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We begin by determining, in a general form, the characters of irreducible
representations of a Jones basic construction and use this result to compute the
characters of the Temperley-Lieb algebras and the Okada algebras. In the case of
the Birman-Wenzl algebra some of the characters are determined by the general
theorem and the others are computed by using the duality between the Birman-
Wenzl algebras and the Drinfeld-Jimbo quantum groups of types B and C. The
computations involve certain characters of the quantum group; these are polyno-
mials invariant under the Weyl group of type B. We are able to decompose these
Weyl group symmetric functions and obtain a combinatorial rule for computing the
irreducible characters of the Birman-Wenzl algebras. The combinatorial rules for
computing the irreducible characters of the Iwahori-Hecke algebras and the com-
binatorial rule for computing the irreducible characters of the Brauer algebras are
both special cases of our rule for the Birman-Wenzl algebras. 1995 Academic

Press. Inc.

1. INTRODUCTION

Let A, B be split semisimple algebras such that A4 is a subalgebra of B.
Let C=End ,(B) be the centralizer of the action of 4 on B by left multi-
plication. The algebra C has very nice properties.

(1) The irreducible representations of C are in one-to-one corre-
spondence with those of 4, and

(2) there is an idempotent e € C such that C'= BeB.
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264 HALVERSON AND RAM

The algebra C is called the Jones basic construction for the inclusion
A < B. We shall say that a split semisimple algebra .o/ contains a basic con-
struction if there exists an ideal C of ./ and subalgebras A < B< .« such
that C is isomorphic to a Jones basic construction for the inclusion A < B.
There are several interesting examples of such algebras, in particular:

(1) The Temperley-Lieb algebras
(2) The Brauer algebras

(3) The Birman-Wenzl algebras
(4) The Okada algebras.

In Section 2 we give a general theorem which says that the characters of
the Jones basic construction C=End (B} are completely determined by
the characters of the subalgebra 4 (in fact, in some sense, they are equal).
The remainder (and the difficult part) of this paper consists of computing
the characters of the above algebras. Although the characters of the part of
the algebra which is isomorphic to a Jones basic construction are deter-
mined by our general theorem the characters on the remaining portion of
the algebra can be difficult to compute. The case of the Brauer algebra has
been done previously in [R1]. The results from [R1] and the determina-
tion of the characters of the Temperley-Lieb algebras and the Okada
algebras are given in the remainder of Section 2.

The determination of the characters of the Birman-Wenzl algebras
involves considerably more work. To do this we have used the ideas of
[R1] and [R2] to use the theory of the quantum group and the quantum
Yang—Baxter equation as a tool. The Birman-Wenzl algebra maps surjec-
tively onto the centralizer of the tensor power of the fundamental represen-
tation of the quantum enveloping algebras U, (so(2n + 1)) and U, (sp(2n))
and one obtains a double centralizer correspondence between the Birman-
Wenzl algebra and the quantum group analogous to the Schur-Weyl
duality between the symmetric group and GL(n). We then compute
bitraces of the actions of the Birman-Wenzl algebra and the quantum
group on tensor space and obtain certain polynomials, symmetric under
the action of the Weyl group of type B. These polynomials can be viewed
as generalizations of the power symmetric functions and of certain Hall-
Littlewood polynomials. Upon expanding these polynomials in terms of the
Weyl characters the coefficients are the characters of the Birman-Wenzl
algebra.

Section 3 of this paper is concerned with finding a tractable basis of the
Birman-Wenzl algebra and determining a subset of this basis (analogous
to conjugacy class representatives for a finite group) such that the charac-
ters are determined by their values on this set. Many of the computations
in this section are analogous to computations in knot theory and the
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theory of tangles. This is not surprising as recent work on link invariants
[Re], [RT], [TW] shows that any trace on the Birman-Wenzl algebras
is a polynomial function of certain links and that appropriate (i.e. Markov)
traces on the Birman—Wenzl algebras determine polynomial link invariants.

Section 4 gives a brief description of the duality between the Birman-
Wenzl algebra and the quantum group. In Section 5 we give explicitly the
action of the Birman-Wenzl algebra on tensor space and compute the bit-
races necessary to determine the characters of the Birman-Wenzl algebras.

Section 6 is a study of the analogues of the power symmetric functions
which we have obtained from the bitrace picture. We have developed the
theory of symmetric functions for the Weyl groups of type B in a A-ring
format in order to expand these complicated symmetric functions in terms
of the Weyl characters for SO(2n + 1). We are able to obtain generating
functions for the bitrace symmetric functions and to give a combinatorial
rule for computing the irreducible characters of the Birman-Wenzl algebra.
This combinatorial rule uses the broken border strips which also appeared
in the combinatorial rule for the characters of the Iwahori-Hecke algebras
of type A. Furthermore, at ¢ =1, our rule reduces to the rule given in [R1]
for computing the characters of the Brauer algebras.

Section 7 contains concluding remarks. During the course of the work
on this paper we have noticed several interesting subtleties, and in this
section we have made some effort to describe these. We hope that by men-
tioning them here they will be of use to other researchers in this area.

Finally, we have included formulas for the irreducible characters of
the Temperley—-Lieb algebras and tables of irreducible characters for the
Okada algebras and the Birman-Wenzl algebras in Section 8. Tables of the
irreducible characters of the Brauer algebra can be gotten by setting
g=r=1 in the tables for the Birman-Wenzl algebra and the character
tables of the Iwahori-Hecke algebras of type 4 appear as the upper left
portion of the tables of the Birman-Wenzl] algebra characters.

We thank G. Benkart for many discussions and for her encouragement
of us in our research, individually as well as together, and R. Stanley for
telling us about the Okada algebra and for sending us the relevant preprint.
We thank F. Goodman and S. Kerov for discussions concerning the Okada
algebras and S. Kerov for graciously suggesting that we publish our proof
of the Frobenius formula for the Birman-Wenzl algebra which appears
without proof in [Ke].

2. Basic CONSTRUCTION

Let A = B be split semisimple algebras such that 4 1s a subalgebra of B.
Let 4 and B be index sets for the irreducible representations of 4 and B.
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Let ¥* and W* be the irreducible representations of 4 and B labeled by
4€ A and g e B, and let nonnegative integers g, be defined by the restric-
tion W | 5=, g, V" The Bratteli diagram for the inclusion 4 € B is
the graph on two rows of vertices, with the vertices in the top row labeled
by elements of B and the vertices in the bottom row labeled by elements
of A, and having g, edges connecting e B to € A.

Let 4 < B< C be split semisimple algebras such that A4 is subalgebra of
B and B is a subalgebra of C and such that the Bratteli diagram for the
tower of algebras 4 < B< C satisfies the following property:

The reflections of the edges corresponding to the inclusion
A < B are a subset of the edges corresponding to the inclusion
BeC

We say that C 1s an algebra containing a Jones basic construction for the
inclusion 4 < B. Examples of such inclusions are given by the Okada
algebras, the Temperley-Lieb algebras, the Brauer centralizer algebras and
the Birman—Wenzl algebras. Bratteli diagrams for these examples are given
later in this section.

Let us study this situation in further detail. Let 4 be a split semisimple
algebra over a field F. A trace 7 4 — Fis a linear functional on 4 such that

flaby=r(ba), forall «, beA. 2.1

A trace 7 on a split semisimple algebra 4 is determined by a vector =
(t,),c i of elements of F, where ¢, =7(p,) for any minimal idempotent p, in
the miniaml ideal 4 corresponding to A e A. We say that 7 is nondegenerate
if for every ae 4, a+#0, there exists an element »e€ A such that 7(ba) #0.
This 1s equivalent to saying that the bilinear form on A4 defined by

la, by =1(ab), (2.2)

for all a, b € A, is a nondegenerate bilinear form.

Let A < B be split semisimple algebras such that 4 is a subalgebra of B.
Let 7 be a trace on B which is nondegenerate on both 4 and B. Using the
nondegeneracy of 7, we define a map ¢,: B~ A, called the conditional
expectation by

f(ba)="1(e,(b)a), for all aeA. (2.3)

The conditional expectation ¢ is the orthogonal projection of B onto A4
with respect to the bilinear form { , > defined in (2.2).

Let A, B, i and ¢, be as given above. Let B denote the left regular
representation of B, i.e. as a vector space B is the same as B, and B acts
on B by
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for a}l b,e B and b—; € B. Let C=End ,(B), be the commutant of 4 acting
on B. Note that B>~ End,(B) acting by right multiplication, so we have
B< C. Following [Jo], define e ,€ End ,(B) = C by

-

e.b=¢e,(b) (24)

for all be B. Viewing ¢,, A, B and C inside of End(B), the following
properties hold (see [Jo] and [Wnl]):

—

(n (’i =€4;
(2) e be,=¢,(b)e,=¢,¢,(b), for all be B,
(3) The map a+ ae , is an injective map from A into C,
(4y C=Be,B;
) The irreducible components of C are in one-to-one corre-
spondence with the irreducible components of 4;

(6) In the Bratteli diagram for the tower 4 = B< C, the edges corre-
sponding to the inclusion B < C are the reflection of the edges corresponding
to the incluston 4 < B;

(7} If p 1s a minimal idempotent of A4 in the Ath-irreducible compo-
nent of A, then ep is a minimal idempotent in the corresponding irreducible
component of C.

In view of property (6) above the algebra C satisfies our definition of an
algebra containing a Jones basic construction. The algebra is the original
“basic” construction of Jones for the inclusion 4 € B.

Now assume that 4 = B are split semisimple algebras that 7 is a non-
degenerate trace on both B and 4, and ¢,: B— A4 is a conditional expecta-
tion with respect to the trace 7. Suppose further that B is a subalgebra of
a splht semisimple algebra C and that there is an element ¢ € C such that

(a) e*=¢;
(b) ebe=¢ (b)e=cec,(b), for all be B, (2.5)

(c) The map a+> ae is an injective map from A into C.

Then we have the following theorem of Wenzl.

(2.6) THEOREM [ Wnl]. Given the above preparations view BeB < C and
Be ,B=C=End (B). Then the map BeB— Be B defined by e e, and
b b for all be B is well-defined and an algebra isomorphism.

In some sense, this theorem says that properties (1), (2) and (3) of the
basic construction C above are sufficient to guarantee that the algebra C
contains a subspace BeB which is isomorphic to C.
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Now assume that BeB is an ideal of C (in all of our examples this will
be the case). Then, since C is semisimple, there exists an ideal C of C such
that

C=BeB® C. (2.7

By properties (3) and (4) of the Jones basic construction C, and by
Theorem (2.6), the irreducible representations of BeB are indexed by A,
and so A< €. Let yx% denote the irreducible C-character corresponding
to e C, and let z* denote the irreducible A-character corresponding to
uedcC

We shall refer to the ideal BeB< C in the decomposition (2.7) as the
basic construction for the inclusion A<= B. We are interested in the
irreducible characters of the ideal BeB.

(2.8) LEMMA. Let BeB be a buasic construction for A< B, and let y be a
character of BeB. Then y is completely determined by the values y(ae) where
aeA.

Proof. Let h,eb,€ BeB, and let x be a character of C. Then using (2.5)
x(byeby) = ylb eehy) = xlebybye) = yle (byb))e).
The lemma follows, since ¢ ,(b,b,)eA. |}

Let P be a complete set of minimal orthogonal idempotents of 4. This
means that, in addition to being minimal idempotents, the elements of P
satisfy

() 1=%,.,p. and

(2) pp'=p'p=0, ifp,p'eP and p#p'.
We shall sometimes refer to such a set of minimal idempotents as a parti-
tion of unity. Then, by property (7) above, the set eP={cp | pe P} is a set
of minimal orthogonal idempotents of BeB< C. (This 1s easy to check
using the fact that ¢ commutes with p since p € A.) Extend the set ¢P to a
complete set @ of minimal orthogonal idempotents of C. Then using the

fact that ¢ is idempotent and commutes with the elements of 4, we have,
for all ue A,

aez( Y. p> ae( Y p'>= Y epaep’. (2.9)
pebp pep p.pepb

(2.10) ProposiTION. If Ae C and a€ A, then

A o\ — Z:l(a)9 I/ AE/"",
X"("‘)*{o, if AeC\A.
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Proof. Let Q be the set of minimal orthogonal idempotents of C
described above. For ce C and ge Q, let ¢[, denote the coefficient of ¢
when expanded in terms of Q. Let Q* (resp. P*) be the set of minimal
idempotents in Q (resp. P} in the irreducible component of C (resp. A)
indexed by A. Then,

xelae)="3Y qaeqly= 3 Y qlep)alep’)ql,

geQ* qe Q@' p.p'eP

where the second equality follows from (2.9). Notice that, since epe Q,

. _{ep, if g=ep,
9P = 0, otherwise.

Using this and the fact that ep e Q% if and only if p e P4, we get

xelae)="3 epaepl,= Y. papl,=x}(a). }

pe Pt pe Pt

Let =, denote the character table for C, that is the table which has rows
indexed by ¢ and which has columns indexed by appropriate basis
elements of C such that the character values on these elements are sufficient
to determine the characters. Then Proposition (2.10) suggests that = is of

the form
= 0
EC:[ 4 } (2.11)

* | Za

All of the character tables given in Section 8 have this form.

In the remainder of this section we describe the Brauer algebras, the
Temperley-Lieb algebras, and the Okada algebras, all of which are algebras
“containing a Jones basic construction” and which have a decomposition of
the form (2.7).

The Brauer Algebra

An f-diagram is a graph on two rows of f-vertices, one above the other,
and 2f edges such that each vertex is incident to precisely one edge. The
number of f~diagrams is (2! =(2f—1)(2f—3)---3.1. We multiply two
Jf-diagrams d, and d, by placing d, above d, and identifying the vertices in
the bottom row of d, with the corresponding vertices in the top row of d,.
The resulting graph contains f paths and some number y of closed cycles.
Let d be the f-diagram whose edges are the paths in this graph (with the
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cycles removed). Then the product d,d, 1s given by d,d, = x’d. For example,
if

o —s o N
d,:M/.\/[. and d2=/zg/,
S TN
d@:O%::’//r.

= e

Let x be an indeterminate. The Brauer algebra B,(x) (defined onginally by
R. Brauer [Br]) i1s the C(x)-span of the f~diagrams. Diagram multiplica-
tion makes B,(x) an associative algebra whose identity i/, is given by the
diagram having each vertex in the top row connected to the vertex below
it in the bottom row. By convention B(x)= B {x)=C(x). If d; and d, are
fi and f,-diagrams respectively, then d,®d, is the (f|+ f>)-diagram
obtained by placing d, to the right of d,.

The group algebra C(x)[.%4] of the symmetric group .% is embedded in
B,(x) as the span of the diagrams with only vertical edges. For
1<i<f—1, let

] IX T T IX DL

Then E? = xE,, and the elements of the set {s,, E,| | <i<f—1} generate
B,(x). Note that the s; correspond to the simple transpositions (i, 7+ 1) of
% and that the s;, | <i< f—1, generate C(x)[.%].

A partition A of the positive integer », denoted 4 |- n, is a non-decreasing
sequence A=(A, 24,2 --- 24,20) of non-negative integers such that
Ay+ -+ 4+ 4,=n The length /(1) is the largest j such that 2,> 0. The Young
{or Ferrers) diagram of 2 1s the left-justified array of boxes with 4, boxes
in the ith row. For example,

1]

(5,3,3,1) = j
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is a partition of length 4. The algebra B/(x) is a split semisimple algebra
over C(x) with irreducible representations labeled by partitions in the set

B ={i(f=2k)| O<k<Lf21}. (2.13)

There is a natural inclusion of B, (x) into B,(x) given by viewing each
f—1 diagram as an f~-diagram by adding a pair of dots connected by a ver-
tical edge to the right side. More precisely, B,_,(x) < B,(x) by identifying

a (f—1)-diagram d with the f~-diagram d ® id,. The Bratteli diagram for
the inclusions By(x) < B\(x) € B,(x)< ---is given by (see [ Wnl])

Bo(z) : )

N

By(z): O B
B(z): o [ m E H muns|

There exists a nondegenerate trace tr on B,(x) defined inductively by

tr(1)=1, and
trias,_b)=tr(aE,_,b)=(1/x) tr(ab),

for all a, be B, ;(x), and where 5, and E, are the generators given by
(2.12). Let

ef-,l =(1/X)Ef,1.
Then one may define a map ¢,_,: B, ,(x)— B,_,(x) by the relation

er_rbes 1 =e, 5(D)®es_y,
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for all be B, ,(x). Wenzl [ Wnl] shows (this is nontrivial) that:

{a) tris a well defined nondegenerate trace on B, (x) which is also
nondegenerate on B, (x);

(b) & , is a conditional expectation for the inclusion
B, (x)< B,_,(x) with respect to the trace fr on B,_,(x), and

(c) The element ¢, , € B,(x) satisfies the properties (a). (b), and (c)
of (2.5) for the inclusions B, ,(x)S B, (x)<S B,(x).

Given these facts, one gets that B,(x) has a decomposition of the form
(2.7); precisely,

Bi(x)= B, \(x)e, B, )@ C(x) 4], (2.14)

where B, |(x)e¢, B, ((x)is a basic construction for B, ,(x)= B, (x).
By Lemma (2.8). the characters of B, ,(x)e¢, ,B, ,(x)depend only on
characters of elements of the form ae, |, =a®¢, | where ae B, ,(x).
Let E denote the 2-diagram

E= (2.15)

and define e =(1/x}E. Let y,, denote the m-diagram

= M (2.16)

and for the partition g = (g, {5, .. fi,). let 7, =7, ®7,,® --- @y, The
characters of elements in % depend only on the elements y,, where u |- £,
since any permutation whose cycle structure i1s given by u is conjugate to
7,.- Thus, by inductively applying Lemma (2.8), the irreducible characters
of B,(x) are completely determined by their values on the diagrams of the
form y,®e®*. where u |- (f—2k). By Proposition 2.10, if A |- (f—2)
then the irreducible B,(x)-character x; associated to 4 is given by
, Ty i Izk,
X;‘(Vﬂ@(’@"’):{gf ) i? i<l]‘( (2.17)

For each complex number £ € C one defines a Brauer algebra B,(&) over
C as the linear span of f-diagrams where the multiplication is given as
above except with x replaced by & R. Brauer [ Br] originally introduced
the Brauer algebra B,(n) in his study of the centralizer of the tensor repre-
sentation of the complex orthogonal group O(n)={ge M (C)|gg' =1}.
Let '=C" be the standard or fundamental representation for O(n). The
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tensor space V®/ is a completely reducible O(n)-module with irreducible
summands labeled by partitions in the set

Bimy={A}-(f—2k) |0<k<Lf2] 2 +A5<n}.

Note that when n is sufficiently large B(n) = B, where B, is as defined in
(2.13). Brauer gives an action of B,(n) on V®" which commutes with the
action of O(n) so we consider ¥®/ as a bimodule for B,(n)x O(n). The
decomposition of V®/ into irreducible B/ (n) x O(n)-modules is (see [Wy])

Ve~ @ D,®V,, (2.18)

e Brin)

where V), is the irreducible O(n)-module corresponding to 4 and D is an
irreducible B, (n)-module corresponding to A.

For independent, commuting variables x,, x,, .., x,,, define the power
symmetric functions to be the polynomials in Z[ x{', x5!, .., x*'] defined
for each positive integer r by

pAXEL XS L xE ) =X kxR XTT e

and for a partition = (g, f2, - fty) BY p, =P, P, P, Define the
Weyl character for type B by

A+n—j+ 12 _ L —(Ai+n—j+1/2)
_ det(xy x; W )

+1 _+1 _+])_
2 det(¢x771+]"’2_x

5 weey Yy

—(n—j+ 1“1’2))
By taking bitraces in (2.18), Ram [R1] proves the following Frobenius
formula for B,(n+1) when n is odd

2n+ 1Y p(xfl L xE

= Z 12112)1+H(d/1®E® h)Sbl(x]i—l‘ x'_"il’ e Ytl)' (219)

“*n
Ae Br(2n+ 1)

When # is even one can “essentially” replace sb, by sd,, the Weyl character
of type D, and when » is negative one can “essentially” replace sb; by sc,,
the Weyl character of type C (see [R1}).

Using (2.19) Ram [R1] proves the Murnaghan-Nakayama rule for
computing B,(n) characters. A skew diagram A/« with r boxes is an
r-border strip if it is connected and contains no 2 x 2 block of boxes. The
weight of A/u is wi(A/u) =(—1Y*"* "' where rows is the number of rows in
2/, By convention wi(A/A)=wt(F)=1. A u-up-down border strip tableau
of shape 4 1s a sequence of partitions

T=(@ =200, ., 200 =j)

607:116,/2-6
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such that for each 1 <7< /(u), either

(B 2<iY Mand 2Y VAV s a border strip with |4V DAY =,

(2) 2Y Vi and 229 U is a border strip with |V D =y,
or

(3y AY V=4 and g, is even.

Let wt(g, v) =wi(ge/v), if g/v 1s a border strip, and wi(g, v) = wi(v/u), if viu
is a border strip. Define

iyal
wi(T) = n wi(AY M AW,

i=1

Then the next theorem is the Murnaghan-Nakayama rule for computing
characters of the Brauer algebra.

(2.20) TaeoreM [R1). The irreducible characters x;. L€ B, of the
Brauer algebra B (x) are given by

X; (}’;4 ® E(}O /l) — '\.II Z li’f( T)
-
where the sum Is over all pg-up-down border strip tableau of length | and
shape £.

The Birman Wenzl algebra BW,(r, ¢) is a ¢g-deformation of the Brauer
algebra B,(x), and in Sections 3 -6 we generalize all of the above results to
BW,(r, q). By setting ¢=r =1 in Section 6 of this paper, Theorem (2.20)
can be obtained from the combinatorial rule Theorem (6.15) for computing
the characters of the Birman-Wenzl algebra.

The Temperley-Lich Algebra

The Temperley—Lieb algebra TL, (defined by [ TL]) is the algebra over
C(x) given by generators £, E,, ..., E, | and relations

(TL1) EE,=EE, if [i—ji>1
(TL2) EE,, E,=E, and
(TL3) E2=xE,

i

By convention 7TL,=TL,=C(x). The Temperley-Lieb algebra can be
viewed as the algebra generated by the f-diagrams id, and E,, for
1 <i< f—1, with multiplication as in B,(x). ‘

The irreducible representations of TL, are labeled by partitions in the set

—~

TL,={iF[1H})<2).
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There is a natural embedding TL, | < TL, as the subalgebra generated by
the generators E;, 1<i<f—2. The Bratteli diagram for the inclusions
TL,<TL, S TL,< - 1s given by (see [GHJ] or [Jo] for details)

TLg: [
TL, : \E]
1 P
TL,: H m
TLs:
) — T~ S ~

T H- (T

In row f. the /th vertex from the right is labeled by the partition (f— 1, /).
The dimension of the irreducible labeled by (f—1,1) is (4)—(,”,). Thus,
letting )(; denote the irreducible 7L -character labeled by the partition 4,

we have
Cih S S
Cf= L0y gy _
vy =(1)-(,7 ) (221)

We inductively define a nondegenerate trace ¢r on 7L, by
tr{l)y=1, and
tr{aE, b)) =(1/x) tr(ab),
for a, be TL, ;. As in the case of Brauer algebra we define
e =(1/x)E, .
and a conditional expectation ¢, ,: TL, ,—TL, , by
e, _1be, =&, 5(b)e,_,

for all be TL,_,. Then the trace tr is nondegenerate on TL, | and TL, ,
and ¢, , is a conditional expectation for the inclusion TL, ,<=TL, , with
respect to the trace /r. Furthermore the element ¢, ,=(1/x)E, | satisfies
the relations of (2.5), and

TL, = TL, e, \TL, ®C(x),

where TL, e, \TL, | is a basic construction for TL, ,=TL, ;. In
terms of f-diagrams, TL, ¢, TL, , is the linear span of the diagrams
with horizontal edges. By Lemma (2.8}, the characters of TL, e, ,TL,_,
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depend only on elements of the form ae, , =a®e, where ae TL, , and ¢
is given by (2.15). Then, by induction, the characters of TL, are completely
determined by their values on the diagrams of the form id, , ®e®*
The correspondence between the irreducibles of TL, , and TL, is given by
adding a box to each row of a partition of /— 2 to obtain a partition of f.
Therefore, from Proposition (2.10), one obtains

f -k k)“df—zk) it >k,

X‘/ I‘“(l.df, 2 ®€® k) — {/C/‘:l\,

22
0 it 1<k, 22

and from (2.21), we get

</—2k>_<_f—2k > ¢ sk o)
X‘// I.[)(i(1[72k®e®k): l_k /_k—l
0. if 1<k

The Okada Algebra
The Okada algebra O, (defined in [O]) is the algebra over C(x,, ...
X, 1y ¥ieew Yy o) given by generators E, E,, .., E, | and relations
(Ol) E,E=EE, if |i—jl>2,
(02) £, \EE, \=yE . and
(03) E?=x,E,

The irreducible representations of O, are labeled by words in the set

/
0,= {w =wywy-owy [ we {12} ) w,:f.} (2.24)
i=1
By convention, we let O, = .
There is a natural inclusion O, ;€ O, where O, | is the subalgebra
generated by the E,, 1<i< f—2 Okada [O] proves that the Bratteli
diagram for O, € 0, = 0, < ... is the Young-Fibonacci lattice:

Op : 0\
0, : 1
N
(O 2b<ll\
Os: 21 12 111

Oy : 22 211 121 112 111
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If we O, then we let K (w) be the set of ve O,_, connected to w in the
Bratteli diagram, and we let K (w) be the set of ve 0,+1 connected to w
in the Bratteli diagram. We use v <1 w to mean that ve O, L, WE 0,, and
v is connected to w in the Bratteli diagram. If we O,, then w=aw’ where
w'e0,_, and ae{l,2}. We have

K (20'y=K*(v")
K- (1) = {v}.

Okada [O] proves that the set #, defined inductively by 4,=4,= {1}
and

(2.25)

By={b,bE, \---E;|be# , k=1,.,f—1} (2.26)
forms a basis of O,. In particular, dim(O,) = f!.

Define a nondegenerate trace tr on O,, mductlvely, by
tr(ly=1, and
tr(aE, \bY=(y, »/x, ) tr{ab),
for a, be O, ,. Define
e =(1/x)E, |,
and a conditional expectation ¢, ,: O, | > O, , by
errber v =e, o(b)es .

for all e O,_,. Then the trace tr is nondegenerate on O, , and O, , and
€,_, is a conditional expectation for the inclusion O, ,< O, , with respect
to the trace rr. Furthermore the element ¢, | =(l/x)E, | satisfies the
relations of (2.5), and

O,=0; 16,10, @©0, 1, (2.27)

where O, e, 0, _, is a basic construction for O, ,= O, ,
For we 0,, we define an element e, of O, by ¢, =¢, =1 and

. = er 1€, if w=2n'
" e if w=1w"

{2.28) PROPOSITION. Any character y of O, is completely determined by
its values on the elements {e, | we O,}.

Proof. The proof uses induction on f with the cases /=0 and f=1
being trivial. Let f>2. The character y is completely determined by its



278 HALVERSON AND RAM

values on #4,. If he 4, then cither he #4, ,orb=H'E, |E, ,---E,. Inthe
second case, we have

Hb)y=xb'E, E, ;- E)

! X
=——xPE; [E, 5 --E;)
v‘, l

|
=T X(E/ IE{ 2"'E,\.]7'Er )
Xy

O, . Using (2.10), we conclude that y(b)=(E, \b")1=x, xle, b")=
Xpaxh") IWae O, |, then y(a) is completely determined by the restric-
tion y |  (a)of y to O, |, and. by induction, y | 7  depends only on
its values on the set {¢, |we O, ). Since ¢, , is a scalar multiple of E,
the proposition is proved. §

By (2.5b) we have £, |E, .- E,D'E, =E, |b" where b"€ 0, ,=

(2.29) TuroreM. If w, ve O,, then

Yo, {ey) if v=2v" and w=2',
0 if v=10" and w=2',
t
y e )= o a
Zoden) Lo, (ew) if v=1" and w=1w',

P X €0) if v=2" and w=1n"

Proof. 1f w=2w’", then ¢, =¢, ¢, where w'e 0, 5, and the first two
cases follow from (2.10). If w=1w’', then ¢, =¢,.€ 0, |. Thus

o,

Zi),((’w):)fl(‘)/ o, ,("n‘): Z Zl;), 1“’.“)~

Pt

When v=2¢" we have K (v)=K'(¢'), and when r=1¢ we have
K (v)={¢'}, so the second two cases are proved. |

3. THE BIRMAN-WENZL ALGEBRA

We define the Birman Wenzl algebra BW, (r. q) {defined in [BW]) as
the algebra generated over C(r. ¢) by L. g,. ... g, . which are assumed to
be invertible, subject to the relations

(Bl) g.82,,.8:=8 1881
(B2) g.g,=g¢, it li—jl=2,
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(BWI) (g;i—r gi+q "Ngi—q)=0,
(BW2) E,¢*'\E;=r*'E, and E;g}! E,=r*'E,

where E, is defined by the equation
(g—q¢ "WI—E)=g,—8 " (3.1)

The element £, is the spectral projection of the element g, corresponding to
the eigenvalue r ' Letting

r—r-!

X= —+ 1, (3.2)
q9—4
one has the following relations
E}=xE,, (3.3)
Egt' =g E=r"'E, (34)
gl=(q—q ‘Ng,;—r 'E)+1. (3.5)

It can be shown (see [ Wn2]) that for r =¢"*' one obtains in the limit-
ing case ¢ — 1 the Brauer algebra B,(n). Furthermore, BW(r, ¢q) has
the same decomposition into full matrix rings as B,(n) except possibly
if ¢ is a root of unity or if r=¢"*' for some ne Z (see [Wn2]). In par-
ticular,

dimg,, , BW,(r, q) =dimg By(n)=(2f = 1)(2f=3)---3- 1 =02N.

the irreducible BW,(r., g)-representations are indexed by partitions in the
set

B,={)(f=2)|0<k<L2]}. (3.6)

and the Bratteli diagram for BW,(r, ¢) is the same as the Bratteli diagram
for B,(x) given in Section 1.

The Iwahori-Hecke algebra of tvpe A (defined in {Iw]), denoted H,(¢?).
is the algebra generated over C(q) by 1, g,. ... g, subject to the relations

(Bl} g, 8 .18=8 188+
(B2) g.8,=g%i if |i—jl=2,
(IH) g/=(g—¢ Hg+L



280 HALVERSON AND RAM

There exists a nondegenerate trace tr on BW,{(r, ¢} defined inductively
by
tr(l)=
triagt' b) = (r*'/x) tr(ab). and

triak, b)=1(1/x)tr(ab),
for all a, he BW, |(r, g). Define
e, =(1/x)E, |,
and a conditional expectation ¢, »: BW, (r,q)— BW, (r.q) by
ep 1he, y=¢, o(ble, .

for all he BW, |. Then [Wn2] the trace ¢r is nondegenerate on BW,
and BW, , and ¢, , is a conditional expectation for the inclusion
BW, ,< BW, | with respect to the trace {r. Furthermore the element ¢, |
satisfies the relations in (2.5), and

BW/"‘-‘I)QBW/'A(VJ]) (’,—,,,,BW, W, ‘1)@Hr(113)~ (3.7)

where  BW,_,(r.q)e, BW, |(r.q) 1s a basic construction for
BW, ,(r,q)= BW, |(r.q). The fact that H (g %) is the complement of the
basic construction follows by considering (3 5) modulo the ideal {E,>
generated by the E;. For details, see [ BW] and [ Wn2].

Tangles

Kauffman [Ka] has given the Birman-Wenzl algebra a diagrammatic
setting which we adopt. An f-rangle is viewed as two rows of f vertices, one
above the other, and f strands that connect vertices in such a way that each
vertex is incident to precisely one strand. Strands cross over and under
each other in three-space as they pass from one vertex to the next. Strands
that connect vertices in the same row are horizontal, and strands that con-
nect vertices in different rows are vertical. For example, the following are

7-tangles:
) X .lr‘-(\:jﬁg \“"\\—1 >
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The Reidemeister moves of types II and III are (see [Ka]):

I
111 //\A/\= \/__// and ,\/\\ = \\/\/

We apply these “moves” to tangles by isolating one of these crossings in
an open disk in a tangle and applying the relation. These relations give
an equivalence class among tangles known as regular isotopy. We will
take f-tangles to be their equivalence classes under the Reidemeister
moves.

We multiply f~tangles ¢, and ¢, using the concatenation product given by
identifying the vertices in the top row of ¢, with the corresponding vertices
in the bottom row of ¢, and then re-scaling the result to obtain the product
tangle #,¢,. The concatenation product can create closed cycles, so we
allow an f-tangle to contain arbitrarily many closed cycles. For example,
the product of the 7-tangles in (3.8} is given by

. 1—‘1 el
““)\ﬁ

The concatenation product makes the set ¥, of all f~tangles a monoid,
referred to as the tangle monoid.
We identify special elements in I, by

1IN L%

S =A BN AR TN |
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The braid monoid M, is the sub-monoid of I, generated by {id,} u
lof' h | 1<i<f—1}. We associate to M, the free algebra </, generated
by M, over C(r, ¢) subject to the relations:

(Ql) a,=0, '+(g—q "Yid,(—(g—q ")h,.
(Q2) Mol hi=r*'"h, and ho!' h.=r*'h,
(Q3) horl=act'h,=r*'h,

(Q4) hi=xh,

In terms of tangles, these relations give the tangle identities given below.

L 8 |
(@) X=x+(q—q")] I—(q—q")nr

f_syzrr_J[ qur_,u[
A9 Iar S /) 'Ry
(Q2)
(ou_r[u (LJ:r_][LJ
[ L~ L i~ (39)
(@3) e g
K & N o N e S
| 3 4
t_s
4 =z .
(Q4) I -
&%

Like the Reidemeister moves, the tangle identities relate diagrams which
differ in small open disks by the given relation and are the same outside the
disk.

Let £, denote the free C(r, ¢)-algebra on the BW,(r, ¢) generators. and
define a map F,— ./, by |l —id, g,+>0, and E,—h,. It is easy to check
that the .« generators satisfy the BW,(r, ¢)-relations. so we get an induced
homomorphism BW,(r, 4) — «/,. Moreover, Kauffman [Ka] shows that
upon setting r =¢" ' and letting ¢ — 1. the algebra ./, becomes the Brauer
algebra B,(n+2). In terms of diagrams, this specialization is equivalent
to ignoring over and under-crossings of strands and removing curls.
In particular, we have dim,,, o = dim_B,(n+2) = (2f)!!. Since
dimg,, . BW,(r.q)= 2/, we have BW, (r,q)=.. Thus, we identify
elements of BW,(r. ¢) with their corresponding diagram.
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We refer to the images of the tangles in ./, as g-diagrams, or sometimes,
(f; q)-diagrams and to the images of the BW,(r, q)-generators 1, g,, g,
E; as g-generator diagrams. We call the (f, 1)-diagrams Brauer diagrams,
since they generate the Brauer algebra B,(n) (see [R1]). and we let
D, denote the set of Brauer diagrams. If d, and d, are (f);¢) and
(f4; q)-diagrams respectively, then d, ® d, denotes the ( f| +f>; g)-diagram
given by placing d, to the right of d&,, and d®* denotes the
diagram d,®d, ® --- ®d, with k factors. We let E denote the (2; ¢)-
diagram

s
E= , (3.10)
a3
and we have
E®* @id_y = I ][
£33 3. .63 (3.11)
[ SO N —
2k -2k

Note that E®*®id, ., =E E,---Ey is a product of generator diagrams.
Not all f-tangles represent elements of BW,(r, ¢). For example

It

1s a 3-tangle in ¥, that is not in the braid monoid M,. To identify
diagrams in BW,(r, q). we say that a ¢g-diagram d is standard if (i) no two
edges cross more than once, (i1) no edge crosses itself, and (iii) 4 contains
no cycles.

{3.12) THEOREM. Any standard ([, q)-diagram can be written as a
product of (f: q)-generator diagrams and is thus an element of BW (r. q).

Proof. Let d be a standard ( f; ¢)-diagram with & horizontal edges in
each row, and let dy=E®*®id, ,,. Then there exist diagrams o, t€ ¥
such that, as Brauer diagrams, d=od, 7. Write o=s,s,---5, and
T=s;s,---s; as products of simple transpositions. Then it is possible to
choose w;, wu;e{l, —1} such that d=gjigi---gi"d,g/gy---g as
g-diagrams. As the next example illustrates, choosing the u; and u; amounts
to choosing the crossings in the diagrams. Here we “blow-up” a diagram

into a product of generator diagrams,
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AR 75
AN

| r/r

:7/’ ,\___:?\\<z_-! " E\Es

[y /]
/ \ = g7t
= gags!
= 97'9405"
\I = g7'gsor

and we see that d=g, 1g5g7g:g4g6‘23g5g7g4 E\E g8, ‘g; lgs 1g2~|
248 '8, 'gs87- |

95 9597

94

(3.13) THEOREM. Any set 5_, of g-diagrams in standard form that
specializes when ¢ — 1 to the set D, of Brauer diagrams forms a basis of
BW,(r. q).

Proof. We know from the previous theorem that D < BW ,(r, q). Since
these diagrams are independent when ¢ — 1, they must be independent
in BW,(r.q), and since dim, ,, BW,(r.q)=(2/)!!. which is exactly
Card(D,), they span BW,(r,q). |

Character Classes

Let T,,=g, g, - - g, denote the (f; g4)-diagram

T, = \A/K. (3.14)
<

and for ye B, with gt = (u., ... ut,) let

T,=T,®T,® @ T

W Var

From Lemma (2.8) we observe that the characters of the basic construction
BW, \(r.q) ¢, BW, \(r.q) depend only on their values on elements
a®E where ae BW, ,(r.q). By (3.7) and induction the characters of
BW,(r,q) depend only on their values on elements 4® E®" where
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de H, ,,(¢"). Using the results of [R2] on Hecke algebra characters, we
know that the character of 4 depends only on the character of 7, where
HH(f—2h) is the cycle type of d. Thus, the characters of BW,(r, q)
depend only on the characters of 7, ® E ®*% 1In the rest of the section we
will explicitly construct a basis of g-diagrams in BW,(r, q) that partitions
into classes, which we call character classes, labeled by ,ueB, on which
BW ,(r, g)-characters are constant and equal to the character of 'T),ﬂ QRE®H

Following [R1] we associate to each Brauer diagram de D, a partition
7(d) € B, called the cycle type of d. To do this, we traverse the diagram d
in the following way. Connect each vertex in the top row of the diagram
d to the vertex just below it in the bottom row by a dotted line. Beginning
with the first vertex (moving left to right) in the top row of d, follow the
path determined by the edges and the dotted lines and assign to each edge
the direction that it is traversed. Returning to the original vertex completes
a cycle in d. If not all vertices in d have been visited, start with the first not-
yet-visited vertex in the top row of & and traverse the cycle adjacent to it.
Do this until all vertices have been visited. The diagram

(3.15)

has three cycles. The first is on vertices 1, 2, 3, 6, 5, the second on vertices
4, 7, 8,9, 11, and the third on vertices 10, 12, 13, 14.

To each cycle ¢ of d, let U(c) denote the number of vertical edges of ¢
directed from bottom to top and D(c) denote the number of vertical edges
directed from top to bottom. We distinguish the three cases:

(1) If Ulc)=D(c), then ¢ is a zero cycle.
(2) 1If U(c)> D(c), then ¢ is an up-cycle, and
(3) If U(c) < D(c), then ¢ is a down-cycle.

In each case, the integer

tc)=1U(C)—D(c)|

is the called the type of the cycle ¢. As ¢ runs through all non-zero cycles
of d, the sequence of numbers #(¢) forms the partition t(d), the fype of the
diagram d. It is not hard to check that there exists an integer A(d) with
0<h(d)<Lf2] so that 7(d) | (f—2h(d)), and therefore t(d)e B,. In
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example (3.15), above, the first cycle ¢, is an up-cycle with type (¢} =1,
the second ¢, is a down-cycle with type #(¢-) =3, and the third ¢; 1s a zero-
cycle. Thus, t(d)=(3. 1), and A(d)=>75.

We associate to d a standard ¢-diagram «, which has the same cycle type
as d and which specializes when ¢ — 1 to d. We do it by g¢-traversing the
diagram d in the following manner. If the first cycle ¢, of ¢ is an up-cycle,
we start with the rightmost vertex in the bottom row of ¢, otherwise we
start with the leftmost vertex in the top row of ¢,. We follow the edges of
d in the same way that we originally traversed d, only now, whenever we
come to an edge that has already been traversed, we go under it, and
whenever we come to an edge that has not been traversed, we go over it.
Once a cycle is completed. we g-traverse the next (moving from left to
right) cycle of d, always passing under already traversed edges and over
not-yet-traversed edges, and always starting with the top-left-most vertex of
down or zero-cycles and with the bottom-right-most vertex of up-cycles. In
this way, the first cycle is on top of the second and the second is on top
of the third, and so on. From example (3.15) above, we construct the
following g-diagram

i 8 9 10 11 12 13 14
-\ Nt '// x4
N

F’/“‘Q"’“’T‘“‘&K%

(3.16)

We let D¢ ={d,|deD,} be the set of these ¢-diagrams, corresponding to
Brauer dlagrams Then, by Theorem (3.13). D is a basis of BW,(r, ¢).

Let d,€ D7. A horizontal edge ¢ in d,, is zmer ted if it is in a down-cycle
or a zero cycle (respectively up-cycle) dnd is directed from right to left
{respectively left-to-right) and it is not the last edge traversed in the cycle.
Define

1(d,) = (number of inverted horizontal edges in the top row of d,),

Id,) = (number of inverted horizontal edges in the bottom row of d).

In our example (3.16), the edge connecting vertices 7 and 8 in the top row
is inverted, and the edge connecting vertices 12 and 13 in the bottom row
1s inverted.

We say that a g-diagram 1s a cycle diagram if consists of a single cycle,
and we say that it is a straightened cycle diagram if one vertex in each
column is connected to a vertex in the next column (and a vertex in the fth
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column is connected to a vertex in the Ist column). For example, the
following is a straightened g-cycle diagram

el

We say that two elements b, and &, of BW,(r, q) are conjugate and write
b, ~b, if there exists an invertible element g of BW ,(r,q) such that
b, =gh,g ' Note that the g-diagrams that are invertible are exactly the
ones which do not contain horizontal edges. Furthermore, b, ~ b, implies
y(b)) = x(b,) for any BW (r, q)-character y.

(3.17) THEOREM. If d is a Brauer diagram and d, is its associated
g-diagram, then

dq ~ ',(13(11)717111)16.1@(,2@ . ®C,,

where ~ denotes conjugate elements of BW,(r,q) and where the ¢, are
straightened cycle diagrams.

Proof. Because the cycles of d, are layered from top to bottom, it is
easy to conjugate d, so that d, ~ ¢\ ® ¢, ® - - ®@ ¢}, where each ¢} is a cycle
diagram.

Suppose that ¢ is a down or zero-cycle on f;. We construct an { f,, q)-
diagram g, as follows. If when g-traversing ¢} the kth column visited is
column /, then connect the /th vertex in the bottom row of g, to the kth
vertex in the top row of g,, always passing under any edges of g, that are
already drawn. If a horizontal edge of ¢ is inverted, then we will introduce
a loop when we conjugate ¢, by g;. We remove the loop by multiplying by
r ! if the edge is in the top row and by r if the edge is in the bottom row
(see (Q3) in Figure 3.9). In this way g,c, g, ' =r™" "¢, where ¢, is the
straightened version of ¢;. For example,

P

R\
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If ¢} is an up-cycle, then we rotate ¢; by 180 degrees making it a down-cycle
(this is why we start drawing up-cycles from the bottom right vertex). The
same procedure with the rotated cycle puts ¢; in straightened form. Doing
this for each cycle in d, proves the theorem. ||

(3.18) THEOREM. Suppose d, e DY is a g-diagram of type ,ueB, with
U (f=2h) and that d, has z zero-cycles. Then if y Is any character of
BW,(r, ¢), we have

)’((1 ) = x¢* hrlg(d‘,) ~frldgy + N(d‘,)y( T
(3 q - .

e
v, e ),
where N(d,) is the number of non-zero cycles in d, which have a horizontal
edge.

Proof. From Theorem 3.17, we know that d, ~r'#% = /Tde &
c,® --- ®c¢, where each ¢, is a straightened cycle diagram on f;-dots.
Moreover ¢, @ ¢, @ - @€, ~ 3, ® -+ @y, for any permutation n of
the f cycles in d,,. To see this, observe that we can transpose any two cycles
by

e ey PO Sy PN
(4] C2 = C2 [}
~ /v// Ld v L Z L4 L 2 L]
.o//t/o/ 2 S

Therefore, if each non-zero cycle contains only vertical edges and each zero-
cycle is E, then we can permute the cycles so that d, ~r/#d /10T
and we are done, since characters are the same on conjugate elements.
Therefore, we assume that, for some 7, ¢, has a horizontal edge and ¢; is
not E. Moreover, we will assume, first of all, that ¢, is a down or a zero-
cycle.

[t suffices to work in BW,.(r. g), since we embed an (f;; ¢)-diagram into
BW,{r, q) by placing the appropriate number of identity edges on either
side of the diagram. We first note that if the edge in ¢, connecting the
fith column to the first column is vertical, then we conjugate ¢; by
(g, 18, 2 --&) ' so that this edge connects the first column to the
second column. We can continue to conjugate ¢; in this way until the edge
connecting columns | and f; is a horizontal edge in the bottom row.
Moreover, since ¢, is a straightened down or zero-cycle, we know that this
edge passes behind all the other edges.
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Assume that the rightmost horizontal edge in the top row of ¢; connects
the kth and (k + 1)st edge. Then E, ¢, = xc;, so

1 1
X(C:’)Z;Z(Ekci):;}f(ciEk)- (3.19)
Therefore, we are interested in the product ¢;E,. Let O be the vertex in
column & — 1 of ¢; which is adjacent to the edge that travels to column k,
and let & be the vertex in column & + 1 of ¢; that is adjacent to the edge

that travels from column k. We consider in four cases the possible locations
of O and ©.

Case (i). O and < are both in the top row.

Here we see that ¢, E, ~ ¢;® E, where ¢; is a straightened cycle diagram on
f;—2 vertices with the same type as c;.

Case (i1). O is in the bottom row, and < is in the top row.

Here again ¢;E, ~ ¢! ® E, where ¢ is a straightened cycle diagram on f; —2
vertices with the same type as ¢;.

Case (iii). O is in the top row and < is in the bottom row. Notice that
because we are considering the rightmost horizontal edge in the top row of
c,, this case only occurs if ¢, is a not a zero-cycle and has one horizontal
edge in each row and that k=f,—1.

B kL_k;l k b+l :——k;-l
OIS - NRE NN E

607116 2-7
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We remove the loop using (Q2) in Figure (3.9), and ¢, E, ~ r¢;® E, where ¢
is a straightened cycle diagram on f;—2 vertices with the same type as c,.

Cuse (iv). © and < are both in the bottom row. As in case (i),
k=/,—1, and we have

kok+l
k k4l

ST - N

Thus, ¢;E, ~ ¢;® E, where ¢} is a straightened cycle diagram on f;, — 2 ver-
tices with the same type as ¢;.

We repeat this process with ¢} in place of ¢; until either ¢, = F or ¢ has no
horizontal edges. If ¢, is a 0-cycle, then after A(¢,;)}—1 reductions we get

¢;= E. If ¢, is a down-cycle, then after 4(c,) i reductions we get ¢;=T,, . At
each reductlon we multiply by x, so in the end we multiply by \"“’f’ B
where z, =1 if ¢ —i is a zero-cycle, and =z, =0 otherwise. In the case where

¢, 1s an up-cycle, we rotate ¢, by 180 making it a down-cycle. Multiplying on
the bottom of ¢; when rotated 180 degrees corresponds to multiplying on the
top of ¢,. Thus (3.19) becomes y(c¢,;) = 1/xy(¢,Ey) = 1/xy(E,c;). From (Q2)
in Figure (3.9) we see that we still require multiplying by r to remove the
loop. Moreover, the T, | is the same after a rotation of 180 degrees, so the
result also holds for up- cycles Repeating this process for each cycle in d,
that has a horizontal edge and is not E proves the theorem. |

4. THE QuanTUuM GROUP ///q(so(l)) AND THE UNIVERSAL R-MATRIX

Let g be a finite dimensional simple Lie algebra over C with Cartan
matrix 4 =(a,), <, ,<; Then, since 4 is symmetrizable, there exist integers
d,# 0 such thdt da,;=d;a;. Let 4 be an indeterminate over C. Then %,(g)

ity Jie

is the associative C(g)-algebra with generators {X,", X, . k.. k, ']
1 <i<l!} and relations

(1 kkzkk kik, "=k, k=1,

(2) kX k +(/1u,/_X+

k?—k. 2
(3) [Xi+'Xj7]:5ij;Zl’T“;7’;f/—,’
@ 3 (-1t 'f]"' SXEYN XX =0
v=0 [v]q r' [1 ]q dis ! !

i#).
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where for any t1eC,
” lj— ! —J

[m]!'=]]

j=1

t— Y

Upon letting ¢ — 1, one obtains the classical Serre relations for the
universal enveloping algebra %(g).

The algebra %,(g) is a Hopf algebra whose coproduct 4:%,(g)—
US3)@U,g), antipode S: %,g)— #,g), and counit & %,(g) — C(q) are
given by

AMXE) =k "X+ X ®k,, Ak;)y=k,®k,,
S(Xt)y=—q7'X?, Stk;y=k 1, (4.1)

!

e(X*)=0, e(k;)=1.
For any invertible element # €% (q)® #,(g) given by #=3 a,®b,,
define #,,, #,3, Az € U,(3)® " to be the elements

'ﬂllzzai(@bi@la ’%13:Za:®l®bis ‘%23=Zl®ai®bi'

Then we say that Z satisfies the quantum Yang-Baxter equation (QYBE)
if
R Rz Aoy = A A3 A (4.2)
Let T" %,(8) @, q) > U, ) ®¥,g) be given by
Ta®bY=bRa, for all a, be¥,(g) (4.3)

Then # is a universal R-matrix if it satisfies the relations

TA(a)=RA(a) A} forall ae/qg),
(AR id)(R) = Ry Ao, (44)
(id® ANR) = Ry A5
If # is a universal R-matrix, then # satisfies the QYBE.
Fix g=so(/, C) with /=(n+1)/2 and n odd. The Cartan matrix of g is

of type B,. To define the fundamental representation of g, let I be the index
set

I={—n —(n=2),.., =3, —1,0,1,3, ..,n—2,n}. (4.5)

We will at times let k= —k for notational convenience. Let V be the
(n+ 2)-dimensional C(g'?)-vector space with basis {v;|iel}. The
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fundamental representation n: %,(q) — End(V') of 4 (q) is defined in terms
of matrix units {E£, ;| i.jel} by

X, V=E, ,,—E 73, i=3.57 . n—1,

i

X, ):\/E(EO,I*EL()L
Tf(kj):fll"’:(E,,j-i-Ej—T,j_l)+({ ]‘JCZ(E/, 1./ ,1+E,-‘,')

+ ) E; i=1,35 ..n—1,

i#ng Vg0

nk)=q'"E, ,+q E,  + Z E;,

PA1

and n(X " )=n(X, ), where ¢ denotes matrix transpose. Since, #,(g) is a
Hopf algebra, the tensor representation (z®/, V®/) is well-defined for all
f=zL

Note that for 1 <i<n, i odd, the spectral projections (see [ R2]) of n(k;,)
at ¢"7 and ¢ '” are, respectively, E, ;+ Er— 7tand E;,, ;. ,+E, ,. The
spectral projections for k, at ¢"* and ¢ '* are E, | and E; ;. Therefore,
the set {E,,| i€ I\O} is in the image of the ks under 7. Since #(1) =1, we
get all of the matrix units of the form E,, in ={g). In particular, for
«, € Clg), the matnx

d:Z o, E; (4.6)
iel
is in n(#,(g)). Moreover, the k; are group-like elements ie., 4(k,) =k, ®@k,,
so the matrix d®/=d®d® --- ®d (with f factors) is in 7€ /(% (q)).
Let R=nr®*T#) where # is the universal R-matrix and T is as given in
4.4. In terms of matrix units, we have (see [ Wn2])

qu Z E ®F +E, ¢®@FE o+ Z Ei.i®Ei,>;+q IZ E ®FE ,,

i/ 0 L2440 F i#0

+lg—q VY E ,®FE —(¢g—q Y ¢v OCE GRE . (4.7)

J<i i>/
One can check by explicit computation that

R '=¢ IZEl.i®Ei,i+E0,()®E(),U+ Z E, ®F,

i#0 [ A
+‘IZ E, ®FE ,;—(¢q—q I)ZE/M/@E:‘J
i 0 =i

+(g—q )Y ¢V "E [ ,®FE, (4.8)

i< j
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Let xe C(q) be defined by
qn+l_q7(n+l) )
x=———"——+4+1=) ¢ (4.9)
q9—q ] :%;1
Then x corresponds to the parameter x in BW,(q"“, g) (defined in (3.2))
for the specialization r =g¢"*'. If we define Fe End(V® V) by

F:Zq"'”""in‘j@)E,‘j, (4.10)
ij
then F satisfies
F?=xF, (4.11)

and (1/x) Fis a projection of V'® V onto the subspace spanned by the vec-
tor 3,.,¢"*v,v_,. Furthermore, one can check that

R—R™'=(g—q "1 -F) (4.12)
Define elements R,, F,e End(V®/) by

R=I1®I® - QIRRRIQI® - ®1 and
Rf—/ ¥—V_/

i—1 S—i+1)
F=1®1® - QIQFRIRI® - ®1.
w_/ R/_/

i—1 f—ti+1)

It follows from the QYBE or by very lengthy direct computation that
R:'Ri+ 1 er Ri+ 1 RiRi+ 1

which implies that the R, satisfy the braid relation (B2) in the definition of
BW,(q"*", q). One can check directly that all the BW {q"*', ¢) relations
are satisfied. Thus, defining a map ¢: BW,(q"*", ¢)— End(V®') by
¢(g,)=R, and ¢(e;,) =F, gives a representation of BW,(q"*', q) on V&'
(see [ Wn2]). Through quite tedious computations, one can check that the
matrices R, and F, each commute with the action of %,(so(/)) on V' ®/. The
results of the next sections prove that the algebras ¢(BW,(¢" "', ¢)) and
@/ #«,(s0(1)) are mutual commutants of one another (in analogy with the
duality between H,(g’) and %(sl(n)) [Ji], [R2]) and that

(4.13) THEOREM. Let n+222f Then as a BWAq""', ) ® U, (s0(]))-
representation

V@.f: (__D M,U® V“,
e By
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where | = (n+1)/2, M" is an irreducible BW (¢" "', q)-representation, V* is
an irreducible U (so(l))-representation, and B, is the set of partitions given
by (2.13).

5. WEIGHTED TRACES OF BW,(¢" "', ¢) ACTING oN V&

The Action of BW,(¢"* ', q) on V&/

Let # be a positive odd integer and let =4 —n, —(n—2), ... =3, —1,0,
1, 3,..n—2,n}. Let {v;|iel} be a set of independent noncommuting
variables. Define ¥ to be the vector space over C(g'”) with basis {v, | ie I},
and define

V®,/=C(qlﬂ2)_spa“ {L’,IUi:‘ vy, | ikel},

so that the words (simple tensors) v, v,,--- v, are a basis of ¥®.
The symmetric group % of permutations on {1, 2. .../} acts on words
v=u; v, v, € V®/ by place permutations. That 1s, if o €., then

U

(L“,-I Uiyr e Ulr) O =V, Uiy Vg

For 1<i<f—1, let s;=(i,i+1) denote the simple transposition that
switches 7/ and i+ 1.

Let v=v, v, --v,. For k=1,2,...f—1, define an action of the gener-
ator g, of BW,(¢"*',¢) on v by

[r.v,\, 1) P PRI S R
qu, if i,=1,,,#0,
v, +(g—g "o,
i <ip s e # —lien,
g s —(qg—qg DX g oy, v, ey,
U8y = s . . .
< > o= —lg s
l'_(q—qil)Z/&l)q{ 7”“‘21\‘1'\'”17"1( ll’)'*ivlvlk»:'“l'i/
it iy = —iy,, =0,

=l ~1 1 (g =72 sn
q l\‘k‘*((]—‘{ )l'“((]*([ )}:;>,k‘1 Oipre By 000y Uy

\ W i<y fe=—lg 1,
and define the action of the generator ¢, of BW,{(¢" "', ¢) on v by
o =S (J+ik)2,, R N N s
Ve, =04 —ixs) Z gy ey, U U U (5.2)

jel
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(5.3) PROPOSITION. The action defined above extends to a well-defined
action of BW,(q"*', q) on V&

Proof. One can either check this directly through very tedious com-
putation or note that the action of g, is that of the R-matrix R, in (4.7) and
that the action of e, is that of F; in (4.10). |}

The Weighted Trace

Let x, x3, s, .., X, be commuting, independent variables. Define x,=1
and x_,=x;"fori=1,3,5,..n, so that x, is defined for each i e I. Define
the weight of each word v, --- v, of ¥®/to be wr(v, ---v,)=x, ---x, , and

define a weighted trace of BW ,{¢"*', ¢) acting on V'®/ by

wir(by= 3 v, v b L oo, WV - 0, (5.4)
e iy
for all be BW,(¢"*", q), where the sum is over all sequences i, i, ... i,
with i;el, and where v, ---v, b | is the coefficient of v, ---v; in
v, -+ v;,b. Since the action of BW(¢"*', ¢) on words w of V®/ preserves
the weight of w (see (5.1) and (5.2)), the weighted trace satisfies the trace
property wir(b,b,) =wtr(b,b,) for all b, b,e BW,(¢"*", q).
For each positive integer r, define ¢,(n) to be the set of words v, v, - v,
such that

iyt

i;el and

(1) I <b<- <inl,

(2) the number of i;=0 is either 0 or a positive odd integer.

Define the w-weight of a word v, ---v; €(,(n) by

Wtw(vi; "'ui,)=(q_q7I)#{i/<i'+l}q#{i'=iﬁl#0}xn'"'xi,*
and let
Qxi' xFlig)= Y wi,(w) (5.5)
wedl, (n)

For each positive integer r, define &(n) to be the set of words v, v;,--- v,
such that

(1) i <iy< - <i,, i;el, and
(2) one of the following holds:
(1) the number of i;=0 is a positive even integer, or

(11) w contains the subword v_,v, for some odd integer k& with
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Define the ¢-weight of a word v,, ---v; € 6,(n) by

(q_q l)#:’}<i/+|}q#{i/:i/6| *‘0}( —q k) X X

if w contains the subword ¢ ¢,

;Y

wr v, v )= (4—g 1)#{,'/@,.1}(1#{:‘/:.'/,1#o:x“___.\_i,
otherwise.
and let
E(xf' oxEig)= ), wiw) (5.6)

we&in

(5.7) ProposITION.  Let T, =g, 8, »---&. Then the weighted trace of
the clement T, € BW,(q" "', q) acting on V' is

wir(T, ) =0 (X F 5 g)+ EAX 5 q).

Proof. The proof is by induction on r. Let w=uv, v, v,
w=v,0,0, ,and w'=uv, v, 0,

iy P2t

Case 1. i, ,>i,and i, |# —i,.

, — e g —
wl, | .=w"v,v, T, [,=0

since 7, | acts only on w”v; and v,  #v,.

Case 2. i, =i, #0.

¥

T, Lo=gw T, Lo=qw'T, |

¥r

Cuase 3. i, <i,and i, ,# —I,.

R T ,
W Ty, lw =Mn vi, lwi,,, T;‘, 1 lu’ + ({H T

|

lo=0+(¢g—q “HYw'T.

Prol 7r lll""

Case 4. i, \>i,and i, ,= —i,.

“'T}', ‘n‘ = q ]H"”virvi, 1 T;', 1 |w - (({ - q ! ) Z H'HP - F
J>i
since j>1i. ,>1i,, so that we never have j=1i,.

Cuse 5. 1, ,=i,=0.

I

, — ! LTI TRY —w
" T;', |\|"—“'UI,T‘,',,,| |u_(q—q ) Z q / ””l jl‘/TJ'r Il“‘_—u,T?'r Il“"’

j>0

since j > i, =0, so that we never have j=1, .
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Case 6. i, ,<i,andi _,=—I,.
) o -1 s
H Ty, In' =W Ui, vi,_l T)',,| Iw + (q - q ) W 'Ui, T)',_l Iw

_(q_q*l) Z qii"vﬂvfjvjr;r,,l |n'

J>—ir

=0+(g—q N1—g "IWT, |-

The result now follows by induction on r. |}

(5.8) LEMMA. Let y=(y;, Y1, Vs» ... ¥a) be a sequence of integers such
that v, = -+ 2v,20 and y, #0. Then

S+ 1 Lt
(a) E,(—’«li v X ,6])|_\—;‘1,‘§3...\-;~=0,

n
and

7"1“‘1) . .
, if riseven,

(b) Efxi' . x2 gl o=17 f )
0, if risodd,

where E, | 1. o0 denotes the coefficient of x3'--.xirin E, as a polynomial
i C( 1:2 -t -*1
in Clg" )M xi', ...x 1

Proof. (a) Let &, (n)={w=uv, v, eén)|x, -x, =xi" x|
Let 2k=r—|y|=r—y,— --- —y, (r—|y| must be even), and note that
every word in &, (n) can be written in the form

W=U_, - U_,U 2y U 2"
————

Hon
Hn-2
SU_q U Vg DUy v DUy Uy Uy U3 D, Uy
e S e N e e e —t
Ml 2 —2p | >l Vi Vn

N N S U2 e L W1 S B I S B
=00, 0 g R R S

for nonnegative integers &, y;,, v, such that v, —u, =y, and 0 <u, <k. Define
wo=0v4 -0 and wy=vf" 0", so that w=w, " vgt TH R ] .

Note that £, ?, and g, uniquely determine w, and

E(xit' oxEig) = 2 widw)

weéy in)

k
W -2 N
=33 wewavogt TH e ]y,

0 1 =0
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We show that the inner sum is equal to 0:

k
, ) VK 2O O gy ) = oA 2K
Z wt fw o ol T e e wy) = w (v e e o e wy)
=0
k
2k I .
+ 3w edt e e,
wr=1

+wit{w, vk eiwy).

Then, using the definition of wr, we have that

X
Y owrwr FoAppTh)
#1=0
=wit (w;)qg—¢q "Wg—q ywt(v]'w,)
k-1
+ Z widw g —g¢ Bg (g —q WNg—q Vg gt (o wy)

pr=1

+wi(w g —q ") g" Hg—q "H—q ") gwr v wy)

k-1
=wi, v g—q ) wilvlwy) <l + Y (g—q g '— qz"”2>

w1=1
=wiw g —q "V wr o w )+ (= 1+4¢* ) —g*?)
=0.

(b) Note that if w=uv, - v, €é(n) and x; - - x, =x{---x) then r
must be even. Thus

E(xt' o ox )0 0=0, if ris odd.

.\1“',\’l
Let &, on)={w=uv, v, €6n) | x, - x,, =x-x0=1}, and let
e2r,n)=Eo(x', ., x1'q) W= Y wilw).

n
wedy gln)

We shall show that ¢(2r,n)=¢ """ for all r=1 and n=1, n odd. The
proof 1s by induction on #. If n =1, then

e2r, Y= Y wi(w)

wedy oil)

r- |1
=wi o)+ Y wi (o8 oy o) we(vn o))
k=1
r—1
:1+Z (q_q 1)2(12k72+q2r 2(_qvl)(q_q—1)
k=1
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r-—1
=1 +(q—f1')< ) (q—q")qzk"z—q2”>
k=1

2r—3 2r43)

=1+(g—q¢ "N—q '+q

2

:q‘ .

q

Now let n> 1. Then every word w € &, o(n) can be written in the form

W=10v_,--0_,
——————

Hn Hn

W, v, =0t Wik
e —

where w' e &, 5, o(n—2) and 0<u, <r. Then

e2romy= ) wi(w)

wedy gln)

r
=) < D wi (", w’v’,f")>

Ha=0 Sw'edxy_2 .gln—2)

= Y widw)+ Y ¢ g—q7")

wedy pln—2) Ha=1

x ( > wte(w’)> (g—g g
wedy_ 2, 0(n—2)

r—1

+q9" Ng—q 'N—q g

=e(2r,n—2)+ Y e(2r—2u,, n—2)

Hn=1

x(g—qg Vg +(g—q N—q

2r—2—n)
By induction, e(k,n—2)=¢ """ for all k, so

e(zr"1):q—(ix—l)_+_(q_q—l)< Z (q_qfl)q—mflquz,,fl_q r-—2-n>

pn=1
:q»—(n—1)_+_(q_q71)(q27271nfl)7l +q2(r41)—2~-(nfl)+l_q

2r727n)

=q " V+(g—q N—g =g """ 1

(5.9) PROPOSITION.  Define Qo(xit', .., xt'), q)=1/(q—q"). Then the

generating function for Q, is given by

(g—g ") Y OAxi', .xtiq)

r=0

l—g 'x'z1—g 'x;z —qYHz?
=<ﬂ . ><(q 1332) +1>. (5.10)

o 1—gx7 'z 1—gx:z
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Proof. Let ((n)=1), ., C.(n) where (y(n) is the set consisting of the
empty word @. We will say that wr, () =1/(¢g—¢ ‘). Then

Y ouxEloxihig =3 Y wiw)zi= ) we (w)z™ (%)

r=0 rz0we,(n) wedln)

where /(w) is the length of the word w. ie., the number of letters in w.
Every word w e (“(n) can be written in the form

W=0 -0 U0 U g Ug Vgl Uy 0y 0 Uy
— e e— N e — L
Hn I Qg Vv Yy
—pHn L pt prepvt L v
n 1¥0 1 ‘n

for some nonnegative integers v,, ;¢,. The right hand side of equation (x)
can be re-written in the form:

1 — rI'.—lZ 1 — I-. IZl— I‘. l}_" _ 1 22
g x, 2z -9 x q4 X, ((q q ) +1>

| —gx, 'z l—gxy'z l—gx, 'z

l—g 'xyz 1—¢q 'x,z

l—gx,z  l—gx,z
The result follows by substituting

| —¢ 'x,z
—l—jqu;'—=1+(q—q' "x;z “Eo(q.\‘,:)"' and

g—q 'z°

1 -2

+l=l+(g—q ") Y 2>

v =1
in (*x) and comparing terms with (*). [}

A Frobenius Formula for the Birman—Wenzl Algebras

The Weyl character formula for type B gives an expression for the
characters of the irreducible representations of the orthogonal group
SO(n+2), n+2 odd. The irreducible characters are indexed by partitions
4 such that 2| + 25 <n + 2 (the total length of the first two columns is less
than or equal to #+2) and are given by

det(x?\,+l~j+l“2 —x —(Ai+1 g+ 2))

. P BN B e
3[7,1(.\1 X e X ) det( \‘I EAR \"
. l s /

i

(5.11)

! ‘/+'1‘2))
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where /=(n+1)/2. We shall refer to the sb, as the Weyl characters of
type B. Let us denote

Bin+2)={A(f—2k) | O<k<Lf21 2 +Ah<n+2).

Note that when n is sufficiently large B,(n+2) = B, where B, is as defined
in (2.13).

(5.12) LemMA. (a) For any idempotent pe BW (q"*', q), wir(p) is
independent of q.

(b) Ifp,, e 3,( n+2), is a minimal idempotent of the Brauer algebra
Byn+2) then

wir(p,)=sb{(xt', xF', . x?

where sb; is the Weyl character of type B.
(c) Forany be BW/(q"*', q),

wir(by= Y xh(b)sbA(xi L x3t L xEY,

AeByn+2)

where, for each Ae Bf(n +2), 7}1 . IS the corresponding irreducible character
of BW/q"*', q) and sb; is the Weyl character for type B given by (5.12).

Proof. (a) Recall that the weight of the word v;,--- v, is wt(v; ---v;) =
Xy oex,. Let X={xpxyx | i |+ i3] + - +1i,| =f—2k}. Then X
is the set of all possible weights of words in ®” V. For x € X, let P, be the
projection operator defined on words we ® V by

w, if wiw)=x,
P.w= .
0, otherwise.

Then (P,)’=P,, and P P . =0 if x#y, so P, is an idempotent operator.
Let P=3Y .,y xP,. The action of BW,(g"*", q) on ® 'V preserves weight,
so if be BW,(q"*", q), then

wir(b)= 3 v, v b iy Xy X4y = tr(bP),

LI V)

where tr(bP) is the trace of the operator bP on X’ V. Now if p is an
idempotent, then pP, is an idempotent operator on X/ V. The trace of
an idempotent operator is the rank of that operator, so tr{pP)=
> exXir(pP.yeZ. Since tr(pP) is also rational function in ¢ it must be
independent of g.
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(b) If d is an element of the Brauer algebra B,(n+ 2}, then one has
the following Frobenius formula for the characters of the Brauer algebra

[RI1T:

wirld)= Y wd)shyx it xEx,
e Bin+2)

where #*(d) is the irreducible character of B,(n+42)} evaluated at the
element d. If A¢e B,-(n +2) and p, is a minimal idempotent of B,(n+2) in
the minimal corresponding to A€ B,(n+2), then n“(p,)=4; . Thus,

wir(p;)= ), (')‘,Msb,-‘(.‘f]il,.\‘f',..., Y =sh(x L xEL L xY.

n
g€ Byin+2)

(¢) Let d, denote the dimension of the irreducible BW, (¢"*', ¢)-
module labeled by 4, and let {p/ | Ae B,(n+2), 1 <i<d,}, where be a par-
tition of unity in BW,(¢"*', ¢) with the property that when we specialize
¢ =1 each p/ is well defined and that, at g=1 {p;|,_,} is a partition of
unity for B,(n+2). Such a partition of unity is given by [ RW] Corollary
2.5 Foreach 1e B,(iz +2)and each 1 <i<d,; let bf, be the constant in C(gq)
such that p}bp’=bp;. Note that the b} are the diagonal elements of the
matrix of o in the irreducible representation corresponding to 4 deter-
mined by this partition of unity. Thus, for each ieé,—(I1+2). we have
21b?}:}f;irx(b)'

From the trace property of wir we have wir(p]bp!)=wir(p/pih)=0
unless 4 =y and i=j. Thus

dy dy

d,;
wir(h) = Y >y wrr(pfbp}‘)z ) > wir(plbp?)

).,/1619{1114—2){:1]:1 }.eﬁ,(ll+2)i:l

d;

= Y Y biwir(p)).

leBin+2yi=1

By part (a), wir(p}) is independent of ¢. By part (b) wir(p})=
e X,E1) for each i Part (c) follows, since ¥, b5=yx7,(b). |

(5.13) TueoREM. Let y |- f—2h. The Frobenius formula for BW , (q"*', q)

A}

wirl T‘/'ﬂ ® E® h) = Z X; n( T)’u ® E® h) Sb,l( Xlt1 > “"si ! s ey x ! )

JeByn+2)

where sb, is the Wevl character of tvpe B corresponding to /€ B,-( n+2) and
x; . s the irreducible character of BW (q"*', q) corresponding to A.
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Proof. The theorem follows immediately from Lemma (5.12)(b). |

(5.14) TuEOREM. (a) The weighted trace of E=E, e BW,(¢"", q)
acting on V®?2 is
—(n+1)

1 +1,

n+l

q q

wi{E)=x= —
q9—d9
where x is as defined in (3.2).
(b) Let T, =g, g »---g . Then the weighted trace of the element
T, e BW,(q"*', q) acting on V" is

¥

if ¥isodd,

0
(T, Vy=0(X*!; ’
wir(Ty,) = QX g) + {(1'"“', if r is even.

(¢) Let u=(uy,pto, sty -f=2h and T, =T, ®T,,® --- ® T, .
Then the weighted trace of T, @ E®" on V®/ is

wir( Tyu RE® "y = x"wir( Tm) wir(T, )---wir(T,

Y Puy

).

Proof. (a) from (5.2), we have

wtr(E)= 3 v;E|,, XX,

i.jel
_ (k+1i)/2,, .
=2 0.,;24q DU g e, XiX;
i.jel kel
=Y g'=x
iel

(b) From (59) i1s evident that Q, is a symmetric function. By the
Frobenius Formula, Theorem (5.13), it is evident that wtr(T,) is a sym-
metric function. Thus, by (5.7), it is sufficient to determine the coefficient
of x7'x§*-.-x? in E,. The result now follows from Proposition (5.7) and
Lemma (5.8).

For part (c) let d=d,@d,e BW,(q""", q) with d,e BW,(¢""". q)
d,e BW,(¢""", q), and f, + f>=/. Then since d, only acts on the first f|
letters of a word v, ---v;, and d, acts only on the remaining letters of
U, e U

Tooe .
i if?

Z vi| "'vi/dl®d2 | x',I ...xi/

Uiy by

= Z uil'”vi/lujl'nvjlgd’®d2|“‘1""‘![1"1I"'r’/|
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:< Z l}’_l“.l"’”(ll |l'11" "l,l'\‘fl...'\‘i/|>

i|.”“i/|

(%

it

T l‘,-,:dz |1',l »ul‘,,z'\‘_ll o 'xirg>'

Therefore, wir(d, ® d,) = wir(d,) wtr(d,). Note this is simply a proof of the
fact that the trace of the action of BW,(¢""', q)®@ BW,(¢""'. q) on
VEh @ /2 is the product of the traces of the action of BW,, (¢" "', ¢)
on V®/ Part (c) follows immediately. |

6. SYMMETRIC FUNCTIONS

We think of an alphabet as a sum of commuting variables, so that,
for example, X=x,+v,+ --- +x, 1s the set of commuting variables
{ X1+ X3, . X,,} . From this point of view one may use the following notations:

[X1 X X, =X,
Iy v =Y,
{,\',-_1',-} l<ijen=4XY,
and
{X1 s X Vi en V) =X+ Y.

Extending this idea, let —X denote a formal (anti-jalphabet such that
X+(-X)=0

If 4 and p are partitions such that ¢ = 4, then i/u shall denote the skew
diagram determined by the set theoretic difference of the Ferrers diagrams
A and g In the following diagram the filled boxes form the skew diagram
(10,7,7,5,4,2)/(6,4,4,2).

° o|o[o]

Every partition can be expressed as a skew diagram in the form A= 2/
A column strict tableau of shape A/x 1s a filling of the boxes of the skew
diagram Aju such that each box is filled with an element of the set {1, ..., n}
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and such that the numbers are strictly increasing down the columns of A/u
and weakly increasing across the rows of A/u. For partitions A, g with
i € 4, the skew Schur function s;,,(X) in the alphabet X is defined by

Sy X) =Y X7 (6.1)
T

where the sum is taken over all column strict tableau T of shape A/u, and
XT=x{x}...x"" where ¢; is the number of s in 7. The set of s,(X) as 2
runs over all partitions forms a basis of the ring of symmetric functions
in X. As in [ Mac] Section 2 we shall let # » oo and assume that X is an
alphabet of infinitely many variables x,, x,, ....

We have the following properties of Schur functions:

Sl X+ V)= Y 5,.(X)s,0Y), (sum rule)

HSys A

Sl = X) = (=1l g, (X), (duality rule) (6.2)
SadzX) =25, (X), (homogeneity)

Al

where |A/u] denotes the number of boxes in the skew diagram A/u and A’
denotes the conjugate of the partition 4. For proofs of the first two, see
[Mac] Chapter I, (5.10), p. 46, and (3.10), p. 26. The third property
follows immediately from the definition of the Schur function.

For an alphabet X, define the Cauchy kernel

|
Q(X):V\“I;[Xl_x,_. (6.3)
We have the following properties of the Cauchy kernel:
QAX+Y)=(X)Q(Y),
1
QA—X)=——, (6.4)
(—X) o)
QXY) =Z si(X) s,(Y),
A
where the sum is over all partitions A (see [ Mac], I (4.3), p. 33).
Define the orthogonal Schur function sb,(X) by the equation
QXY — s ¥)) =T s, ¥) sb,(X), (6.5)
A

where the sum is over all partitions A.

607:116/2-8
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Broken Border Strips

A skew diagram Ay is a vertical strip if each row contains at most one
box. A skew diagram A/u is a horizontal strip if each column contains at
most one box. A skew diagram A/u is a border strip if it is connected and
contains no 2 x 2 block of boxes (see [ Mac] L. Section 3 Ex. 11). A skew
diagram 1s a broken border strip if it contains no 2 x 2 block of boxes. Any
broken border strip is a union of its connected components, each of which
is a border strip. Define the weight of a border strip A/u by

wiAjq)=¢q" (=g ") !

s

where ¢ 1s the number of columns and r is the number of rows in the
border strip A/u. Define the weight of a broken border strip 4/u by

wildi, gy =(qg—q ") ' ] wilbs; q), (6.6)
by e Al
where cc i1s the number of connected components (border strips) in A/u and
the product is over the border strips bs in the broken border strip A/u. For
convenience let us define wi(2/z; ¢) =0 if A/u 1s not a broken border strip,
and wi(A/A)=wt(f)=1. The following is a broken border strip of weight
(g—q g (=g g (—q ")V

(6.7) LEMMA. Let g be a variable. Then in A-ring notation,

(g —q "Yywtlp/v; q), if u/v is a broken border strip,

1
a)  s,.(qg— = .
@ slg=q ) {(), if /v is not a broken border strip.

(b) slg—q Nz+ V)= 3 2¥Ng—q )y wi(u/viq) s (Y).

Vg,ll
Proof. (a) By the sum rule,
S;u’v(q —q ! ) = Z S/l,r")'( q) S/u‘;'(q) ‘Y',"e“L'( —q : )
veysu
By the definition of the Schur function,
(7) %q"’, if u/vis a horizontal strip of length &;

$,.4q)= .

witd 0, otherwise.



CHARACTERS OF THE JONES BASIC CONSTRUCTION 307

By duality, and the definition of the Schur function,

S;r‘,'v( _q ! ) = ( - l )l)””v' sy'/’v'(q a l)

_ {( —g Hm, if u/v is a vertical strip of length m;
10, otherwise.

Thus, we have that g is “gotten” from v by adding a vertical strip (to get
y} and then adding a horizontal strip (to y). Then g/v is a broken strip (see
the picture below). We have

S,,‘uu(‘] _ q~l) — z qk.s'( _q-l)v.\"

hs, vs
v+ hs+uy=p

where the sum is over all horizontal strips As and all vertical strips vs such
that g i1s obtained from v by first placing As and then placing vs.

Suppose that bs is a border strip appearing in x/v. Each box in bs
satisfies one of the following:

(1) There is a box of bs immediately below it,
(2} There is a box of bs immediately to its left,
(3) Neither (1) nor (2) holds.

In the picture below the boxes satisfying (1), (2), (3) are labeled with v, A,
and e respectively, In case (1) the box must have come from the applica-
tion of the vertical strip to g and thus this box has weight —g " In case
(2) the box must have come from the application of the horizontal strip to
4 and thus this box has weight ¢. In case (3) the box could have come from
either the application of the horizontal strip or the vertical strip and thus
this box has weight g — ¢ ~'. Each bs in /v contains exactly one box of this

type.

ThTATA]

vihihih

=T
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The result follows by noting that the product of these weights is exactly
(g—q "ywitu/v, q) where wi(ze/v; ¢) is as defined in (6.6).

(b) By using the sum rule, and homogeneity,

slg—q "V =+ Y =3 sllg—q ) sLY)

veu

= Y 2l (g =g ) s Y.

=y
Part (b) now follows by application of part (a). |

Define symmetric functions ¢,(X;¢) and Q,(X;¢) by the following
generating functions.

(q—q " Z g X gy =2AX(g—qg ")z, and (6.8)

r=0

(g—q ") Y, QX)) ' =Q(X(g—q ) z—solg—q ') 1)) (6.9)

r=0

(6.10) PROPOSITION.

r

(@) q(X;q)=3 (—q¢ 'V 7"q" ‘s m(X)

m=1

r

(b) QI(X’q): Z (_‘/ 1)’ mq"l ISb{m.l’ '"D(X)~

m=1

[ r2)

(©) QUX;q)=q X;q)+(1—¢*) Y q, 2.(X;q).

m=1

Proof. (a) It follows from the definition of ¢,(X; ¢) and the product
rule for the Cauchy kernel that

(q—qg " Y g X;q) 2" =2(X(g—q ) 2)=),5,(g—q ") 2)si(X).
r=0 A
Applying Lemma (6.7a) gives
(=g Y ¢ Xs)z =Y (gq—qg "V Y (=g 'V " q" S 1r (XD,

r=0 rz=0 n=1

The result follows by comparing coefficients of z°.
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(b) By the definitions of Q,(X;g) and the orthogonal Schur func-
tions

Z Q(X;q) _Zé)( q—q ])3)3'[7)‘(X)~

r=0
By applying Lemma (6.7a) we have

r

DY X =% g—q Y p (¢

r=0 n=1

F—m qr ’-h}sb("" 1,7""( X)‘
rz0

and the result follows by comparing coefficients of z".
(c) It follows from homogeneity and Lemma (6.7a), that

sollg—g N )=g—q "Vg=—"+¢’%
Therefore,
(q—q™ ") Y QX @)z =QX(g—q ) z+2—~¢*2?)
r=0

_< g—q ") Y @t )(l+(1—q2):2+:“+...)).

k=0

The result follows by equating coefficients of ="

(6.11) PROPOSITION. (a) For each r >0 and each partition A,

gAX; q) s (X) =3 s X)wt/A; q),

H=A

where the sum is over partitions y such that u/A is a broken border strip and
a2 =r.
(b)Y For each r >0 and each partition 2,

YN wr(A/v; q) wru/v; q) sb(X),

vedu=vy

Q.(X; q)shy(X)=

where the sum is over all partitions y and v such that /v and u/v are broken

border strips and |A/v| + /v =r.



310 HALVERSON AND RAM

Proof. (a) Let GF be a short notation for the following generating
function

GF=(q—q ") Y, ¢(X;q)z" Y s5,(X)s,(Y).

rz0 A

It follows from the product rule for the Cauchy kernel and the definition
of the ¢,(X; ¢) that

GF=Q(X(g—q ") z)QXY).
By the addition rule for the Cauchy kernel,
GF=Q(X((q—q "Yz+Y)).
Using the product rule for the Cauchy kernel to reexpand, we have
GF=Y s X)s,(lg—g "Hz+Y)
Py

Now use Lemma (6.7b} to rewrite the Schur function s,((¢ —¢ o+ V)
and get

GF=Y s5(X) Y 2% g—q "Ywi(uid q)s,(Y)
H

=y

Summarizing, we have obtained

S X ) Y s X s A =YY witp/h q) s, 0X) 2 s ).

rz=0 i A=A

The result now follows by taking the coefficient of z"s,( ¥} on each side of
this equation.

{b) Let GF be a short notation for the following generating function:

GF=(qg—q ") Y, QAX:q)z" Y sh(X)s,(Y)

ri= A

It follows from the definitions of the orthogonal Schur functions and
Q,(X; ¢} that

GF=Q(X(q—q "z—s,(lg—q ) AXY —s5,(1)).
By the addition rule for the Cauchy kernel this is equal to
GF=Q(X((g—q Yo+ V)= (sad V) +s0g—q ) —sallg—q "2
Fsd Visaklg—g "y
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The expressions

Sy Y—+—(q—q*]):)=s(2,( Y) 45, Y)Sm((‘]_q_l)5)+~5'(2;((‘]_q71) ),
and 5(Y)so({g—q " z)=Y(g—q ")z,

follow from the addition rule for Schur functions and the definitions of the
Schur functions respectively. Substituting these expressions gives

GF=Q(X((g—q N2+ V)= (so(g—¢ N+ )+ Y(g—q ) 2)

Using the definitions of the orthogonal Schur functions and the definition
of the ¢,(X; ¢) and reexpanding,

GF=<Zsbﬂ<X>s,,uq—q”>:+ Y)((q—q') S g Y;q>).

it k=0

Now use Lemma (6.7b) to rewrite the Schur function s#((q-q"):+ Y)
and get

GF=(q—q Y sb(X) Y =¥hwi(u/v;q)s(Y) Y, Z*q,(Y;0).
¥ veu k=0
Using part (a) of this proposition to expand the products ¢,(Y; ¢q)s(Y)
this 1s
GF=(qg—q )Y sb(X) Y ¥"wr(ufv,q) Y =% ) sA(Y)wi(A/v; q),
I =N k=0 A2

where the second sum is over all 4 =2 v such that |4/v| = k. Summarizing, we
have obtained

Y X5 q) =" Y sby(X)s(Y)

rz0 A

=Yy Z wi(A/v; g) wilu/v; q) sb,(X) I Al (Y.

A v A=y

The result now follows by taking the coefficient of ="s,( Y) on each side of
this equation. |

The Characters of the Birman-Wenzl Algebra

Define a g-up-down broken border strip tableau of length f and shape 4
to be a sequence of partitions

T:(@:)lm:/{(l)c;(:)_—_, D,{‘Z""]’C}_‘z-/":,{)
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such that for each | <j < /. either

(1) (a) 2™ 272 s a broken border strip,
{b) A'31/41%- 1 is a broken border strip, and

(C) M(l/ 3)"/;112,/ “|+|}~[2”ﬂ"/i(2[ 1)|:/lj'
or
(2) A% D= D=7 and g is even.

In case (1) define
H‘I(;t‘li’, ;t‘zj l)’ /112/ 2)): H'[(Z‘z-/ 2)”%(2‘/ Il; (]) “.t(/‘tllil‘”s‘ill/ I;; (1), (6.12)

where the weights wi(z/v; ¢) of broken border strip are given by (6.6). In
case (2) define

wi(AZD, A DR 2y = L {6.13)

Define the weight of a g-up-down broken border strip tableau of length f
to be

/ ,
wi(Tyr, g) =[] we(A2, A% 020 2, (6.14)
i=

1

(6.15) THEOREM. The irreducible charucters )(; 263,, of the Birman-
Wenzl algebra BW ,(r, q) are given by

;(;i( T:‘,ﬂ RQE®Fy=x* Z wi(T; r, q),
T

where the sum is over all p-up-down broken border strip tableaux of length
[ and shape A and
1

r—=r
it L

xX=
q4—q

Proof. We first prove the formula for all cases such that r=¢"*!, and
nis a large (n>2/(1)) odd integer. Let x; , denote the irreducible character
of BW,-(q"+ '.¢) corresponding to a partition Ade é,»(n +2). By the
Frobenius formula, Theorem (5.13), we have that

Mwi(T, V=3 x5 T, ®E® ") sby(x}', x;

7 R Yty v

le By

i
+
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and by Theorem (5.14), that

wtr(T H wtr(T

Let X'+ 1 denote the alphabet X'+ 1={x}*" x;' . x5 1}. It is
well known (see [Wey], [Li], or [KT] Proposition 2.2.1) that if n is
sufficiently large (n > 2/(4}), then

det(\.).,+l—j+ls‘2 \.f().,+l—_/+ly‘2))

i

det( A+ 2 \'—(/—j+]‘s‘2i) *

i

shAXE + ) =sb,(x;', x, ox )=

5y eeey N

where /= (n+1)/2, which is the Weyl! character for type B as given in
(5.11). It follows from Theorem (5.14) and Proposition (6.11) that if n is
sufficiently large (n = 2(u;+(4))) then

wir(T,, ) sh, (X' +1)
QX+ 1 sh(X A1)
+§q(n+l)sbl()("i‘+1), if g iseven,

0, otherwise,

=Y Y wiAfv; q) wilm/v; @) sh (X F' +1)

(= iy 3=RY

g "t Ush (X E 4 1), if u,is even,
+ .
0, otherwise,

where the sum is over all partitions v and = such that 2/v and =n/v are
broken border strips and |2/v| + |z/v| = g,. Assuming # is sufficiently large,
we have, by induction,

wer(T, ) = Y Y wiT;q" ", q),
leB; T
where the inner sum is over all g-up-down broken border strip tableaux T
of length f and shape 4. Thus,
MY Y wi( Ty g ) sh (X E + )= 3 T, ®E®") shb(X ' +1).
leBy T ie By
If we take the coefficient of sb,(X *' + 1) on both sides (the sb, are linearly
independent for n large), we get

,(f ; —r”Zw T: L) (6.16)
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where the sum is over all g-up-down broken border strip tableaux of length
/ and shape /. This proves the result for all cases where r=¢"*' and n is
a large odd integer (n >2/(4)).

We know that for a given A€ B, and given u |- f— 2k, the value ;{,“(TM)
is a rational function of r and ¢. Similarly, the value

K wi(Tsr, g),
p

where the sum is over all g-up-down broken border strip tableaux of length
/ and shape 4, is a rational function of r and ¢. Furthermore, (6.16) shows
that these two functions are equal for all cases where r=¢"""' and n is a
large odd integer. In particular, for fixed ¢ e C these two functions are
equal for infinitely many different values of r. Therefore they must be equal
everywhere and the theorem follows. |

(6.17) COROLLARY. For each positive integer f and each i€ B, let b,
denote the the irreducible character of BW,(r.q). Let pu, Ae B, with
{1 =2h Suppose that p= (g, ....p,) with p, >0, and define i =
((ys o pt, 1) Then

AT, @E® ) =x" 3 5 wiAvs ywimfviqhzf (T,
[ 14 it (¢ ene,
N X kT, it u,iseven,
0, if' w,is odd,
where the sum is over all partitions v and nt such that A/v and nv are broken
border strips and |A)v| + |njv| = i, The weights wi(Av, ¢) and wi(n/v; q) are
given by (6.6).

7. CONCLUDING REMARKS

1. In Section 2 we have shown that the character table of any algebra
containing a Jones basic construction should have a certain form with a
block of zeros in one corner. We also remarked that for our examples we
are able to choose a set of elements of the algebra that determine the
characters and that with respect to these elements the character tables are
square. This second property holds in any semisimple algebra and is
proved in Chapter 1 of [R3]. Many other facts concerning characters are
presented in [ R3] in the generality of split semisimple algebras, including
general Frobenius characteristic maps, and general formulas for induced
characters analogous to those for characters of finite groups.
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2. The character formula (2.22) for the Okada algebra is the same as
the recurrence formula for Okada’s Young-Fibonacci analogues of the
Kostka numbers ([ O], Proposition 4.2), and the character table for O, is
precisely the table of “Kostka numbers” for the Okada algebra. It is not
immediately obvious whether this fact is coincidence or not. Is there a good
reason why the values of the irreducible characters on the special set of
elements that we have chosen are the same as the multiplicities of
irreducibles in certain special induced representations of the Okada
algebras? If so, does this fact generalize to algebras which have Bratteli
diagrams determined by other r-differentiable posets?

3. Halverson [HI], [H2] studies a another example of an algebra
containing a Jones basic construction that we should have included here.
He computes the characters of the centralizer algebra H;,  (q) of the
representation of the quantum general linear group #%,(g(r)) on the
mixed tensor space (VR C(¢g))®”"®(V®C(g))®". The algebra H, (q)
specializes at ¢ =1 to a subalgebra B,, ,(r) of the Brauer algebra B,,, .(r),
and it is isomorphic to the direct sum of the tensor product of Hecke
algebras H,(q)® H,(q) and a Jones basic construction for H), ,, ,<
H,, . ,_.(q). In [H3] the Murnaghan-Nakayama rule for computing the
irreducible characters of H' | (g) is given.

nn

4. In the definition of the Birman-Wenzl algebra BW,(r, ¢) given in
section 3, relation (BW2) does not follow from relations (B1), (B2), and
(BWI1). The algebra subject only to (Bl), (B2), and (BW1) has a 1-dimen-
sional representation given by sending g, to r~' that does not satisfy
(BW2). It is an open problem to determine the structure of the algebra
generated by g,, 1 <i< f—1 which are subject only to the relations (BI1),
(B2), and (BWI1). A priori, there is no reason to assume that such an
algebra is even finite dimensional. It will be true however that any
representation of such an algebra is also a representation of the braid

group.

5. The basis given in section 3 for BW,(r, q), when restricted to
g-diagrams with only vertical edges, gives a basis of the Hecke algebra
H/(g%). This is a special basis for the Iwahori-Hecke algebras of type 4
which divides into “character classes.” The transition matrix from this
special basis to the usual basis 7,, ne.% is a triangular matrix (with
respect to the Bruhat order on the symmetric group) with powers of ¢ on
the diagonal. Furthermore, all of the entries in this matrix are in Z[¢].
Theorem (3.18) provides another proof of the result of [R2] Theorem that
any character of H/,(g?) is determined by its values on the elements T,
with 4 |- f. The problem of determining such a basis for the other types of
Iwahori-Hecke algebras to our knowledge is still open.
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6. We have, for the most part, in section 6, avoided the difficulties
which arise when working the Weyl characters with » small. In these “low
rank” cases one would have to use the modification rules for the Weyl
characters of type B which are given by King [Ki] and Koike-Terada
[KT]. If one uses these modification rules the same methods will deter-
mine the characters of BW, (¢" "', ¢) in the cases where n is small.

We should also mention that our general construct sh,(X), the
“orthogonal Schur function”, which we view as a function on an “infinite
alphabet” X, is equivalent to the corresponding object in the universal
character ring which Koike and Terada consider [KT]. We do feel,
however, that our “A-ring” approach is much easier, without it we would
not have been able to derive the combinatorial rule for the characters of
the Birman-Wenzl algebra. Furthermore, we would like to point out that
we have used the theory of Weyl group symmetric functions for type B in
a crucial way to arrive at our results. The theory of symmetric functions for
Weyl groups other than the symmetric group is still in its infancy, and we
expect that as it develops it will become a useful tool in representation
theory.

7. The group algebra of the symmetric group is contained in the
Brauer algebra in a very natural way. This is equivalent, by taking cen-
tralizers, to the fact that the orthogonal group O(n) is a natural subgroup
of the general linear group Gl(n). This fact was used in a crucial way in
[R1] and is evidence by the fact that the bitrace on V'® 7 is the power sym-
metric function in both the general linear group case and the orthogonal
group case. In analogy, we are expecting that the weighted trace of the
Birman-Wenzl algebra on F®/ (which is our function Q, in Section 5)
would be the same as the weighted trace of the Iwahori-Hecke algebra
acting on V®/ (the function ¢, of section 6) as derived in [ R2]. However,
it is not true that the Iwahori-Hecke algebra is contained in the Birman-
Wenzl algebra in an analogous way. This was surprising to us at first
because, by taking centralizers, it implies that the quantum group corre-
sponding to sv(n) 1s not contained in a natural way inside the quantum
group corresponding to sl(n). A consequence of this is that there is no
branching rule for H,(¢*)< BW,(r, ¢) analogous to the branching rule
between the Brauer algebra and the group algebra of the symmetric group
given in [R1].

8. In[Ke],S. Kerov has given the Frobenius formula for the Birman-
Wenzl algebras, our Theorem (5.14). There is no proof of this formula in
his paper and very few clues. It seems plausible that he arrived at this
formula by considering a double centralizer correspondence between the
Birman-Wenzl algebra and the Iwahori-Hecke algebra acting on a special
set of tangles. This would constitute an approach significantly different
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from the one we have used in this paper. Such an approach could be inter-
esting in itself. Other approaches to the same Frobenius formula might be
by considering the Markov trace tr on the Birman-Wenzl algebra defined
in Section 3. Wenzl [ Wn2] has decomposed these traces into irreducibles
(by using g-traces on the quantum group), and such a decomposition could
be viewed as a specialization of the Frobenius formula.

8. TABLES AND FORMULAS FOR IRREDUCIBLE CHARACTERS

The Temperley—Lieb Algebra
The irreducible character y/~""" of TL, evaluated on the element
id,_ 5 ®e®* is given by
<f— 2k>_ < f—2k
X}fﬁl‘l)(idfff)_k(@e@k): I—k I—k—1
0, if I<k.

), if 12k,

The Okada Algebra

The irreducible characters of the Okada algebra O, are given for f<35 in
the following tables. The (v, w)-entry is Xol€w)

Character Table for O, Character Table for O3
viw | 2 11 viw | 21 12 111

2 1 1 21 1 1 2

11 0 1 12 0 1 1

111 0 0 1

Character Table for O,

vi\w 22 21 121 112 1111
22 1 1 1 2 3
211 0 1 1 1 3
121 0 0 1 1 2
112 0 0 0 1 1
1111 0 0 0 0 1
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Character Table for Os

v\w | 221 | 212 | 2111 | 122 | 1201 | 121 | 12 |
221 1 1 2 1 2 3 1 8
212 0 1 1 1 1 1 3 4
2111 o | o 1 0 1 1 1 4
122 0o | o 0 1 1 1 2 3
1211 o | o 0 0 1 1 1 3
121 | o o | o 0 0 1 1 2
1112 o | o 0 0 0 0 1 1
mi | o | o 0 0 0 0 0 1

The Birman-Wenzl Algebra

We have written a Maple program to inductively compute the character
tables for BW,(r,q) using (6.17). The (4, u)-entry of the table is
X;u,,’(h {I)(T)‘I‘®E®") where u |-f—2h. We give tables for f<5. Setting
g=r=1 (and leaving x as a parameter) in these tables gives the corre-
sponding character value for the Brauer algebra B,(x). For each integer #,
setting ¢ =r=1 and x =r in these tables gives the correspoding character
for the Brauer algebras B,(n) (assuming that |n| > /).

Character Table for BW(r, q).

N 1) | e

2) q 1 0
(12) -g~! 1 0
[ r-1 1 z

Character Table for BWj(r, q).

AMa | (3) 0 (13 |
(3) 'S q 1 0
2,1 -1 qg—q! 2 0
(1% ¢? —-q~! 1 0
(1) 0 [g=g'4rt 1 3 | 2




Character Table for BW,(r,q)

AMp (4) 3,1) (2%) (2,1%) (14 (2) (1?) | @
(4) ¢ 7 7 g 1 0 0 |0
3,1) -q ¢ -1 -2 2¢-g-! 3 0 0 0
(2%) 0 -1 ?+q? g—q-?! 2 0 0 0
(2,1?) ¢! ~14¢72 -24¢72 g-2¢! 3 0 0 0
(1% —-q7? ¢? q? —q! 1 0 0 0
(2) ] ? -1 2r-l4+q—¢! rl43¢g-2¢1 | 6 zq z 0
(1%) 0 —1+¢72 | =2¢7'r 4 gq—q7' | i +29-3¢" | 6 ~zq~! z 0
0 -1 0 P+ql4r2 rl4g—gq-! 3 J— z 22
Character Table for BW(r, q)
Mp | (5) (4,1) (3,2) (3,1%) (2%,1)

) ot e e e 2

4,1) -¢? P-q ©-2 2¢° -1 202 -2

3,2) 0 -q ¢-q+g! 9?2 2¢*-2+¢72

(3.1%) 1 -¢+q7! -2 +27! ¢ -2+¢7? ¢ -4+q?

(2%, 1) 0 ¢! —q+q7 g7 -2+¢7? g +2¢72 -2

(2,13 | —¢7? | ¢7t—¢3 2¢-1 —¢? -1+272 —2+42¢-2

%) ey I —¢-3 ¢? g2

3) 0 e-q 2 - 1+¢*! 32 -2 +2qr-l +q-g ' +2¢* -2

2,1 0 —q+q! ¢?-1-r"1 2¢2-5+2¢7% | 2qr~' +2¢—2¢"1 - 2¢"lr~1 4+ 2¢2 +2¢"? -4

(13) 0 ¢l =g | -1+g 24702 -2+3¢77 -2 lrl 4 g—gt - 242¢77

) 0 r! ~g+g7' =g+ | -2+ | @4 427l $ 29 - 207 +2gr!

NOILONYISNOD JISVd SIANOf FHL 40 SY4LOVIVHD
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BWs(r, q) continued.

[(BW]
(Br]
[GHI]

[HI]
[H2]

[H3)
W)
[Ji]

[Jo]
(Ka]

[Ke]

[Ki]
[KT]
[Li]

{Mac]

M 1) ) | @ 1) ) |
(5) q 1 0 0 0o |0
41) 3g-¢! 4 ] 0 0 0
(3,2) 3g—2¢~! 5 0 0 o | o
(3,12) 3¢ — 3¢~ 6 0 0 0 |0
(22,1) 2¢ - 3¢~! 5 0 0 0 | o
(2,19) q-3¢! 4 0 0 0 0
RD) e 1 0 0 0o ] o
3) r~l4+6g-3¢" 10 zq? zq z 0
@1 2r-14+9¢-9¢7 | 20 -z z(g—g¢~Y) 2z 0
(13) r~) + 3¢~ 8¢t 10 | —z¢~? —zq~! z 0
(1) 3r-1 4 6¢—6¢7! 15 0 tg—qt+r ) | 3z z2
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