@id ") 4"~ @id)(#)
=(A@id® "= 2) R 1y Poim 1) R —23m 1)
=Ry PRom - R —1ym- (2.20)

Similarly, we get that (4"~ ®id)(%1) = im— 1y Lo —2)* ** Pz R -
Let g: VO D@V — V@ =1 be the transformation which transposes
the tensor factors V® =1 and V. As a transformation in the symmetric
group S,, acting on V®” we have 6=0,...,=01,053 0 ,_1),, Where
0.+ 1) 1s the permutation in S, that switches the ith and the (i+ 1)st ten-
sor factors of V"®”. Let R, denote the endomorphism of V@™ induced by
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multiplying by %, € A ®”. Then, viewing (4"~ > ®@id)(£) as a transforma-
tion on V®™ we have

o(4" "2 @id)(#) =0, . Ry Ry Ry, - R

(m—1)m

_ 1
=020 R1,,05. 02

1
X R3m e R(m72)m0-(m7 1)m0-(m7 l)mR(mf 1)ym
1

_ - 1
=01203.. 2 R1,»05.. 02305, Ro05 0,

X034a4~~~mR3m T O-(mfl)mR(mfl)m
= 012R12023R23634R34'"O-(mfl)mR(mfl)m

—R, B, R

m—1-
In a similar fashion one shows that

(A(m_2)®id)(‘%21) O-_l :le RmZRmS o ’Rm(m—l)o-mn-l

:RmflRmfZ”'Rls

where 0 '=0

m--

1 =0(m_1ym" " 02301,. Thus, it follows that

(4" 2 ®id) (% ) :R/mflR/m72"'RIR’IRZ"'R/mfl' |

(2.21) ProrosiTiON. (1) Let (M, R) be a quasitriangular Hopf algebra
and let z=uS(u) be as given in (2.4). The element z acts on each irreducible
representation A, of W by a scalar. Denote this scalar by z(A). Then the
element (R, R,,)* acts on the irreducible component of A, of A, ® A, by the
scalar

2(4) =(u)

z(v)

(2) Let (U, R, v) be a ribbon Hopf algebra. The element v acts on each
irreducible representation A, of W by a scalar. Denote this scalar by v(1).
Then the element R, Ry, acts on the irreducible component A, of A, ® A, by
the scalar

v(4) v(u)
v(v)

(3) Let U,(g) be a Drinfel’d-Jimbo quantum group. The element
Ry Ry acts on the irreducible component A, of A, ® A, by the scalar

q<v,v+2p>—<i,i+2p>—</4,ﬂ+2p>_
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Proof. (1) Since z is in the center of U, the element z acts on each
irreducible representation A, of U by a scalar. The element (z® z) acts on
A,® 4, by the constant z(4) z(x). Similarly, 4(z) acts on the irreducible
component A, of 4, ® A, by the scalar z(v). The result now follows from
the identity 4(z) = (%5, #) 2 (2@ z).

The proof of (2) is entirely similar to the proof of (1). Now, (3) follows
from (2) by noting that the quantum group is a ribbon Hopf algebra with
v=e "’y and that the element e ~"*u acts on each irreducible representa-
tion 4, of U,(g) by the scalar ¢ —<**+2>_ |

(2.22) CorROLLARY. (1) Let (M, R) be a quasitriangular Hopf algebra
and denote the constant given by the action of z=uS(u) on an irreducible
representation A, by z(v). Suppose that V= A, is an irreducible representa-
tion of W. Let &, be an index set for the irreducible W-modules appearing the
decomposition of V®2. Then R, satisfies the equation

11 <R? - Z(w)2> 0.
veds z(v)
(2) Let (U, R,v) be a ribbon Hopf algebra and denote the constant

given by the action of v on an irreducible representation A, by v(v). Suppose
that V=A,, is an irreducible representation of W. Then R, satisfies the

equation
I1 <R?—U(w)2>=o.
ved o(v)

(3) ([Re], formula (1.38)) Suppose that V=A, is an irreducible
representation of a Drinfel’d-Jimbo quantum group W,(g) and that the
Bratteli diagram for tensoring by V is multiplicity free. Then R, satisfies the
equation

n (Rii q(1/2)<"’ v+2p>7<w,w+2p>) =0,

ve 2
where the sign in the factor (R, + qV/2<vv+20> <0022y ¢ peoqtive if A,
is an irreducible component of the symmetric part of V2 and positive if A,
is an irreducible component of the antisymmetric part N*(V) of V®2

Proof. (1) By Proposition (2.19) part (2), R?>=n%®*(%,, #). Suppose

that V@ V=@ .2V, is a decomposition of V®? into irreducibles.
Then, by Proposition (2.21), R acts on the irreducible V', by the constant
Z(@)?/z(v) if V= A,. It follows that R? is a central element of %, and that
the minimal polynomial of R? is

11 (=25%)
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The proof of (2) is similar to the proof of (1). Let us complete the
proof of (3). It follows from (2) that R, satisfies the polynomial
[1,.5 (R?—g<mr+2r —2eet200) — () Given that R, is a central ele-
ment of Endu,(q)(V@)z) since the Bratteli diagram is multiplicity free, it
follows that the eigenvalues of R, are +g!!/2)<"v+20> —<@.@+20) GQince, R,
is a deformation of the transposition which switches the two factors of V' ®?
we know that if we specialize ¢ =1 the eigenvalues of R, are +1 if 4, is
an irreducible component of the symmetric part of ¥®2 and —1 if 4, is an
irreducible component of the antisymmetric part A% (V) of V®2 This
observation determines the signs of the eigenvalues of R,. ||

Let V=4, be an irreducible representation of U and let Z,, =
End, (V®™). Recall, from Section 1, that there is a natural way of identi-
fying the path algebras corresponding to the Bratteli diagram for tensor
powers of V' with the centralizer algebras Z,,. As stated in Section 1 we
shall always assume that the Bratteli diagram for tensor powers of V is
multiplicity free. This is probably not necessary for part (1) of the following
corollary but it is certainly necessary for part (2).

(2.23) CorOLLARY. Let (U, R) be a quasitriangular Hopf algebra and let
V=A, be an irreducible representation of W. Identify the path algebras
corresponding to the Bratteli diagram for tensor powers of V with the cen-
tralizer algebras %,,=End(V®™) as in Section 1.

(1) Let D,=R, R, ,---R,R,R,---R,, €%, be the element
given in Proposition (2.19). Then

2(t" V) z(w)

D2= D2 E . h D2 = s
m Z (D,)rr Err where (D},)rr 2(z)

TeTm
for each T= (7, ...t~ t")ye g™
(2) Fix T=(9, .., "= Y t"NeT™ and let T'=(z, .., ")
e T "~ Let (T')" be the set of tableaux that are extensions of T', i.e. the
set of S= (7', ., 7"V, a")e T ™ If the values (D2,)ss are all different
as S runs over all elements of (T')* then

Eo = l—[ ET’T’DanT’T’_(Di)SSET’T’
" Se(T')* (Drzn)TT_(Dlzn)SS

S#T

Proof. (1) Recall that the identification of the path algebras with the
centralizer algebras %,, is done so that for each T=(z?, .., "=V, ")
€ 7™ we have that E,-V®™ is an irreducible 2l module isomorphic to
A . Furthermore, if we let 77 = (z'%, .., " =) e 7"~ we know that

Epp VO"=E VO DQV>A (1@ A,
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and that, by Proposition (2.21), D2 = (%,,%,,)* acts on each irreducible
component A, of the tensor product E;.,» V®" D ® I by the constant
2(t" =) z(w)/z(z"). Tt follows that

D2 y®m =Dr2n Z ET,T,(V@)(WHI)@ V)

m
T'egm-!

Y. DUErpVE"TVRV)

T e !
= Y (ZuZR:) (Epp VETDVRY)
T egm-1
= Z (%21'%)2 < Z ETT V®m>
T egm-1 Te(T)H*
z2(z"7Y) z(w)
— N SN RXm
a TZTIH Z(T(m)) ETTV )

The result follows as D?

m

(2) It follows from part (1) that

is determined by its action on V'®™,

z2(z" =) z(w)

2 —
ET’T'DmET'T'_ z Z(T(m))

Te(T)*

E;r.

If the Bratteli diagram is multiplicity free and the eigenvalues
z(7" =) z(w)/z(z""™) are all different, then the result follows by taking the
spectral projection of E; ;D2 E;.. with respect to a particular eigen-
value. ||

The following corollaries follow in exactly the same fashion.

(2.24) CoroLrLArY. Let (M, R,v) be a ribbon Hopf algebra and let
V=A, be an irreducible representation of W. Identify the path algebras
corresponding to the Bratteli diagram for tensor powers of V with the cen-
tralizer algebras Z,, as in Section 1.

(1) Let D,=R, R, »---R,RR,---R,, €%, be the element
given in Proposition (2.19). Then

(z" =) v(w)

Dm = Z (Dm)TT ETT> Where (D’")TT = U(T(m)) ’

Teg™m

for T=(t", .., "= ¢myegm
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(2) Fix T=x9, .., t"m =Y t"Yeg™ and let T'=(t,.., " D)
e T ™! Let (T')*" be the set of tableaux that are extensions of T', i.e. the
set of S= (7', ...t =Y, ¢'")ye T ™ If the values (D,,)ss are all different
as S runs over all elements of (T')" then

E — n ET'T'DmET'T'_(DIH)SSET'T'
" Se(T)* (Dm)TTi(Dm)SS

S#T

(2.25) CorOLLARY [Re, formula (3.19)]. Let (N,(g), &, e "u) be a
Drinfel’d—Jimbo quantum group and let V=A, be an irreducible repre-
sentation of W. Identifying the path algebras A,, corresponding to the
Bratteli diagram for tensor powers of V with the centralizer algebras %,, as
in Section 1.

(1) Let D,=R, R, »---R,R,R,---R,, €%, be the element
given in Proposition (2.19). Then

Dm = Z (Dm)TT ETTa

Teg™

where (Dm)TT:q<1(m;’T(m)+2p>7<r(mfn’T(mfn+2p>7<w, w+2p>’

and T and T~V are determined from T by T= (7', .., t" =V, t")ye g™

(2) Fix T=('9, .., Y t"NYeg™ and let T'=(t,.., " ")
e T ™' Let (T')" be the set of tableaux that are extensions of T, i.e. the
set of S= (7', ...t~V g"™ye T ™ If the values (D,,)ss are all different
as S runs over all elements of (T')* then

E — 1—[ ET'T’DmET'T’_(Dm)SSET’T’
T sy (D,) 77— (D,,)ss

S#T

3. RIBBON HOPF ALGEBRAS, CONDITIONAL EXPECTATIONS,
AND MARKOV TRACES ON CENTRALIZER ALGEBRAS

Let (U, #, v) be a ribbon Hopf algebra. Let W be a finite dimensional
U-module. Let {w,} be a basis of W and let {w’} be the dual basis in W*.
Let {, > be the ordinary pairing between W and W* so that {¢, w) =
{w, ¢y =¢(w) for elements ¢ € W* and we W. Using this notation, the
action of an element » € End( ) can be given in the form

bw, =Y {bw;, w' > w;.

J
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The Hopf algebra U acts on W* via the antipode S in the standard way,
ap=>y lad,w,> w/ =3 {p, S(a)w;> w’,
J J

for all aell and ¢e W* We shall often use the relation <{ag,w;) =
{¢,S(a)w;>, which follows from this definition. The material in this
section is very much motivated by [ W1, Section 1] and [W3].

Quantum Trace and Quantum Dimension

Define the quantum trace of an element b € End, (W) by
tr (b)=Tr(v"'ub) =) (v~ 'ubw;, w',

where the sum is over the basis W, of W. If a, b€ End (W) then both «
and b commute with v~'u; thus, tr (ab)=tr(ba) for all a, beEndy(W).
Define the quantum dimension of the M-module W to be

dim (W) = tr (id),

where id denotes the identity operator on W.

(3.1) LEMMA. Let W be the subset of W that indexes the irreducible
modules A, appearing in the decomposition of W. As a trace on Endy (W),
the quantum trace tr, has weights given by

wt(u) =dim(4,),  peW,

where A, are the irreducible W-modules appearing in the decomposition of W.

Proof. By the double centralizer theory we know that as End (W) ® U
modules, W~ @, Z*®4,, where Z* are irreducible modules for
End, (W) and 4, are irreducible modules for 1. By taking traces on both
sides of this isomorphism we have

tr (b)=Tr(v 'ub)="Y, n,(b) y (v "'uy="3 n,(b)dim (1)),

e W e W

where 7, is the irreducible character of End, (W) on the module Z* and
y* is the irreducible character of the irreducible U-module 4,. Thus the
trace of a minimal idempotent p, in the minimal ideal corresponding to u

is

wi(u)=tr,(p,)= Y np,) dim,(4;)= ) 0,,dim,(4;)=dim,(4,). I

reW leW



26 LEDUC AND RAM

The Projection onto the Invariants

Let 7 be a U-module and let V* be the dual module to V. Let {e;} be
a basis of V and let {¢'} be the dual basis in V*. Define

EVRV*STVRV*

| (32)
X ¢ (dim (V)" ¢, v ux) Z e,®e

Where (¢, v 'ux)> = ¢(v~'ux) denotes the evaluation of the functional
¢ e V* at the element v ~'ux e V. It follows from (a) and (b) of the follow-
ing proposition that

(I) éeEndy(V® V*), and

(2) ¢ is the U-invariant projection onto the invariants in V& V'*.

(3.3) ProPOSITION. (a) For every g€l we have gé =ég =¢(g)é,
(b) é&*=¢.

Proof. (a) Letgell, xeV, ¢ e V* Then, by direct computation,
g @)= Wim (1) (o unrg (Teoe )

= (dim,(V)) " (¢, v~ 'ux) A(g) (Z €i®€i>

= (dim ( V)~ (v ux) Zg(l)ei®g(2)ei

g i

=(dim (1)~ g, v ux) ¥ Y {gmened

ik g

X<g(2)€’ia ek>(€j®€’k)
=(dim,(V)) "' <{d, v ux) Y Y <{guene’)>

ijk g

x (e, S(g(z))ek>(ej®ek)
=(dimy (V) "' <{h, v ux) Y, Y {g1,S(g0) ex, ¢/ D(e;®e")
bk g
= (dim,(V)) "' (¢, v~ 'ux) Y Celg) e, ) e;@ e
J. k
= (dim,(V)) "' e()< v 'ux) Y ;@

=&(g) é(x®9),
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where we are using the identity >, g,5(g)) =&(g) which follows from

the definition of the antipode in a Hopf algebra. On the other hand, since
v is in the center of W and u~'xu=S"2(x) for all xe !,

ég(X®¢)=é<§g(1)x®g(z)¢>
=(im (V) 5 (g v g 0> €0
= (dim (V)" gz (™" S(g0y) v lug ) x) 6@ ¢
=(dimq(V))_1gZi<¢, v 'uS " (gn) g1)x) e;®e’
= (dim,(¥)) ! Z (0 lue(g)x) e;®e

=&(g) &x®9),

where we are using the identity 3", S~ '(g.)) &, =¢(g) which follows from
the definition of the skew antipode in a Hopf algebra.

(b) This follows from the following easy computation.
F(x@¢)=(dim,(V))~'é <<¢, v ux) Z ei®ei>
= (dim,(V)) 2, v 'ux) Y (el v lue, ) Y e;®e’
i J
= (dim (V) > <{¢, v ux) dim (V) ) e,@e’
J

=dx®9). 1

The Conditional Expectation

Let V be a U-module and let V* be the dual U-module to V. For
each m,

let Z,,= Endy (V' ®™) and define 4, , , = End(V®" V@ V*). (3.4)

Let {w,} be a basis of V®" =1 and let {w*} be a dual basis in
(V®m=Dy* Tet {e,} be a basis of V and let {e’} be a dual basis in V*.
Then define an operator ¢,, ,: Z,,— End(V®" 1) by

(D) w;=(dim,(V)) "' Y. ((id®v 'u) b(w;®@e;), w e >w,. (3.5)
k.p
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for each be Z,,. The map ¢,, , is called the conditional expectation. Let
ém:id®id®"‘®id®ée(gm+l' (36)

(3.7) PROPOSITION.

(a) é‘/mbé/m = 87;1— ](b) ém = émgm— l(b) fOV all b € :Zn'

(b) e,_1(abay)=aye,,_(b)a,, for all a,,a,e%,, , and be Z,,. In
particular, ¢,, ((a)=a for all ae Z,, .

(c) &,_1(b)eZ,_, foral be Z,,.

Proof. Let W=V®"=D Let {w,} and {e;} be bases of W and V
respectively and let {w*} and {e’} be dual bases in W* and V* respec-
tively.

(a) Then
émbém(ws®ei®ej)
= (dim (V) "' <e/, v "ue; > Y &,,b(w,® e, ® ")
k

=(dim (V)" e/, v 'ue,)y Y, {b(w,®ep), w'®e'> &, (w,Qe,®e")

k,t,1

=(dim(V)) > (e, v lue; > Y, <b(w,®ep), w'®e' y<e, v lue,)

k,t,Lp
X(w,®e,®e’)
=(dim,(V)) *<e/, 0 e,y Y, ((id®@v'u) b(w,@e;), w ®e*>
k,t,p
X(w,®e,®e’)

= 8/777 l(b) é/n(yvs@ei@ ej)-

The remaining assertion follows since ¢,, commutes with elements of

End(W)<End(W® V® V'*).

(b) The action of ¢,, (a,ba,) on a basis element w; of W satisfies

m

& 1(a;bay)w;=(dim, (V)" Y, ((id® v~ 'u)(a, ®id)

k.p

xb(a,®id)(w;®e;), W e Hw,
=(dim (V) 'a, Y. {(i[d®v 'u) bla,w;@e;), W @ >w,

k,p

=a,&,,_,(b) arw;.
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(c) Let xell and let xe End(W) be the endomorphism of W deter-
mined by the action of x on W. Then, since b e End,(W® V), x¢,,b¢,,=
é,,xbé,, =¢e,bxé, =¢,bé,x. This implies that x¢,,_(b)é,,=¢,,_1(b) Xé,,.
Since the map End(W) - End(W® V® V*) given by a+> aé,, is injective,
it follows that xe,, _,(b)=¢,,_(b)x. |

Markov Traces and Framing Anomalies

Assume that V is an irreducible U-module and let Z,, = End,(V®™).
Define traces mt,,: Z,, — k by

tr (b)
mt,,(b) = W (3.8)

The traces mt,, are called Markov traces.
Let R be the element of %, given in (2.16). Since V is irreducible it
follows from Schur’s lemma that Z, =~ k. Thus, ¢,: 25 — k and

v o
&,(R) = dim (7 (3.9)

for some constant a € k. The constant « is called the framing anomaly of R.

(3.10) THEOREM.
(a) IfaeZ, _, then mt,,_,(a)=mt,(a). In particular mt,(1)=1 for
all m.
(b) For eaCh beg}fms mt (b) mtm 1( mfl(b))

(c) For each ae %, ,, mt,(aR,, ,)=dim, (V) tamt,, (a), where
o is the framing anomaly of R.

(d) The Markov traces mt,, have weights given by
dim (4;) ,

reZ

WE,(4) = dim (V)" e

where A, denotes the irreducible N-module corresponding to A.

Proof. (a) By the definition of the Markov trace and the fact that
v~ 'u is a grouplike element of 2,

Tr (v 'u®v 'u)(a®id))
dim, (V)" :

mtm(a) =
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by the definition of the quantum trace on V®™. Since traces on tensor
products of modules are the products of the individual traces we may write

Tr(v~'ua) Tr(v~'uid)
dm,)"

mt)?](a) =
where the first Tr in the numerator is on V® "~ and the second is on V.

Then, by the definition of quantum dimension, we get

Tr(v™'ua) dim (V)
T dimy (V)"

= mtnzf l(a)'

In particular, mt, (1) = tr,(id®”)/dim (V)" = 1.

(b) Let W=V®=1 Let {w,} be a basis of W and let {w*} be a
dual basis in W*. Let {e;} be a basis of 7 and let {e’} be a dual basis of
V*. Let be Z%,,. Since the element v ~'u is a grouplike element of 2l we have

dlmq( V) trq(gmf l(b dlm Z <U ] )1171 ) Wsa M}S>

=Y (v 'u®id)(id® v 'u) b(w,®e,), w @)

s, k

=2 (v u@vu) b(w,®ep), w®e)
s, k

—Z o lub(w,®e,), w'® e

=tr, (D),

where the quantum trace on the left hand side of equation is the quantum
trace on V®" =1 and the quantum trace on the right side of the equation
is the quantum trace on V®”. The statement follows by converting to
Markov traces.

(¢) Let ¢, be the element of Endy,(V®"® V*) given by ¢, =
id®"-D®¢, where ¢ is as in (3.2). Then, since aeEnd,(V®"m-1),
a commutes with ¢,, and

& aR

m m —

lém:aémR/mflém
=a(id®" =D ® (¢R¢))
=a(id®" Ve (R)é)

=dim (V)" aaé

me
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It follows that ¢, ,(aR,, ,)=aa and thus that
mtm(aRmf 1) = mtmf 1(81717 l(aRmf 1)) = dlmq( V) ! od mtmf l(a)'

(d) This follows immediately from Lemma (3.1) and the definition of
the Markov traces. ||

(3.11) ProposiTION. (1) Let W= (U, R, v) be a ribbon Hopf algebra
and let V= A, be a irreducible W-module. Since v is a central element of 1,
the element v acts by a constant v(1) on V= A,. Then the framing anomaly
« of R is given by a=v(1)~".

(2) Let g be a finite dimensional complex simple Lie algebra and let
U=U,(g) be the corresponding Drinfel’d-Jimbo quantum group. Suppose
that V=A, is an irreducible representation of highest weight A. Then the
framing anomaly o of R is given by o= q<***27.

Proof. (1) By Proposition (3.7)(a) it is enough to show that
& Ré,=(dim (V) " v(4) "' &, as elements of Endy(V'® V'® V*). Let {e,}
be a basis of ¥ and let {¢’} be a dual basis in V*. It follows from the
identities (2.5), (2.6) and (2.7) that if Z=),a,&b, and (S®id)(Z) =
7 =3 ,¢;®d;, then

20,8%a) =% d;S(c;) =3 S~ d))e;=u"".
i J J
Let x, ye V and let ¢ € V*. Then,
& RE(x®y®¢) = (dim (V) ' (¢, v 'up) &RY x® e ®e*
k

= (dim (V) "' {d, v luy) &, ) be, ®a;x@e”

k,i

=(dim (V) ><¢, v 'uy> Y, <e*, v ua;x) bie,

ki, 1

®e,®c
= (dim,(V)) > <¢, v 'uy> Y (bv 'ua;x) @e,®e’
il

=(dim (V) > <{¢, v 'uy> Y. b;8%(a;) v 'ux®e, @€’

il

=(dim, (V) *<¢, v uy> Y u v 'ux@e,@¢’
7

=(dim (V) ™' &0 'x®y @ ¢)
= (dim,(V)) "' v(A) "' E(x @y @ ¢).
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(2) follows immediately, since, by Proposition (2.14), the element
v=e "y acts on an irreducible module 4, of highest weight A by the
constant ¢~ <***t2>_ |

A Path Algebra Formula for é,,

Assume that V' is an irreducible Il module and that the branching rule
for tensoring by V is multiplicity free. Let Z,,=Endy(V®") and 4, , =
End, (V®"® V*) as in (3.4). Identify the centralizer algebras %,
1 <k <m, with path algebras as in Section 1. It can be shown that if the
branching rule for tensoring by V' is multiplicity free, then the branching
rule for tensoring by V* is also multiplicity free. It follows that the
sequence of centralizer algebras %,<.-.-<=¥%,,_,=%,<%,., can be
identified with a sequence of path algebras corresponding to a multiplicity
free Bratteli diagram. Let us review the notation.

(1) 1l is a set indexing the irreducible representations of 2L,

(2) Z, is a set indexing the irreducible representations of the
algebra Z,.

(3) By the double centralizer theory 7, is naturally identified with
the subset of Ul containing the indexes of representations that appear in the
decomposition of ¥®* into irreducible A-modules.

(4) Let %, ,, be an index set for the irreducible representations of
%, which is naturally identified with the subset of 1l containing indexes
of representations that appear in the decomposition of V®"® V'* into
irreducible U-modules.

The notation for paths and tableaux will be as in Section 1. Let mt,,
denote the Markov trace on Z,, and let wt,, denote the weights of the
Markov trace.

(3.12) Tueorem. (a) Viewing Z,, , and 6,, ., as sets with elements in
A, we have Z,, <%, ., .
(b) One can identify the centralizer algebra €, with a path algebra
in such way that é,, is given by the formula

ém = Z (ém)ST EST)

+1
(8, Tye@ T}

m—

where, if S= (""", ¢"), ¢+t and T= (""", t"), ¢ +V), then

W, (r") wt,,(a™)
(ém)STz thfl(a(mil)) ’

0, otherwise.

if oD =g"m=D g5 elements of U,
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Proof. Step 1. Let M'=(u'?,..,u")e ™ and let M" =(u'?,..,u"~1).
Then

Wt (1)
e A(Epny) =———"2C L E\unpe #0.
R e, T ()
Proof. Suppose that
8m71(EMer)= Z CIUNR,,EU”RHGgmil,
(v, R”)EQ””I

for some constants a,.z€k. Suppose that (S”,T")eQ™ ' and that
S"=(c'", ..., "~ 1). Then

mt,,(Egr o Eppar) =mt,(Egig Egip Eppag)
=, (EsrErrar Eses:)
=0 50arr O prar W, (1),

On the other hand, by Proposition (3.7b)

mtmf 1(87;1 — I(ES”T”EM'M')) = mtm — I(ES"T"gm — I(EM'M'))
=mt,, (Es7&n_1(Epar) Esrsr)
= mt,,,7 I(ES”T"aS”T”ET”S”ES”S”)

=g Wi, (a1,

By Proposition (3.7a), these two expressions are equal. Since the weights of
the Markov trace are nonzero, it follows that

th(lu(”’)) lf SU — T/! — M!I

0, otherwise,

and, if S"=T7"=M" then ag; #0. The formula for e¢,,_(E )
follows. |

Step 2. 1t follows from Proposition (1.4) that ¢,, has the form

én= 2  (E)srEsr, (3.13)

(S, T)EQerl

m—1

since, by its definition, ¢,, commutes with all elements of &, .
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Step 3. Let (S, T)eQ"*!. Suppose S=(c?, .., c"*V) and define
S'=(¢?,..,0") and S"=(c?, .., 0" V). Define T' and T” analo-
gously. Let M = (u'?, .., u")e 7™ and let M" = (u'©, ..., u' = ). Then, if
(€,,)ss# 0, then

wt,(a")
2,) 55 = : 14
(em)SS th 1(0_(,,1,1))5 (3 )
and
. . Wt (") wt,, (")
(em)SM (em)MS: (315)

th77 l(o'(m B 1))2

Proof. 1t follows from the path algebra definitions and (3.13) that

ESSémEM'M'émETT:55”M”5M”T” Z (ém)SM (ém)MTEST’
M

where the sum is over all tableaux M such that M = (u'9, ..., u'™, g 1),
Since the Bratteli diagram is multiplicity free there is at most one such M.
Thus

ESSémEM'M'émETT: 55”M”5M”T”(érn)SM (ém)MT EST' (316)

Let S and M" be as above. Then

(")
Essen 1(Expar) €nErr=——""—r"1 EssExrar € Err

wt,, (1)
wt

(
Wt]?'l(lll (’n)) v
W OsmrOnrr () st Esr. (3.17)

=

m—1

Since €,,E 01 € =28m_1(Eppar) €, it follows that (3.16) and (3.17) are

equal. Assuming that S=7T and that S"=M", ie. ¢ =", for all
i<m—1, this gives the following equation.

v v Wt'ﬂ(ﬂ(nz)) v
(€m)sm (em)Ms=m (€n)ss- (3.18)
The formula in (3.14) follows by setting M = S. The formula in (3.15) now
follows from (3.14) and (3.18) (recall that u™ V=g =), |

Step 4. For each i€ %, | there exist S such that (S, S)e Q7' and
(ém)SS ?é 0

Proof. Fix AeZ, , and let M be such that "~ " = ). Assume that
(€,)ss=0 for all S such that (S, S)eQ7*'. Then (&,)su (¢,)ys=0 for
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all S. So, by (3.16), Egs€,,Epprré,Ess=0 for all S. This implies that
&, 1(Euyrar) =0 which is a contradiction to Step 1. |

Step 5. If S is such that (¢,,)g¢#0 then g~V =g+ D,

Proof. Let SeZ™*! be a tableau such that (¢,,)¢s#0. Then, as
U-modules, A, = Egb(VE"® V*) for all be €, , such that Eggh #0.
In particular, since (¢,,)ss# 0,

Egs6,Ess€,=CsEssEgs€,, #0
and we have that

Ao.(m+l) = EssémES/Sfém( V®m ® V*)
=y EssEgis €, (VE" @ V*)
> Eg(Egg VO V6, (VO VH)).

Since Eg g VO "V = A -1 and e, (V® V*) = A it follows that A,m+1
is isomorphic to an irreducible component in the tensor product
Ay ® Ag. Thus Aywmen=A,m-1, and so ¢+ V=g~ as elements
of .

Let us complete the proof of the theorem. Part (a) follows from step 5.
Recall from Section 1 that there is some freedom in the choice of the matrix
units E,, and E,, when M # S. This freedom allows us to normalize the
matrix units Eg,, and E,,s in any way such that (3.15) holds. In particular,
we can choose that normalization so that the formula is as in the theorem.
The fact that (¢,)gy =0 if a " V#g™+D follows from steps 3, 4,
and 5. |

4. CENTRALIZER ALGEBRAS OF TENSOR POWERS
OF V', TYPE 4,

We shall use the notations for partitions given in [ Mac]. In particular,
a partition 4 of the positive integer m, denoted A |m, is a decreasing
sequence A= (4, =4,> --- >24,2>0) of non-negative integers such that
A+ --- +4,=m. The length /(/) is the largest j such that A,>0. The
Ferrers diagram of 4 is the left-justified array of boxes with 4, boxes in the
ith row. For example,

(5,3,3,1)=
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is a partition of length 4. Given two partitions A, u we write A Su if A, <y,
for all . We have that A =y if the Ferrers diagram of 1 is a subset of the
Ferrers diagram of u.

The Bratteli diagram given in Fig. 1 is called the Young lattice. The
shapes A€ Y,, of Y which are on level m are the partitions of m;

Y, ={iFm}.

A partition /e Y,, is connected by an edge to a partition ue Y,,, , if # can
be obtained by adding a box to 4. The Young lattice Y is a multiplicity free
Bratteli diagram.

Classically, a standard tableau of shape A |-m is a filling of the boxes in
the Ferrers diagram of 4 with the numbers 1, 2, ..., m such that the numbers
are increasing left to right in the rows and increasing down the columns.
Each tableau Te.Z % in the Bratteli diagram Y can be identified in a
natural way with a standard tableau of shape 4. Let P be a standard
tableau of shape A and let T= (¢, 7V, .., 1) e F* be the tableau such
that ¢'”) is the partition given by the set of boxes of P which contain the
numbers 1, 2, ..., i. One easily shows that this identification is a bijection
between the standard tableaux P of shape / and the tableaux Te 7 *

The r-truncated Young lattice is the Bratteli diagram Y(r) which is given
by the sets

Vu(r)={2Fm|l(2)<r}.

A partition A€ Y, (r) is connected by an edge to a partition ue ¥, ,(r) if
A< u, or equivalently, if g can be obtained by adding a box to A. The
r-truncated Young lattice can be obtained by removing all the partitions
with more than r rows (and the edges connected to them) from the full
Young lattice Y. It is easy to sece that tableaux in the r-truncated Young
lattice correspond to standard tableaux of shapes A€ ¥(r), in exactly the
same way as tableaux in Y correspond to standard tableaux. Note also that
the full Young lattice can be viewed as the limit of the r-truncated Young
lattices as r goes to infinity.

For the remainder of this section let us fix r, and, unless
otherwise specified, all paths and tableaux shall be from the
Bratteli diagram Y(r).

Fix S= (" 2,6 Y, g")e 7™ . Suppose that ¢ " is obtained
by adding a box to the kth row of ¢"~2 and that ¢ is obtained by
adding a box to the /th row of ¢~ 1. Now suppose that T=(g"" =2,
=1 g™ is such that (S, T)eQ” ,. If k=1 then we must have that
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FIGURE 1

=D =gm=Y 1If k #[ then either 1" V=g~ or 1"~ " is the shape
obtained by adding a box to the /th row of ¢ ~2). Thus,

there is at most one 7'# S such that (S, T)e Q7 _,. (4.1)

The Centralizer Algebras Z,,

For the remainder of this section fix W=, (sl(r+1)). Let ¢, ..., &,,, be
an orthonormal basis of R”*!. Then h*, the simple roots, «;, the fundamen-
tal weights, w;, and the element 2p are given by

r+1
z A[ZO}’

i=1

b*z{zilé‘l"’_ A1

X=& —¢&i41, I<i<r,
i r+1
w;=&+ - +é&— & 1<i<r,
! r+1 z
2p=)2pe;i=re,+(r—2)e,+ - —(r—2)e,—re, ;.

The finite dimensional irreducible modules A, of U, (sl(r+ 1)) are indexed
by the dominant integral weights,

+
ﬁ:{}.:;blgl++ LIZ 1122/1,20},
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where |A| =4, + --- + 4,. It is sometimes helpful to identify each dominant
integral weight A with the partition A= (4,, ..., 4,). Note that all partitions
in W have at most r rows. It will also be helpful to note that, if
A=dyer+ o F e, —([Al/(r+1)) X ;¢ e 1l then

| 2

a4 2py = Z B

i=1

—+ Z 2p:2;. (4.2)
i=1
Let V=4, the irreducible U-module of highest weight w,. The decom-
position rule for tensoring by V is given by

4,QV= @ A, (4.3)

wneit

where the sum is over all partitions x € Il that are gotten by adding a box
to the partition A. It follows that the Bratteli diagram for tensor powers of
V= V*!is the r-truncated Young lattice Y(r).

(4.4) PrROPOSITION. Let V=V*" be the irreducible W=2U,(sl(r+1))-
module indexed by the fundamental weight w,. The matrices R, € End,(V®")
satisfy the relations

||
K

R,R;=RR,, li—j|>1,
RiR;. R;=

R, RR,,,, 1<i<m-—2,
(¢"" VR, —q)(q"" TR+ ) =0,

1<i<m-—1.

Proof. The first two relations follow from Proposition (2.18). From
(4.3), we have

VOVEA L ® A=Az, ®A,,
Use (4.2) to show that
sy sy +2p>=2—(4/(r+1))+2p,+2p,=2r—4/(r+1),
Qo 20,+2p) =4—(4/(r+1))+4p,=4+2r—4/(r +1),
oy, 0 +2p>=1—1)(r+1))+2p,=r+1—-1/(r+1).
It follows that

(1/2)<w2, w2+2p) —< w1, w01+2p> _ ,—1—(1/(r+1))
q —Cj ’

(1/2)2w1, 2w +2p> — w1, w) +2p> =6[1 —(1/(r+1))

q
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The result now follows from Proposition (2.22) part (3) and the standard
fact that A2, is antisymmetric part of ¥®2 and A, is the symmetric part
of ¥®2 |

A Path Algebra Formula for R,

Let Y= Y(r) be the Bratteli diagram for tensor powers of V=V
Identify the centralizer algebras %, = End, (V' ®") with the path algebras
corresponding to the Bratteli diagram Y(r). Recall that the path algebras
have a natural basis Egy, (S, 7)€ Q™ of matrix units.

For each tableau S=(¢'?, .., 6"")e 7™ define

V,(S) =<, 0 +2p> — (oD, 6V £2py — ooy, 0, + 29D, (45)
Let (S, T') be a pair of tableaux
S=(d9, ., a"=D g gi+th gim)
and
T=(c", .., gt~V ¢ gt gtm)

in 7 " such that S and T are the same except possibly at the shape at level
i—1. In other words the pair (S, 7)€ Q:"}. Define

1 1
) T)=— (V. V(T . 4,
CuS, T) 2(V1+1(S) Vil ))+r+1 (4.6)
These constants are defined so that, if D,,=R,, R, ,---R,R,R,R,--

Rm 72Rm —1» then

Dm: Z (Dm)SSESS’ Where (D]")SS:qu(S)’

Seg™m

and
q72<>,,,_,(s, D zqi(z/rJrl)(Dr;l)SS (D) 77

The first of these formulas is a consequence of Corollary (2.25).

(4.7) ProposITION. Let S=(d'", .., a"™) be a tableau in the Bratteli
diagram Y(r). Then

—2m+2

S)=2(c{" D —k+1
Vm( ) (Jk + )+ +1 s

O 1(S, S) =0 — gV _ k41,

m—1
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where o™ is obtained by adding a box to the kth row of ¢~V and ¢~V
is obtained by adding a box to the Ith row of ¢~ 2.

Proof. Let S=(c'", ..,c" be a tableau in the Bratteli diagram Y(r).
Then, since ¢ differs from ¢~ by adding a box in the kth row we
have

r r+1
m—1
—1 —1
O_(m ): Z O'E-m )61-— 1 Z 8]_’
i=1 r+1,=
and
m r+1
"= "+ + Y olmMe— ] Y e

I<i<r r+1,=

i~k
Using (4.2) to compute V,,(S) we get

Vu(8)=<{a", "™ +2p) = a1, gV +2p) — Loy, 80+ 2p)

=[5t ey

i#k

m2

r+1

+( X 200 p )+ 200 4 1

i#k
_<i§k (U§’711))2> —(0'}(’"*”)2-;-(]4:’;71)2
_<,§k 2‘75"771)/’1‘) — 20" Vpi—1 +r+%—2p1
zzaXM7l)+2(pk_P1)+%

The formula for V,,(S) follows since 2(p,—p;)=(r—2k—1))—(r—1)=
—2k—2=2(—k+1).

The formula for <,, (S, S) now follows easily since

1
r+1

1
<>m71(S9 S)ZE(VW(S)_mel(S)) +
—m+1
r+1

—(m—-1)+1 1
- +
r+1 r+1

=(o" "V —k+1)+ — (g —=1+1)

1 1
:G;:")—k—ﬂgmil)-i‘l—m-i‘m. I
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Remark. 1In terms of standard tableaux, the value of <,(S,S) is the
“axial distance” between the box containing i and the box containing 7 + 1.

(4.8) THEOREM. One can choose the identification (Section 1) of the cen-
tralizer algebras %,, with the path algebras corresponding to the Bratteli
diagram Y(r) so that the matrices R, are given by the formula

Ri: Z (Ri)STEST:
(s, )=}
where for each Se€ I ™ we have
<GS, S)

VO+D(B Yoo = q
TSI s s

and for each pair (S, T)e Q" such that S # T we have

L VIOAS, 8)—11[O (S, 8)+1]
- [1O4(S, )]

ql/(rﬂ)(léi)sr

Proof. Since R,e Z,=End,(V®/+D) commutes with all elements of
%, =End(V®U~1) it follows from Corollary (1.5) that

Iéi: Z (RI)STESTa
(S, T)eR”

m—2

for some constants (R;)sz. In view of the imbeddings 2, = %, < --- < Z,,,
it is sufficient to show that the formulas for R, hold for i=m — 1.

By definition D,,=R,, R, ,---R,R,R,R,---R,, ,R,, , and it
follows that

51 15
Rmfl_Dm Rmlemfl'

The relation (¢ *YR,—q)(¢""*VR,4+ ¢~ ')=0 from Proposition (4.4)
can be written in the form ¢/"*VYR, |, —q VUTYR-1 =(qg—q~') or,
equivalently, in the form

q]/("+l)R 1_q_Z/(r_'—I)Dn_;lql/("+l)Rn7—lDm—l:(q_q_l)' (49)

m—
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Let S€.7 " and view (4.9) as an equation in the path algebra. Since the
matrices D,, and D,, , are diagonal, taking the E jg-entry of this equation
yields

qg"" (R, )ss—q T D, ss gt (R, 1)ss (D, 1)ss

=(g—q ")oss,

or, equivalently,
(1 _qu/(r+1)(D};1)SS (D, —1)ss) g+ (Rmfl)SSz (g—q"),(4.10)

Since the right hand side of this equation is nonzero, the left hand side is
also nonzero and we may write

(q—q ") dss
1—g 2"+ 9(D, Vs (D,, 1)ss

‘11/('.+1)(Rm71)ssz

Plugging in the following

1 1

q—q _ q—q
1—g 2D, s (D, _1)ss 1—g 2159
3 q<>m—l(SsS)(q_q*1)
_q<>mfl(S,S)_q—Olwl(S,S)
_ qom—l(S»S)
[<>m71(S» S)]

gives the first formula in Theorem (4.8).

Now let us prove the second formula in Theorem (4.8). Let Se 7 7 _,
and suppose that Te.7 72 _, is such that (S, T)e Q7 _, and T #S. By the
remark in (4.1), T is unique. It follows that

R, )ss=q7 TR, )ss) >+ 47T (R, ) sr (R, ) gs
(4.11)

On the other hand, the relation (¢ *"R,, _,—¢)(¢""*"R,, +q ") =
from Proposition (4.4) can be written in the form ¢*"*VR? | —1=
ql/(r+ ”Rm_l(LI*q_l)a giving that

qz/(r+l)(]§2

m—1

)ss=(q—q"") g"" (R, _)ss+1 (4.12)
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Equating (4.11) and (4.12) and using the formula for ¢""*'"(R,, |)ss
gives

(ql/(rJrl)Rmfl)ST(ql/(rJrl)Iémfl)TS
= 1 + (q - q_l)(ql/(’.+ 1)lém— I)SS_ (ql/(H— 1>Rvm—1)?$‘$
= (q_ (ql/(r+ 1)Iémfl)SS)(q_l + (ql/(r+ ])Rmfl)SS)

q<>,'(S,S) qu(S,S)
— 4 *14_7
<q [0S, S)])(q [ (S, S>]>

Si(S, S —1
'—q q q—q ")
<SS, S) — <30S, S)

— (S, S)) _ 5008, S)(

q(q

q

<SS, S)

—q
— g iS4 g O S)
g<isS —

q

q'(q 9—q"")

— Vil
q <GS, S)
_Ci(svs)_l)(

S, S)+1 — S S)+1 <>,-<S,S)—1)

q q

-34S, S)

(¢

- <i(s,S)

q q
_[CiS, 8) +TI[C(S. 8)—1]
[Ci(S.8)]?

It follows from the remarks at the end of Section 1 that we can choose
the normalization of the elements Eg; so that (R,, ,)srand (R,, ,);s are
as given in the theorem. ||

Remark. 1f (S, T)e Q:*} such that S# T then O (S, S)= - (T, T).
Thus, the formula for ¢+ (R, )¢ given in Theorem (4.8) is actually
symmetric in S and 7.

Matrix Units

Given a tableau T= (7, .,1")eZ™ let T’ denote the tableau
T =9 .,t" " eg™ ! Let (T')" denote the set of all extensions
of T';

(T)*={SeT™| S =T'}.

Given tableaux S = (¢, .., ¢") and T= (¢, .., 7)) in 7" let (R,, ) sr
be the constant given by Theorem (4.8) in the case that
(g"m=2, gm=1 glm) (gm=2) gm=1 rm)yeQm and let (R, 1)s7=0
otherwise.

(4.13) Lemma. Let T'= (79, ., 1" NYe T ™1 and let (T')* be the
set of extensions of T'. Then the values V,,(S) are all different as S ranges
over all elements of (T')™*.
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Proof. Let S=(t, ..t D g")e(T")*. By the previous lemma,
V. (S)=2(z""""—k+1—(m—1)/(r+1)) if ¢ is obtained by adding a
box to the kth row of 7" =), Since

T(1n771)> __.2,[;(11171)2___2,[_?;171)
it follows that
m—1 m—1
e T s g
r+1 r+1

m—1
r+1°

>.o>gmh 1 —

(4.14) TueorREM [RW]. The matrix units Egre Z,,, (S,T)eQ™ are
given in terms of the R,, 1 <i<m— 1, inductively, by the following formulas.

} (1) Let TeT™ Then EZ"TZHSG,F”‘,S?&T,S’:T’(ET’T’Rm—lET’T’_
(Rmfl)SS ET’T')/((Rmf])TT_(Rmfl)SS

(2) Let (S, T)eQ™. If shp(S')=shp(T') then Egy=E g Er where
E . is given by (1).

(3) Let (S, T)eQ™. If shp(S") #shp(T') then

1 .
Esrszs'M'quEN'T'ETT,

where M, Ne T ™ are of the form M= (u'®, .., u"" =2, shp(S’), shp(S)) and
N=(u', .., u"=2, shp(T"), shp(S)).

Proof. (1) Let T'e 7 ™' It follows from the formula for R,, , that

ET’T’Rm— 1 ET’T’ = Z (Rm— I)SS ESS-

Se(T)Ht

The identity (1) follows if we show that the values (R,, ;) are all dif-
ferent as S runs over all tableaux in (7')*. Since <,, (S, S)=
3Vl S) =V, (SN + 1/(r +1) = 3(V,(S) =V, .f(T") + 1/(r + 1) it
follows that the values (R,, ,)ss are all different as S runs over all
tableaux in (7') " if and only if the values V,,(S) are all different as .S runs
over all tableaux in (7”)*. Statement (1) now follows from Lemma (4.13).

(2) follows from the definition (1.3) of the embedding of path
algebras.
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(3) We must show two things:

(a) For each possible choice of M and N the formula determines
Egr.

(b) There exist tableaux M and N in .7 ™ of the form M = (u'?, ...,
w2 shp(S"), shp(S)) and N = (u'?, ..., u'" =2, shp(T"), shp(S)).

Suppose that M and N are given. Since shp(S') # shp(T"), it follows from
(4.1) that M and N are the unique extensions of M’ and N’ respectively,
such that shp(M)=shp(N)=shp(S). By Theorem (4.8) we know that the
values (R,, )~ are nonzero. It follows that

1 y 1 y
ViES’M’Rm—lEN’T’:"iES’M’ Z (Rm—l)UVEUVEN’T’

(Rmfl)MN ( mfl)MN (U, V)e@m

1 .
= ﬁ ES’M’ (Rm - I)MN ENMEN’T' = EST:
m—1)MN

proving (a). To see that (b) is true we reason as follows. Suppose that
shp(S') is a partition that is the same as sip(S) except that there is a box
missing from the kth row. Suppose that shp(T’) is a partition that is the
same as shp(S) except that there is a box missing from the /th row. Since
shp(S") #shp(T') we know that k#/ Then there is a unique partition
1" ~? that is the same as shp(S) except that there is a box missing from
the /th row and a box missing from the kth row. The partition x" =% is
uniquely determined by S and 7, and M and N can be determined by fixing
some tableau (u'?, .., u""=?)e T2 of shape " ~?. |

(4.15) COoROLLARY. The centralizer %,,=End, (V®™) is generated by
the matrices R,, 1 <i<m—1.

Proof. Tt follows from the identification of the centralizer algebras Z,,
with the path algebras that the matrix units Egr, (S, T') € Q™ span the cen-
tralizer algebras Z,,. In view of Theorem (4.14), the matrix units Egs,
(S, T)e Q™ can be written in terms of the R, matrices. The statement
follows. |

5. CENTRALIZER ALGEBRAS OF TENSOR POWERS OF
V=4, TYPE B,

The Bratteli diagram is given in Fig. 2. The shapes /€ B,, of B which are
on level m are the partitions of m — 2k, 0 <k <| . m/2 |;

B,={itm—2k 0<k<|m/2]}.
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A partition A€ B,, is connected by an edge to a partition ue B, , , if u can
be obtained from 4 by adding a box to 1 or by removing a box from A. The
diagram B is a multiplicity free Bratteli diagram. The tableaux Te.7 * in
the Bratteli diagram B are called up-down tableaux since they are sequences
of partitions in which each partition differs from the previous one by either
adding or removing a box.

The r-truncated Bratteli diagram B(r) is given by the sets

B, (r)={iFm—=2k0<k<|m/2]|1(A)<r}.

A partition 2 € B, (r) is connected by an edge to a partition ue B, , ,(r) if
i can be obtained by adding or removing a box from A. The Bratteli
diagram B(r) is a multiplicity free Bratteli diagram. It can be obtained from
the Bratteli diagram B by removing all the partitions with more than r
rows (and the edges connected to them). It is easy to see that tableaux in
the r-truncated Bratteli diagram B(r) are up-down tableaux that never pass
through a partition of length greater than r. The Bratteli diagram B can be
viewed as the limit of the Bratteli diagrams B(r), as r goes to infinity.

For the remainder of this section let us fix r, and, unless
otherwise specified, all paths and tableaux shall be from the
Bratteli diagram B(r).
(5.1) LemMA. Fix S=(a" % a" Y, 6")eT ™ , and assume that
a" =2 £ as partitions. Then there is at most one T#S such that
(S, TyeQ™”

m—2"

Proof. Given a partition A let us write u =71+ ¢, (resp. u=41—g¢;) to
denote that u is obtained by adding (resp. removing) a box to (resp. from)
the kth row of A Fix S=(¢" "% ¢ ", ¢")e 7™ , and assume that
g =2 # g™ as partitions. Suppose that ¢~V =¢"~2 1+ §,¢, and that
o™ =g~V 4 5,¢, where §, and J, are either +1. If T exists then
T=(c""2%1t"= Y g") is given by 1" V=¢""2 44, and ¢ =
"= 4 §,¢.. The path T exists when 1"~V =g" =2 4 §,¢, is a partition
and not equal to ™~ V. |

The Centralizer Algebras Z,,

For the remainder of this section fix g to be a complex simple Lie
algebra of type B,, C, or D, and let U =2 ,(g) be the corresponding quan-
tum group. We shall use the standard notations ([ Bou], pp. 252-258) for
the root systems of Types B,, C,, and D, so that ¢,, .., ¢, are an orthonor-
mal basis of h* and the element 2p is given by

2=Y 5= Y (y=2k+ 1D, (52)
k=1 k=1
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where

2r, in Type B,,
y=<2r+1, in Type C,, (5.3)
2r—1, in Type D,.

The finite dimensional irreducible representations of U, (g) which appear as
irreducible summands in the tensor powers of V'= A, of U,(g) are indexed
by the dominant integral weights in the set

wi

U={i=lie+ - +Ae, | el dy= - =120}

We shall identify each dominant integral weight eIl with the partition
A=Ay, ., 4,). It will be helpful to note that, if A=24,e,+ --- +1,¢6,€lU
then

r

Cndt2py =Y 224 2p,i,. (5.4)

i=1 i=1

Let V=4, the irreducible U-module of highest weight w,. In type C,,
the decomposition rule for tensoring by V' is given by

1,V D 4, (5.5)

nelr*

where the sum is over all partitions x el that are gotten by adding or
removing a box from the partition A. It follows that in Type C, the Bratteli
diagram for tensor powers of V=4, is given by B(r). In Types B, and D,
the tensor product rule given in (5.5) holds whenever || <r—1 but must
be modified slightly when |4| >r — 1. In order to avoid this complication

(5.6) For the remainder of this section, we shall assume
that in Types B, and D, we have that r >>0; in particular,
m<r and i <r whenever the constants m and i are used,

The Elements E,

The weights of the Markov traces on Z,, = End,(V ®™) are given by

dim, 4,

wt,,(4) =
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where the quantum dimension of V=4, is given by

[2r]+1, in Type B,,
dim(V)=<[2r+1]—1, in Type C,,
[2r—17+1, in Type D,.

Since all automorphisms of the Dynkin diagram corresponding to g fix
the node corresponding to the fundamental weight w, it follows that
V=4, =V*=(4,,)* As in (3.2), define éeEndy(V® V) to be the

U-invariant projection onto the invariants, 4, S V'® V. Define
E,=6dim(V)(id® --- ®1d®e®id® --- ®id) e Endy (V®™),

where the factor ¢ appears as a transformation on the ith and the (i+ 1)st
tensor factors and

5:{1, in Types B, and D,, (58)

—1, in Type C,.

By Theorem (3.12), there is a natural identification of the centralizer
algebras Z,, with the path algebras corresponding to the Bratteli diagram
B(r) so that

E‘mfl= Z (E/'nfl)STEST

(S, T)eQ"

m—1

where, if S= ("=, ¢ =Y, ¢") and T= (¢ =2, "=V ¢") then

] 5\/dimq(/lia(mfn)-dimq(/lfwfn) it o= gm
(E, 1)sr= dim,(45-2) (59)
0 otherwise.

where we have replaced the weights of the Markov trace by g-dimensions.

(5.10) ProrosITION. Let V=A,, be the irreducible W =2,(g)-mo
indexed by the fundamental weight «,. The matrices R, and E
End, (V®™) satisfy the relations

dule
. in

1
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where
q, in Type B,,
z=dq"={ —q¢”*",  inTypeC,
!, in Type D,,

Proof. (a) and (b) follow from Proposition (2.18). From (5.5), we have
VR VAL @Ay @Any=A0@ Ay, D A,,.

Use (5.4) to show that
<0’0+2p>=09 <81+82381+82+2p>=2y_2’

{2¢e1,2e14+2p>=2y+2, and (e, e,+2p)=y.
It follows that
(1/2)<0,0+2p> —<e1,e1+2p> :q—y

q

q(1/2)<€1+82,81+€2+2p>7<81,£1+2p> =q71

l

b

and q(1/2)<2€1,2€1+2p>*<€1,81+2ﬂ>:q‘

Relation (c) now follows from Corollary (2.22); the signs of the eigenvalues
of R, are determined by which summands are in A2 (V),

A2 (V) :{A(lz), %n Types B.and D,,
A2y @ Ay, in Type C,.

(d) follows from Proposition (3.11) part (2) and the fact that
q<1;1,1:1+2/)>:qy'

Let us prove (e). By Corollary (2.22), R, acts by the eigenvalue z~' on

the irreducible summand A, in V® V. Thus, it follows from relation (c)
that

(Ri*Q)(Iéi‘f‘q_l)
(z7'=q)z"" g7

E,=5dim (V)

Using this formula and the relation

—1
odim (V)=——+1,
q9—49
it can be easily checked that relation (c) is equivalent to relation (e).
The relation R, E, =zE,, follows by noting that, except for the constant
6 dim(V), E, is the projection onto the invariants 4,< V'® V and that R,
acts by constant z~' on 4,. All of the relations in (f) follow silimlarly. ||
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A Path Algebra Formula for R,

Let B(r) be the Bratteli diagram for tensor powers of V=4, (with the
assumptions in (5.6)). Identify the centralizer algebras %, = End,(V®™)

m

with the path algebras corresponding to the Bratteli diagram B(r). Recall
that the path algebras have a natural basis Egr, (S, T)e Q" of matrix
units.

For each tableau S=(¢'?, .., 6") e 7™ define

Vi(8)=<a", a"+2p> ="V, 0"V +2p) — w0 +2p). (5.11)

Let (S, T') be a pair of tableaux

and
T=(a", .., c=D ¢ g+  gtm),

in 7 such that S and T are the same except possibly at the shape at
level i. In other words the pair (S, T) e Q" . Define

CuS, T)=3(V;1(S) = Vi(T)). (5.12)

These constants are defined so that, if D,,= R

R, ,R, ,,then

D, = Z (D,,)ss Ess> where (D,,)ss=¢q"""),

Segm

and

q72<>m—l(5v ) — (D;l)ss (Dmf I)TT'

The first of these formulas is a consequence of Corollary (2.25).

(5.13) PROPOSITION. Let y be as given in (5.3).

(a) Let S=(c'",..,a"™) be a tableau in the Bratteli diagram B(r).
Then

20"V —k+1), when " =gV e,
22—V —y+k), when "™ =gV ¢,

Vm(S)z{
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(b) Let S=(a""2, 6"V, ¢") and T= (""", 1, ¢") be
such that (S, T)e Q" . Then

+(o —k—1"" D+,

if 1" V=12t andec™=c""Y+¢g,,
T =140 —k+y+1),

if o™M=g""V4g andr"m V=1""2Fg,

<>,,,,1(S T) =

Proof. Let S (a9, ..., (’”)) be a tableau in the Bratteli diagram B(r).
Then, since ¢ differs from ¢~ " by either adding or removing a box in
the kth row,

.
g V=73 g\" Vg, and o=@ V"t e+ ) a‘;m’l)ej.
j=1 1<j<

=

/#l

Using (5.4) to compute V,,(S) we get

V,.(S) =, g 4 2p> — (o, g 42 — (ey, 8y +2p)

=< Z (q§n7—1))2>+(0(;11—1)+1 <Z 20.(n1—1)p >

j#k J#k
+2(02’”‘”i1)pk—< 2 (frﬁm“>)2>—(0(k’”‘”)2
J#k
<Z 20" Vp > 20" Vp,—1-2p,

J#k

= 420"V +2(%pr—py)-

The formula for V,(S) follows since p,—p,=(y—2k+1)—(y—1)=
2A—k+1)and —p,—p,=—(y—2k+1)—(y—1)=2(—y+k).

(b) The formulas for <,, (S, T) now follow from the definition of
<,,_1 and the formula for V,, in (a). ||

(5.14) THEOREM. One can choose the identification (Section 1) of the
centralizer algebras %,, with the path algebras corresponding to the Bratteli

diagram B(r) (with the assumption in (5.6)) so that the matrices R, are given
by the formula

Iéi = Z (Ri)ST ESTa

i+1
(8. T)e@;"
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where, for each S=(a"~Y, ¢, g+t V),

qQ,-(S,S)
_r ; (i—1) (i+1)
oy (LOSST pon A
e qu(S’ > < 0 dimq(/lrr(”)> . Gi—1) (i+1)
- . ) lf 2 =0 >
[<>i(S7 S)] dlmq(/ln'“"”)

and for each pair (S, T)=((c"" ", ¢, g+ D), (¢, 7D, g V))eQi]
such that S# T,

JIOAS, S)—11[O4(S, S) +1]

if gli=D ?éO_(H—l)’

(R,) oy LIS, S)HIT ’
U qos 6 /dimy(A,0) - dimy(40) if gD =g+
[0S, T)] dim (A 0 1) ’ - ’

where < ;(S, T) and 6 are given by (5.11) and (5.12) respectively.

Proof. Since R,e %,=End,(V®+D) commutes with all elements of
%, =End(V®"~1) it follows from Proposition Corollary (1.5) that

Ri = Z (R{i)ST ESTa

i+1
(S, T)yeQit!

for some constants (R;)g;. In view of the imbeddings Z, < %, < --- = Z,,,
it is sufficient to show that the formulas for R, hold for i=m — 1.

By definition D, =R, R, ,---R,R,R,R,---R, ,R, , and it
follows that R;! ,=D_ 'R, _,D,,_,. Thus, we may rewrite the relation
(5.10e) in the form

Rvmfl_D);lR/mlemfl:(q_qil)(l_Emfl)' (515)

Let (S, T) e Q™ and view (5.15) as an equation in the path algebra. Since
the matrices D,, and D,,_, are diagonal, taking the FE g, -entry of this
equation yields

(R{mfl)ST_(Dy;l)SS(Rmfl)ST(Dmfl)TT:(q_qil)(5ST_(Em71)ST)a
or, equivalently,
(1— (DIZI)SS (Dm—l)TT)(}ém—l)ST =(q— qil)(5sr_ (Em—l)ST)’ (5.16)

Hence,

5 _(q_qfl)wsr_(Evmfl)sr)
B A ey Y S

5 1f 1_(Dr;l)SS(Dmfl)TT¢O'
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Plugging in the following

1 1

q9—4q" _ 49
1 _(Drzl)ss (D )rr 1 _q72<>,,,_1(s, n
qom—l(S,T)(q_qfl)
=q<>mf]<5. DEPEETSIEEE
qu—I(S, T)
B [<>mfl(S9 T)]
we get
3 PALRICEY 5
(Rmfl)Ssz(5ST_(Em71)ST)’
m—1 [}

it 1—(D,,")ss (Dy 1) 70 #0.

All except the last of the formulas in Theorem (5.14) now follow
immediately from (5.9) and the following lemma.

(5.17) LemMA. Let (S, T)eQ” ,m. If S=T or if ¢~ 2 #c"") then
1—(D, Yss(Dy_1)rr#0.

Proof. Consider the equation (5.16).

Case 1. If S# T and 6”2 =g then d4,=0 and (E,)s,#0 since
the weights wt,(u) are all nonzero. Thus the right hand side of (5.16) is
nonzero. This implies that 1 —(D,,") g5 (D,,_ )77 is nonzero.

Case 2. If S=T and ¢ 2 #¢" then (E,)s;=0 and J¢;#0.
Thus the right hand side of (5.16) is nonzero. This implies that
1—(D " (D,,_,)7rris nonzero.

Case 3. Suppose S=T and ¢ *=¢". Clearly 1—(D,")ss
(D,,_1)ss is nonzero if and only if < ,,(S,S)+#0. Then, by Proposition
(5.13), there is some k such that <, (S, S)=+ (20" " —2k +y). This
value is nonzero in Types C, and D, since y is odd, and is nonzero in
type B, since, by the assumption in (5.6), 2k <y and ("~ " >0. |

Now let us prove the last formula in Theorem (5.14). Let SeJ” ,
and suppose that Te 7’ , is such that (S, 7)eQ” , and T#S. By
Lemma (5.1), T is unique. It follows that

(ernq)ssz Z (Rmfl)SL (Rmfl)LS

LeTy

:((Rm—l)ss)z‘f‘(}ém—l)sr(ﬁm—l)rs (5-18)
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On the other hand

Rrgnfl :R{mfl(lémfl_R'/;lfl)
:Rvm—l(q_qil)(l _Em—l)
:(q_q_])(Rvm—l _Z_IE771—1)5

since E, R, =z 'E Since ¢ ~?#¢"™, it follows that

m—1-

(E,,_1)ss=0 and thus that
(R, )ss=(q—q )R, _)ss+1. (5.19)
Equating (5.18) and (5.19) and using the formula for (R,, ,)gs gives

(R/mfl)ST(R{m—l)TS:(q_qil)(R/m—l)SS-i_ 1 _(R/rznfl)SS

_[Cn (S8 -1, 1 (S, §) +1]
[<>mfl(S9 S)]2 ’

exactly as in the proof of Theorem (4.8). It follows from the remarks at the
end of Section 1 that we can choose the normalization of the elements E ¢,
so that (R,, ,)srand (R,, ,)ss are as given in the theorem. |

Matrix Units

Given a tableau T= (7%, .., t")eF™ let T' denote the tableau
T =9, .., t"" DV)yeg™ 1), Let (T')* denote the set of all extensions
of T';

(T)*={SeT"| S =T".
Given tableaux S = (¢'?, .., ") and T= (¥, .., 7")in 7" let (R,, ,)ss be

the constant given by Theorem (5.14) in the case that ((¢"" =2, ¢~ 1, g\™),
(¢ =2, ¢m =1 )y e Q™ and let (R,,_,)sy= 0 otherwise.

(5.20) Lemma. Let T'=(79, ., 1"~ DYe T ™~ and let (T')* be the
set of extensions of T'. Then the values V,(S) are different as S ranges over
all elements of (T')™.

Proof. Let S=(t9, .., "= ") e(T")*. By Proposition (5.13),

V,.(S)=2(z{""V—k+1) or V. (S)=2(—7""V—y+k),
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for some positive integer k. Let [ be the largest value of k such that
Se(T')*. By the assumption in (5.6), 2/—1 < y. Since

AR S GRS 1 and
—gimm > gl > gD
it follows that
"> sV k41> o> V=141, and
Dy l> o> — )y k> o> D —y 1L

Since t\" " V> —7/""Dand —I+1> —y+1, it follows that
oD 41> =D —y L
The result follows. |

The proofs of the following results are essentially the same as the proofs
of Theorem (4.14) and Corollary (4.15).

(5.21) THEOREM. The matrix units Egre Z,,, (S, T)e Q" are given in
terms of the R;, 1 <i<m—1, inductively, by the following formulas.
(1) Let TeT™ Then Err=Ilscr, sers -1 (Err Ry Epp—
(Rmfl)SSET’T’)/((Rmfl)TT_(Rmfl)SS)
(2) Let (S, T)eQ™. If shp(S')=shp(T') then Egy=E g Epp where
E . is given by (1).
(3) Let (S, T)eQ™. If shp(S") #shp(T') then
1 L
EST:R7ES'M'Rm—lEN'T'ETTa

( mfl)MN

where M and N are tableaux in T ™ of the form M= (u'%, .., u"=2,
shp(S"), shp(S)) and N = (u', ..., u" =2, shp(T"), shp(S)).

(5.22) CorROLLARY. The centralizer %,,=End,(V®™) is generated by
the matrices R,, 1 <i<m—1.

6. IRREDUCIBLE REPRESENTATIONS OF THE IWAHORI-HECKE
ALGEBRAS OF TYPE A, THE BIRMAN-WENZL ALGEBRAS
AND THE BRAUER ALGEBRAS

The Iwahori-Hecke Algebras of Type A, H,(q*)

The Iwahori-Hecke algebra of type A, denoted H,(q?), is the algebra
generated over C(¢) by 1, g4, ..., g,,_ subject to the relations
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(Bl) g:8:18=8:1+18:8&+1>
(B2) g.gi=gg; if |i—jl=2,
(IH) gi=(g—q Hg+1

The Iwahori—-Hecke algebra H,,(q) is often defined as the algebra generated
over C(¢q) by 1, g, ..., g/, subject to the relations

(Bl) gigii18:=8i+18:8+1-
(B2) gigi=gg; if |i—j|=2,
(IH) (g)’=(¢g—1)gi+q.

One can pass from one presentation to the other by setting g,=g%/q.

(6.1) CorROLLARY. Let U be the Drinfel’d-Jimbo quantum group
W, (sl(r+1)) and let V=A,, be the irreducible W-module indexed by the
fundamental weight ,. The centralizer %, = End,(V®™) is a quotient of
the Iwahori-Hecke algebra of type A, H,(q>).

Proof. This follows immediately from Proposition (4.4) and Corollary
(4.15). 1

In fact, the classical Schur—Weyl duality gives that Z,, is isomorphic to
H, (¢%) if W=, (sl(r+ 1)), r=m.

The Young lattice Y is the Bratteli diagram given in Fig. 1. The shapes
of Y which are on level m are the partitions of m;

Y, =1{\Fm}.

A partition 1€ Y,, is connected by an edge to a partition ue Y,,, | if u can
be obtained by adding a box to A. Each tableau Te.Z * in the Bratteli
diagram Y can be identified in a natural way with a standard tableau of
shape 4.

Let S=(¢'?, .., ") be a standard tableau, i.e. a tableau in the Bratteli
diagram Y. Define

O 1(8,8) = — gD —f 4, (6.2)

when ¢ is obtained by adding a box to the kth row of ¢""~") and "~
is obtained by adding a box to the /th row of ¢ ~2),

The following result follows immediately from Theorem (4.8) and
Corollary (6.1).
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(6.3) THEOREM. There is an identification of the Iwahori—-Hecke algebras
H,(q%) with the path algebras corresponding to the Young lattice so that the
generators g; are given by the formula

8= Z (g&)srEsr,
(s, et
where for each Se I ™

<SS, S)

9
(g)ss= [07,-(5, S)]a

and for each pair (S, T)€ Q" such that S # T we have

_JVIOUS, ) — 1L O(S, ) +1]

(&)sr (1S, )] ’

where < (S, S) is defined by (6.2).

The following corollaries are immediate consequences of the path
algebra setup.

(6.4) CorOLLARY. ([H], [W2]) For each i€ Y, let d,= Card(T *) be
the number of standard tableaux of shape A. Define representations

ni: Hm(qz) - Md/(C(CI))
ar— (nl(a)ST)(S, T)e Q%

of H,(q*) by the following formulas:
For each Se 7%,
ﬂi(gf)ss - m

and for each pair (S, T) e Q* such that S# T,

JILOHS, S)—11[O(S, 8)+1]
n(g:)sr= 1S, 9] ’

0, otherwise,

if o'=1Yforallj+#1i,

where S= (a9, .., ¢"), T= (12, .., ") and < (S, S) is defined by (6.2).
Then the representations n*, J.€ Y,,, are nonisomorphic irreducible represen-
tations of H,(q?).
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(6.5) COROLLARY. For each €Y, let % be a vector space with basis
vg, SeT* If S= (09, .., " =1)e T * then let T be a tableau of the form
T=(c",..,c"=Y D g+ 6" such that ") #c'D. In view of (4.1),
if T exists then it is unique. Let n*(g;)ss and n*(g;)sr be as given in the
previous corollary. Define an action of H,(q*) on Z* by defining

m*(g:)ss vs + (&) srors if T exists,
Vo=
&ils 1(g:)ss Vs, if T does not exist,

for each Se T *. Then the %%, JeY,, are a complete set of nonisomorphic
irreducible H,(q*)-modules.

m

The Birman—WenzI Algebras BW,,(z, q)

Let z and ¢ be indeterminates. We define the Birman-Wenzl algebra
BW,,(z, ¢) (defined in [BW] and [M1]) as the algebra generated over
C(z,q) by 1,24, g5, - &n_1, Which are assumed to be invertible, subject to
the relations

(B1) 8:8;=8&; it |i—j|>=2,

(B2) g2:8/+18:=8i+18:8+1>

(BWI) (g:—z"")g:+q ")g:—q)=0,
(BW2) e,gt'e,=z%"e;and e, e,=2""¢,,

where ¢; is defined by the equation

(g—q N1—e)=g,—g; " (6.6)
Letting
z—z7!
x= —+1, (6.7)
q9—4q

e; = xe;, (6.8)
e.gt'=gle;=z7"e, (6.9)

(6.10) CoroLLARY. Let W be the Drinfel’d-Jimbo quantum group
W, (so(2r+ 1)) and let V=4, be the irreducible 2 module indexed by the
fundamental weight w,. Then centralizer %,,= End(V®™) is isomorphic to
a quotient of the Birman—Wenzl algebra, BW, (q%, q).

Proof. This follows immediately from Proposition (5.10), Corollary
(5.22) and the definition of the Birman—Wenzl algebras. ||
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Recall the Bratteli diagram B given in Fig. 2. The shapes i€ B,, of B
which are on level m are the partitions in the set

A partition /e B,, is connected by an edge to a partition u € B, ; if u can
be obtained from A by adding a box to 4 or removing a box from A. The
tableaux Te Z * in the Bratteli diagram B are called up-down tableaux since
they are sequences of partitions in which each partition differs from the
previous one by either adding or removing a box.

For the remainder of this section, unless otherwise
specified, all paths and tableaux shall be from the Bratteli
diagram B.

Let y be a formal symbol and for each integer d make the following
notations:

d —d d —1,,—d

— Zi —Z
[a1=1—1_, [y+d]=L—= 1
q—q q—q
Zflqd_zqfd {1} qd
—y+d]="T""T—, = (6.11
{ 1 }_ zq" { 1 }_ z’lq"
y+d| [y+d] —y+d| [—y+d]

Let A be a partition. Let A; denote the length of the ith column and let
/4; denote the length of the jth column. Define the hook length at a box
(i,j)e A to be

h(i,j)=A,—i+A—j+1,
and, for each box (i, ;)€ 4, define

Mt dy—i—j+1, it i<,

d(l’])={—/1;—;,;+i+j—1, it P> (6.12)
Following [ W3] we define rational functions Q,(z, ¢) as follows
[y+4, =41+ [h(},))] [y+d(i))]
0,(z,q) = Sy =22 (6.13)
‘ (F)[ [h(j,j)] (H [h(i, )]

i#]j

The important property of these functions ([ W3], Theorem 5.5) is that, if
W =1U,s0(2r + 1), then for all L€, Q,(¢”, q) =dim,(4;), where 4, is the
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irreducible U-module corresponding to the partition A. Thus, Q,(z, ¢g) is a
two parameter version of the quantum dimension.

Now let us define two parameter versions of the constants V,(S) and
< ,,—1(S, T) which are given in Proposition (5.13).

Let S= (g%, ..., 6"™) be a tableau in the Bratteli diagram B. Define

2"V —k+1) when o™ =glm—1 tep;
b b

Vm(S):{ (6.14)

q
-2 2(—c{" Vi)
b

2 % when ¢ =gV _¢g,,

Let S=(g"=2, ¢~V g™ and T=(c"""%,t""=D ¢") be such that
(S, T)eQ? . Then define

m —

(o —k—t" "V +1),

if "= V=¢"=24eande™ =¢""V+g,
+(y+V—Il+a—k+1),

if o"=g""Dtg and " V=1""2xg,

<>mfl(S= T) =

(6.15) THEOREM. There is an identification of the Birman—Wenzl
algebras BW, (z, q) with the path algebras corresponding to the Bratteli
diagram B. With this identification:

(a) The elements D,,=g,, _1&mn_2"""8181"" &n—28mn—_1 are given by
the formula,

D, = Z (D,,)ss Ess> where (Dm)sszvm(s)~

Segm

(b) The elements e; are given by the formula,

€;= Z (e;)sr Esr
(S, TyeQi*]
where, if S= (""", 6, 6"V and T=(c""",tD, g+ V), then

V0,0(2 q) 0.n(z, q)
(e;)sr= 0,01z, q)

0 otherwise.

if o= = gli+1),

(c) The generators g, are given by the formula

gi= z (g&i)sr Esrs

i+1
(S, T)e@!t]
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where, for each S=(a"~Y, ¢, g+t V),

1 ) .
o . (i—1) (i+1)
(81)s5= Bl v
ilss [ 1 }(1_ 0,0 (z, q) >, if o= =gli+h
(S, S) 0,i-1(z,q)

; (=) () G (1) () (] i1
and for each pair (S, T)=((a""",a", "tV (¢~ D g"*V))eQi*]
such that S#T,

VIOH(S, S)—11[O(S, S)+1]

s D (l'—])?é (i+l),

(8))s7= [1<4(S, 9)[] if o o
i)sT _{ 1 } \/Qam(Z, q) Q.0(z,q) lf T
<>i(S’ T) Qo”*l)(zﬂ Q) ’ B

where < (S, T) is given by (6.14).

Proof. 1If z is specialized to ¢*, r>m, then the formulas given above
coincide with the formulas given in (2.25), (5.9), and Theorem (5.14). In
view of the results in Corollary (2.25), Theorem (3.12), and Theorem (5.14)
it follows that this theorem holds whenever z is specialized to g%, r>m.
Thus, for an infinite number of specializations of the parameter z, the
theorem holds. This is sufficient to guarantee that the theorem holds over

Clz.q)- 1

(6.16) COROLLARY. For each J.€ B,, let d, = Card(T *) be the number of
up-down tableaux of shape J. Define representations

' BW,(z,q) > M, (C(z, q))
ar— (”)V(a)sr)(s, T)eQ’

of BW,(z, q) by defining
For each Se 77,

1 . .
R . (i—1) (i+1)
) o) ren e
i)ss { 1 }(l— 0, (z, q) >’ if ol~D=gli+1),
O4i(S, S) Q,u-1(z, q)
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and for each pair (S, T) e Q* such that S# T,

(JTC(S, S)—1I[O (S, S)+1]

LIS, S)I]
if cV=tforallj#iandc"~ " #g" ),
n(gi)sr= < _{ 1 } V0, 0(z.9) Q.0 (z )
S, T) OQ,i-1(z, q) '
if oV=1tDforalj#iandc’ Y =g"+D,
\ 0, otherwise,

where S= (%, .., a"), T=(t9, .., ") and < (S, S) is given by (6.14).
Then the representations n*, )€ B,,, are nonisomorphic irreducible represen-
tations of BW,(z, q).

Let ieB,. If S=(c', ..,6")e 7 *such that ¢~V # 6" then let 5,5
be the tableau

§;8S=(a9, .., 7D glith gl

such that 7V # ¢, In view of Lemma (5.1), if s,S exists then it is unique.
If S=(c'?, .., 6")e 7 * such that ¢~V =g+ then define

e,S={T=(", ., t"eT"|S#T and ") =c") for all j#i}.

1

With this notation we have the following.

(6.17) COROLLARY. For each A€ B, (r) let Z* be a vector space with
basis vg, Se T *. Let constants n*(g;) sy, (S, T)eQ’, be as given in
Corollary (6.16). Define an action of BW, [z, q) on Z* by defining

A A
(&) ss Vs + 1 (&i)s, s:5Vs,s0
if ¢ V#£g"TY ands,S exists,
i
7 (g:)ss Uss
givs= if o V#£c"tY ands;S does not exist,

n(g:)ss Vs + Y n(8:)sr Vs

Tee;S
if gli—1D = gli+1)

for each S= (', .., ¢"™)e T * Then the ¥*, )€ B, (r), are nonisomorphic
irreducible BW,(z, q)-modules.
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The Brauer Algebra

An m-diagram is a graph on two rows of m-vertices, one above the other,
and m edges such that each vertex is incident to precisely one edge. The
number of m-diagrams is 2m)!!'=(2m—1)(2m—3)---3-1. We multiply
two m-diagrams d; and d, by placing d, above d, and identifying the ver-
tices in the bottom row of d, with the corresponding vertices in the top row
of d,. The resulting graph contains m paths and some number y of closed
cycles. Let d be the m-diagram whose edges are the paths in this graph
(with the cycles removed). Then the product d,d, is given by d,d, = x"d.
For example, if

e N —
RA/ACRE AN
then

e TN
didy = Q% = mz//<

Let x be an indeterminate. The Brauer algebra B, (x) (defined originally by
R. Brauer [Br]) is the C(x)-span of the m-diagrams. Diagram multiplica-
tion makes B,,(x) an associative algebra whose identity id,, is given by the
diagram having each vertex in the top row connected to the vertex just
below it in the bottom row. By convention By(x)= B,(x)= C(x).

The group algebra C(x)[%,,] of the symmetric group %, is embedded in
B,(x) as the span of the diagrams with only vertical edges. For
I<ism—1, let

i i+l i il
XD =1 1211
Then e? = xe;, and the elements of the set {s;, ¢;,| 1 <i<m—1} generate
B,,(x). Note that the s, correspond to the simple transpositions (i, i + 1) of

9, and that the s;, 1 <i<m —1, generate C(x)[ ¥, ].
For each complex number ¢ € C one defines a Brauer algebra B,,(&) over

C as the linear span of m-diagrams where the multiplication is given as
above except with x replaced by . R. Brauer [ Br] originally introduced the
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Brauer algebra B,,(n) in his study of the centralizer of the tensor represen-
tation of the complex orthogonal group O(n)={geM,(C)|gg'=1}. Let
V= C" be the standard or fundamental representation for O(n). The tensor
space V®" is a completely reducible O(n)-module with irreducible sum-
mands labeled by partitions in the set

B,(n)

(A (m—=2k)| 0<k<|mf2], 2+ 2y<n}.

Note that when 7 is sufficiently large B,,(n) = B,, where B,, is as defined in
Section 5. Brauer gives an action of B, (n) on V'®” which commutes with
the action of O(n). This action is such that s; is the permutation which
transposes the ith and the (i + 1)st tensor factors of ¥®” and e, is (2r+ 1)
times the projection onto the invariants in the first two tensor factors of
V®m (see [R1] for details). Brauer showed that the action of the Brauer
algebra generates the full centralizer of the orthogonal group action on
V' ®m Provided we assume that r > m, all of these results hold if the group
O(n) is replaced by the group SO(2r +1).

Let r>2 and set G=SO(2r+1). Let ¥=C* *! be the standard module
for G and let Z,=End.(7® V). As SO(2r + 1) modules,

TRQV=rOerter?,

where V* denotes the irreducible G-module indexed by the partition A. Let
Egg, E(lz)(lz), and E(z), 2y be the G-invariant projections onto the
irreducible summands V92, V%, and V® respectively. We have chosen
this notation so that it is suggestive of the identification of the centralizer
algebra 7, with a path algebra corresponding to the Bratteli diagram B. It
can easily be shown that B,(2r + 1) is isomorphic to Z, and that under this
isomorphism

e =2r+1)E,,
Y T (6.19)
S :E®®+E(2),(2)_E(12)(12)’

Let U=, (s0(2r+1)) and V=4, be the irreducible U-module indexed
by the fundamental weight w,. As U modules,

VRV=Ap ®A412® A0,
where A, denotes the irreducible U-module indexed by the partition A.

Let Egy, Eq212), and E ;) (5, be the U-invariant projections onto the
irreducible summands 4, 4,2, and 4, respectively. It follows from (5.9)
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and Theorem (5.14), or by direct calculation, that the elements
R,,E e %,=End,(V® V) are given by

E =([2r]+1) Egy,

3 (6.20)

Ri=q "Egy+qEn, 0)—q "Eqya.
By comparing (6.19) and (6.20) we see that, at ¢ =1, the transformations
R, and E, are the transformations s, and e, respectively. The transforma-
tions R, and E, in %, =End,(V®™) are the same transformations as R,
and E, respectively, except that they act on the ith and the (i + 1)st tensor
factors of V®™ instead of the first and second tensor factors. Similarly, the
transformations §, and ¢, in Z,, = End,(7®”) are the same transforma-
tions as s, and e, respectively, except that they act on the ith and the
(i+ 1)st tensor factors of ¥®™ instead of the first and second tensor fac-
tors. Since, at g =1, the transformations R, and E, are the same as s, and
e, respectively, it follows that, at ¢=1, R, and E, are the same as s, and
e; respectively. Hence, at ¢ =1, the centralizer algebras Z,, = End, (V®™)
are the centralizer algebras Z,, = End (7 ®™).

Following [ EI-K ], for each partition A, define polynomials

Pix)= ] Ld(i’j), (6.21)

(i,j)er h(laj)

where the constants d(i,j) and /(i,j) are as given in (6.12). These poly-
nomials have the important property that P,(2r+ 1)=dim(V*), for each
irreducible representation V* of the orthogonal group SO(2r +1).

Let S= (¢ =%, D ¢") and T=(c""~2, t"" =Y, ") be such that
(S, T)e Q! _,. Then define

(o k=" U+,

if "= V=¢"=24eande™ =¢""V+g,
(x4 V—1+a —k),

if ¢"mM=g""V4g andr™ " V=7""2Fg¢,.

<>mfl(S’ T) =

(6.22) THEOREM. There is an identification of the Brauer algebras B, (x)
with the path algebras corresponding to the Bratteli diagram B. With this
identification:

(a) The elements e; are given by the formula

€, = z (e;)sr Esr

(S, T)e@!*!

i—1
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where, if S= (""", ", ¢tV and T=(c""V, D, "+ D), then

P_i(x) P.in(x)
(e;)sr= Poi-n(x)

0 otherwise.

if iD= gli+ D)

(b) The elements s; are given by the formula

§;= Z (Si)STESTa

(s, Tye@lt]

where, for each S=(c"~ ", g, g+ 1)

b}

1 i J
1 o (—1) 4 i+ 1)
(e d OHASSY T
Si)ss =
1 <1_ P, i(x) > if gl D=glitD
S8\ P/ ’

and for each pair (S, T)=((c""",a", g+ 1), (¢, D, g*V))eQit]
such that S# T,

V(O ’S|i>()( )|(s,s>+1>’ T

(s:)sr= - 1 P_i(x) P.i(x) if ali=h

<>,~(S, T) P (i—l)(x) ’

g

=O'(i+1),

where < (S, T) is as given just before Theorem (6.22).

Proof. 1Tt follows from the discussion above that, at ¢=1, the cen-
tralizer algebras Z,, are the same as the centralizer algebras Z,,. Note that
the formulas in Theorem (5.14) all specialize to well defined rational num-
bers at g = 1. Thus, there is an identification of the centralizer algebras Z,,
with the path algebras corresponding to the centralizer algebras so that the
elements e¢; and s, are given by the formulas in Theorem (5.14) evaluated
at ¢g=1. These specializations are well defined and are equal to the for-
mulas in the statement of Theorem (6.15) except with x replaced by 2r + 1.

The centralizer algebras Z, are quotients of the Brauer algebras
B,(2r+1). If r>m these algebras are isomorphic [ Br]. Thus, it follows
from the previous paragraph that there is an identification of the Brauer
algebras B,,(2r+1), r>m, with the path algebras corresponding to the
centralizer algebras so that the elements ¢, and s, are given as in the above
statement except with x replaced by 2r + 1. So Theorem (6.15) is true for
an infinite number of specializations of the parameter x. The result
follows. ||
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[(r1)¥y]

va(l)

(p+1—x

r#1

[P +4]

[(z)¥y]
il LD yl+Liv—"rv+4]

sipruwoudjod 143124

XIANdddV

¢ [1] (1] [¢] (1)
(T—x)x(T+x) [1—4][1+4] [e]l+[o+4]
i€ [1] [z] [¢] ‘1
(1—=x)g—x)x lo+4] [1—4] [el+[c—4] ¢
4 [1] [z] )
(1—=x)(T+x) lo+4] [g]+[1+4]
4 1] [z] 0D
(1—x)x Lo+41 g1+ [1—4] ¢
[1]
) 17+ L0747 (D
I I g
(x)d (bz)0 Y
(ra)y m_m.:n (o1
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1<b

(1+42)'d = (b, .D)'O w

<1 [—(+1+y—ly— . _b-b
1 1 ! ! i il — () = —Tu+d
[s1 R I N 2
x_v\\,\, +1! |A\h:u\~ E|T~H
I+ =y +i="y="0)Y b—b
i 1] [el  [e] [v]

(T—=2)x (1 +x)(9+x)

[484

(T—=2)(1 —2)(1 +x)(y +x)

(1T—=x)(¢—x)x (1 +x)

iv
(T—x)T—x)(g—x)x

i€
(1 —2)x (p+x)

Lo+ ] [1+4] [c+ 4] [¥]+ [€+4]

1] [1] [z] [¥]
[1—4][o+4] [c+4] [¥]1+[1+4]

(][] L1l Le]

Lo+4] Lo+ 4] [1]+Lo+4] [el+[0o+4]

[o] [z] [1] [¥]
[o+a] [c—a] [1+4] [¥]1+[1—4]

[1] [z] [¢] [+¥]
[o+d] [1—4][c—4] [¥]1+[c—4]

(1] [zl Le]
Lo+« [1+4] [e]+[c+4]
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[z—] [z] [1] 0
A_Hm "H«D «&VHNQ NI@ HMgﬁﬁu\ b

=(%8) pqu =(18) ju
o &
H0 )= (2] (2] -1
A_Hm m O &v“ a TR 5 . _\‘w
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