A Frobenius formula for the characters of the I. DU

Hecke algebras. D
Ram, Arun ]

NIEDERSACHSISCHE STAATS- UND
pp 461 - 488 UNIVERSITATSBIBLIOTHEK GOTTINGEN

Terms and Conditions

The Gottingen State and University Library provides access to digitized documents strictly for noncommercial
educational, research and private purposes and makes no warranty with regard to their use for other purposes.
Some of our collections are protected by copyright. Publication and/or broadcast in any form (including
electronic) requires prior written permission from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's
online system to access or download a digitized document you accept there Terms and Conditions.
Reproductions of material on the web site may not be made for or donated to other repositories, nor may be
further reproduced without written permission from the Goettingen State- and University Library

For reproduction requests and permissions, please contact us. If citing materias, please give
proper attribution of the source.

Contact:

Niedersichsische Staats- und Universitétshibliothek
Digitalisierungszentrum

37070 Goettingen

Germany

Email: gdz@www.sub.uni-goettingen.de

Purchase a CD-ROM

The Goettingen State and University Library offers CD-ROMs containing whole volumes / monographs in PDF
for Adobe Acrobat. The PDF-version contains the table of contents as bookmarks, which allows easy navigation
in the document. For availability and pricing, please contact:

Niedersaechisische Staats- und Universitaetsbibliothek Goettingen - Digitalisierungszentrum

37070 Goettingen, Germany, Email: gdz@www.sub.uni-goettingen.de



Invent. math. 106, 461-488 (1991) I PE
nvenriones

mathematicae
© Springer-Verlag 1991

A Frobenius formula for the characters of
the Hecke algebras

Arun Ram*
University of California, San Diego, Department of Mathematics, La Jolla, CA 92093, USA

Oblatum 10-XI1-1990

Summary. This paper uses the theory of quantum groups and the quantum
Yang-Baxter equation as a guide in order to produce a method of computing the
irreducible characters of the Hecke algebra. This approach is motivated by an
observation of M. Jimbo giving a representation of the Hecke algebra on tensor
space which generates the full centralizer of a tensor power of the “standard”
representation of the quantum group U (sl(n)). By rewriting the solutions of the
quantum Yang-Baxter equation for U,(sl(n)) in a different form one can avoid the
quantum group completely and produce a “Frobenius” formula for the characters
of the Hecke algebra by elementary methods. Using this formula we derive
a combinatorial rule for computing the irreducible characters of the Hecke algebra.
This combinatorial rule is a g-extension of the Murnaghan-Nakayama for comput-
ing the irreducible characters of the symmetric group. Along the way one finds
connections, apparently unexplored, between the irreducible characters of the
Hecke algebra and Hall-Littlewood symmetric functions and Kronecker products
of symmetric groups.

0 Introduction

In 1900, in a remarkable paper [Fr], Frobenius gave a formula and a method of
computing the characters of the symmetric group. This method was later used to
give a completely combinatorial rule for the computation of the characters of the
symmetric group, often referred to as the Murnaghan-Nakayama rule, see [Mac,
Chapter I. Example 9]. In his study of the representations of the general linear
group Gl(n), I. Schur [Scl, Sc2] showed that the Frobenius method can be
obtained by way of a reciprocity between the Gl(n) and the symmetric group, now
known as Schur-Weyl duality. Specifically, there are actions of each group on
tensor space under which each group action generates the full centralizer algebra of
the other.

* Work partially supported by an NSF grant at the University of California, San Diego
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In 1986, Jimbo [Ji] recognized that there exists a similar duality between the
quantum group U,(gl(n)) and the Hecke algebras of type A. Guided by this
observation, we develop a “Frobenius” formula and a combinatorial rule for
computing the characters of the Hecke algebras. The presentation given in this
paper allows one to avoid the quantum group completely. The derivation of the
combinatorial rule shows that there are connections, apparently unexplored,
between characters of Hecke algebras, Hall-Littlewood symmetric functions, and
Kronecker products of symmetric group representations. The combinatorial rule
which is derived in this paper is essentially a g-analogue of the Murnaghan-
Nakayama rule, in the sense that when one specializes g = 1 it trivially reduces to
the classical rule for the symmetric group.

The paper is organized as follows. In the first section we develop the needed
notation and give the necessary basic facts about the symmetric group and the
Hecke algebra. In Sect. 2 we give a brief description of the duality between the
quantum group and the Hecke algebra and the motivation behind our approach to
the characters of the Hecke algebra. In Sect. 3 we show that the irreducible
characters of the Hecke algebra are determined by traces arising from a certain
action of the Hecke algebra on tensor space. In Sect. 4 we show that these traces
are, up to a scalar multiple, Hail-Littlewood symmetric functions and give
a Frobenius type formula for the characters of the Hecke algebra. In Sect. 5 we use
the Frobenius formula to derive formulas for the irreducible characters of the
Hecke algebra. In Sect. 6 we develop a connection between the characters of the
Hecke algebra and Kronecker products of symmetric group representations and
derive a combinatorial rule for computing characters of the Hecke algebras.
Section 7 gives a brief summary of work of King and Wybourne and of Vershik and
Kerov on the characters of the Hecke algebra. In the final section we give explicit
formulas for some special cases and tables of characters.

Acknowledgements. 1 would like to thank H. Wenzl for teaching me about quantum groups and
for explaining to me how the calculation I wanted to do could actually be done. I would like to
thank A. Garsia for showing me how to do computations via A-ring notation and for all the
support (both grant support and otherwise) and encouragement he has given me. I don’t think
I would have pushed this all the way through without it. I would also like to thank M. Haiman
and S.T. Whitehead for enlightening discussions.

1 The symmetric group, S;, and the Hecke algebra, H,
Notation

We shall adopt the notations in [Mac] for partitions and symmetric functions. In
particular, if A =(4;,4,,...), 4, 24, =...is a partition, then I(1) denotes the
length (number of parts) of 4, | 4], the weight (sum of the parts) of 1. If |A| =f we
write A+ f. Often we shall use the notation (1™2™2. . ) for a partition, so that
m; denotes the number of parts equal to i in the partition. m; shall denote the
monomial symmetric function, h; the homogeneous symmetric function, s, the
Schur function, and p, the power symmetric function associated to the partition 4.
If F is a symmetric function then F|,, shall denote the coefficient of s, in an
expansion of F in terms of Schur functions.
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Let fbe a positive integer. A composition of f, ckf, is a sequence of positive
integers ¢ = (cy, ¢z, . . ., ¢), such that ) ;¢; = f. As in the case of partitions the
c; are called the parts of the composition c. The partition A(c) given by arranging
the parts of ¢ in decreasing order is called the shape of c.

The symmetric group, S

The symmetric group S, can be defined as the group generated by generators
1,s1,5;,...,5,—; and relations

(Bl) SiSj=SjSi, lfll—jl>1,
(B2) SiSi+18; = Si+18iSi+1 5
S) st=1.

The elements s; are called simple transpositions. The length, £(0), of an element ¢ in
S is the minimum number of simple transpositions necessary to express . Any
product of 7(g) transpositions equal to ¢ is called a reduced decomposition of . By
viewing s; as the operation that switches i and i + 1 each element of S, can be
viewed as a permutation of {1, 2,. . .,f}. We write o(i) for the image of i under o.

There is an embedding of S,, xS, into S,,.,, (6, 7) — g X 7, given by making
Smacton{1,2,...,m}and S,acton{m+ 1,m +2,...,m + n}. The r-cycle is the
element

Vr = Sp—18-2...525;

of §,. The 1-cycle is the identity 1€ S;. For each ¢ = (¢y, ¢5, . . . ), composition of f,
define y.€S, by

Ye = Yer XVer Xv v - -

Given any permutation oS, there exists some permutation 7 such that
non~! =y, for some A+ f. The partition A is the cycle type of the permutation o.
Any two permutations with the same cycle type are said to be in the same
conjugacy class. The number of permutations in the conjugacy class C, is deter-
mined by the partition 4 and is equal to f1/A? where A? is given by

2 =T] i m!, (1.1)

i1

where m; is the number of parts of 4 equal to i.

Let CS; denote the group algebra of the symmetric group. A character of S; is
a linear functional x5, : €S, — C such that ys,(ab) = xs,(ba) for all a, be CS ;. Two
permutations o, 7€ S are in the same conjugacy class if and only if xs,(0) = xs,(n)
for all characters xs, of S;.

The irreducible representations of S, are indexed by partitions of f. The
dimension of the irreducible representation indexed by the partition A will be
denoted d;, and the irreducible character determined by this representation by y3, .
Corresponding to each A - fthere is a unique minimal central idempotent z, € CS,

given by
d «
Y x,(0)0 . (1.2)

Z; ==
f‘ €Sy
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To each minimal idempotent pe €S, there is one and only one A+ f such that
p. A partition of unity is a set of minimal idempotents {p?}, AFf,
<i<d;(p}z,=p})such that p?p¥ =Ounless A = pandi=jand 1=, Y ,;pt.
The Hecke algebra H,

Let €(g) be the field of rational functions in the variable gq. The Hecke algebra H is
the €(q) algebra given by generators 1, g4, g,,. . ., gy—1 and relations

(B1) g:9; = g;9:;, fli—jl>1,
(B2) 9i9i+19i = 9i+19i9i+1 »
(H) 97 =@—Dgi+q.

For each o €S;, the symmetric group, let 7, = g;,g;, . . . g, Where o = s;, 5, . . . S,
is a reduced decomposition of ¢. T, is well defined since only the relations (B1) and
(B2) are necessary to prove that two reduced decompositions of w are equal [Bou].
The T, form a basis of H . If we specialize g = 1, then the relation (H) is the same as
relation (S) above.

Remark. Although here we have chosen to work over the field €(g) of rational
functions everything goes through in exactly the same fashion if we work over
a field k of characteristic 0 and let geksuch that 1 + g + g +. .. + ¢" #+ O for any
r=1,2,...,f, see [Bou].

A character of H, is a €(g) linear functional y: H; — C(q) such that for all
h1 s hz € Hf,

x(hihy) = y(hyhy) .

H, is a semisimple C(g) algebra [Bou, H, Wz1]. The irreducible representations of
H, are indexed by partitions of f. For each A the dimension of the irreducible
representation indexed by 4 is d; as in the case of S, and determines an irreducible
character x* of H,.

2 Remarks on the quantum group U,(sl(n)) and the solutions
of the quantum Yang-Baxter equation

The purpose of this section is to describe the algebraic motivation behind the
approach to the characters of the Hecke algebra given in this paper.

In [Ji] M. Jimbo describes a reciprocity between, in his notation, the quantum
group U(gl(N + 1)) and the Hecke algebra. In view of the fact that the “modern”
approach to the theory (and notation) of quantum groups and the quantum
Yang-Baxter equation is slightly different from that used in Jimbo’s original paper,
I shall endeavor to give a short summary explaining how this reciprocity comes
about. The excellent (and dense) papers [Dr] and [Ji2] contain further information
on quantum groups and the quantum Yang-Baxter equation.
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Define o = U,(sl(n)) to be the associative algebra over €(q) defined by gener-
ators k;, ki, X;", X7, 1 <i =< n, and the relations:
kiki ' =kitki=1,
kikj = kjk, N

kXjkit=qtulX),

. @.1)
- ki — ki
X’ Xj1= 5ijﬁ’

XEXF=XxFxt, li-jlz2,
XEVXF — @+ HXEXFXE+XFxE)?=0, j=itl,

where a; =2, a;;=—1ifj=i+ 1,and g;; =01if |i — j| = 2.
o/ becomes a Hopf algebra with coproduct 4: .o — o/ ® &/, antipode
S: o/ — o/ and counit &: &/ — €C(q) given by

Ak) =k @k, AXH)=k®XE+XF @k,
Stki) = ki1, S(Xi) = —qmXii R 2.2)
eky) = 1, eXF)=0.

For any invertible element #eo/ ® of given by # =) a;®b; define
.@12, .%13, @23 GJZ{®3 to be the elements

Rz =Zai®bi® 1, 3 =zai®1®bia R23 =Zl®ai®bi >
A satisfies the quantum Yang-Baxter equation (QYBE) if

«@12'@13@23 = 9?239?13%12 . (2‘3)
Let T: o ® of - o/ ® o be given by
Ta@®b)=b®a, forallabes . (2.4)

A is a universal R-matrix if # satisfies the relations,
TA(a) = RA(@)R ™, forallaes/ ,
(4 ®@id)(R) = R13%,3 , (2.5
(d® A)R) = R13R,, .

If # is a universal R-matrix then # satisfies the QYBE.

Let ¥ = €(qg)" and let E;; denote the n x n matrix that is 1 in the ith row and jth
column and O everywhere else. The fundamental representation (p, V),
p: o = Endgg)(V), of U,(sl(n)) is given by setting

P(Xi+) =E;i+1,
p(Xi)=Ei+1,:, (2.6)
pk) =qE;+ g "Eisq,i+1 + Z Ej.

1<j<n
IENEY!
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Since .« is a Hopf algebra the tensor representation (p ®/, V' ®/) is well defined for
every f= 1.

Let # be the universal R-matrix and let R = p( T@) where T'is as in (2.4). The
form of the matrix R is well known [Ji2] and is given by

R = Z un ® Eu + Z q— I)En ® EU + ql/z(Eu ® E}z + E_[l ® Eu)

i<j

For each 1 < i < f— 1, define R;e End(V'®/) as
R=1®..®10R,®11...01,

R appearing as the matrix in the ith and i + 1st factor. Writing the QYBE (2.3) in
terms of the matrices R; gives that

RiRi+1Ri = Ri+1RiRi+1 s

which implies that the R; satisfy the braid relation (B2) in the definition of the
Hecke algebra Jimbo [Ji] noticed that defining a map n: H, - End¢,) (V) given
by n(g;) = R, gives a representation of the Hecke algebra H .

The first equalit jy in (2.5) can be used to show that matrices R; all commute with
the elements of p ®/(.o¢). Jimbo [Ji] observed that the algebras n(H ) and p® N(ot)
are mutual commutants of one another. This given, the double centralizer theory
gives that

(2.7) Theorem. As an H; ® U (sl(n)) representation

Arf
A En

where H, is a irreducible H, representation and V, is an irreducible U ,(sl(n))
representation.

Remark. Actually Theorem (2.7) follows from the double centralizer theory only
for some parametrization of the irreducible representations of the Hecke algebra.
To show that the correspondence between the irreducibles is as given above with
the conventional indexing of irreducible representations one may use a Zariski
argument to reduce to the classical Schur-Weyl duality between the symmetric
group and the general linear group. An alternate approach is to use the results of §3
to give a proof of Theorem (2.7).
Let I denote the identity matrix and note that the spectral projection

pk)—q~'1 p(k;) -1
q—q ! q—1

=E;

of p(k;) is an element of p(o#). Since E; e p(s/) for every i one has that the matrix
d=Y;xE;isin p(&f)for all xy, . . ., x,€ C(g). Since the value of d depends only
on the elements p(k;) and the k; are grouphke elements in the Hopf algebra ./ (i.e.
A(k:) = k; ® k;) we have that the matrix D = d®/ is an element of p ®/(£). I must
give thanks to H. Wenzl for alerting me to this fact.

The results in this paper are obtained by computing explicitly, for certain
special elements T, eH,, the trace of the action of the element
I,®DeH;® Uq(sl(n)) on each side of the isomorphism in Theorem (2.7).
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3 The action of H, on V®/

For the remainder of this paper fix positive integers f and n with n > f.

An n-composition of fis a sequence of nonnegative integers ¢ = (cq, 5, . . . , Cy),
¢; 20, such that ¢, + ¢, +.. .+ ¢, =f Note that an n-composition of f is not
a true composition of f since we allow ¢; = 0. Let x4, x5, . . ., X, be n independent
(commuting) variables. For any n-composition, ¢ = (¢y, ¢,, . . ., ¢,), of f, define
x¢=x{x%... x5

Let vy, v;,. .., v, be an alphabet of n letters (noncommuting variables). The
content c¢(w) of a word w = v;,v;,...v;, of length f is the n-composition of f,
c(w) = (¢, ¢a, . . ., ¢,), such that ¢; is the number of letters equal to v; in the word w.
The length of a word w will be denoted |w]. Let ¥ ®/ denote the €(q'/?) span of the
words of length f from the alphabet vy, v,,. . ., v,.

For each n-composition ¢ of f define a projection operator E, on V'®/ by

Ewe w if cwy=c,
710 otherwise .

Note that for any n-composition ¢ of f, E2 = E,., and that if ¢ and ¢’ are
two n-compositions of f such that ¢ # ¢, then E.E. = 0. The identity operator
on V®/is

I=YE,

where the sum is over all n-compositions of f. Let D be the operator

D=Y xE., 3.1)

where, as before, the sum is over all n-compositions of f. For each word
W =10;;,...v;, of length f we have Dw = x; x;, ... x;,w = x*™w.

The symmetric group S, acts on the words w =v;,v;,...0;,, 1 £i; <, of
length f by permuting the letters v;, of w. We shall write the elements of S, as
operators which act on the right so that

Ui, Ui, . .. 0 Sj=l7i I/

if 1 ij—lvij+1vijvij+2 e vif >

gives the action of the simple transposition s;.

For each generator g; of H, and each word w = v;,v;, . . . v;, of length f, define
the action of g; on w by

qw if i =14,
q'?ws; if ij>id4q .

33) Pfroposition. The action defined above extends to a well defined action of H,
on V®/,

Proof. Checking that the above action satisfies the defining relations for H; is
a straight forward, albeit slightly lengthy, calculation which we leave to the
reader. [J
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The action above was obtained by rewriting the solutions of the quantum
Yang-Baxter equation. M. Jimbo [Ji] observed that this gives a representation of
the Hecke algebra.

Note that the action of g;, and therefore of H,, commutes with the action of
D and of E, for each n-composition ¢ of f, since all words in the expansion of wg;
have the same content as w.

Since the words of length f form a basis of ¥"®/, the trace of a linear operator
L on V®/ can be given by

tr(L) =Y, LW)l,, , 3.4

w

where the sum is over all words w of length fand a/,,, ae ¥ ®/ denotes the coefficient
of w in the expansion of a as a linear combination of words.

The setup here is analogous to that in [Wz2, Sect. 5]. In particular the following
lemma is a special case of Lemma 5.2 in [Wz2].

(3.5) Lemma. For any idempotent pe H, tr(Dp) = ,, Dwp|,, is independent of q.

Proof. Let ¢ be an n-composition of f. Since the actions of H, and E, commute,
(E.p)* = E.pE.p = E2p* = E_p. The trace of any idempotent operator is just the
rank of the operator, so for every n-composition ¢, tr(E.p)eZ. So tr(E.p) is
independent of g. Since tr(Dp) = ) x“tr(E,p), tr(Dp) is also independent of . O]

Lemma 3.5 shows that, for an idempotent pe H, one can compute tr(Dp) by
specializing ¢ = 1. When ¢ = 1, the relations in the definition of H reduce to the

relations defining S, and the action of H, on words reduces to the S, action on
words.

(3.6) Lemma. Recall that y, = S,_1S,—3 . ..51€S,. Then, viewing Dy, as an oper-
ator on V®/,

tr(Dy,) =p,(x) = Y, xi,
i=1

where p,(x) is the power symmetric function in the variables x,, . . ., X,.

Proof. 1t is sufficient to note that

Dvi; o 'vir’yrlvi oo T Dvirvh v Ui yly L,
i iy 1 r

_ x{l, ifi1=i2="'=i,,
0 otherwise. UJ

(3.7) Lemma. Let p; be a minimal idempotent of €S, such that p,z; = p,, where
2, is the minimal central idempotent of €S, indexed by . Then

tr(Dp;) = s;(x) ,

where s,(x) is the Schur function in the variables x,, X, . . ., X,.
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Proof. Let d, be the dimension of the irreducible representation of €S, corres-
ponding to 4. Using (1.2) we have that

1
tr(Dp,) = E‘tf(DZA)
2

1 dl
d;f' a;gf x4,(0) tr(Do) .

Since both ng (0) and tr(Do) are constant on conjugacy classes C,, in Sy,

tr(Dp,) = Z 1 (Wtr(Dy,)|Cl

ag o PuX)

= 2 (W=,
u%f 12

where p? is given by (1.1). Thus, by [Mac, (7.6)], tr(Dp;) is the Schur function

s;(x). O

(3.8) Theorem. For any he H,,

tr(Dh) = Z 1 (h)s;(x)

where, for each A= f, x* is the corresponding irreducible character of H; and s,(x) is
the corresponding Schur function in the variables x,. . ., X,.

Proof. Let {p}}, A-f,1<i<d,; be a partition of unity in H, with the property
that when we specialize ¢ = 1 each p} is well defined and that,at g = 1, { p}|,=, } is
a partition of unity of CS,. Partitions of unity for H that satisfy this property are
known, see the remark below. For each A and each 1 < i < d, let hf be the constant
in €(q) such that p}hp} = hip}. Note that the h} are - the d1agona1 elements of the
matrix of A in the irreducible representat1on corresponding to A determined by this
partition of unity. Thus, for each A Yk = ().

Since the action of D and pf# commute in all cases, the trace property gives that
tr(Dp}hp4) = tr(Dp%p}h) = O unless 2 = p and i = j.

tr(Dh)= Y. tr(Dpfhpt)

Il
—
&

sl
%
}

=
~

‘-")

By virtue of Lemma 3.5, tr(Dp}) = s,(x)

orall 1 <i<d,. Since Y ;hfi = x*(h) we
have that

tr(Dh) = Z 2 (h)s;(x) .
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Remark. Some possible choices for the partition of unity in the proof of the above
theorem can be given explicitly. [Wz1] constructs a partition of unity in H, with
the property that at ¢ = 1 it reduces to the partition of unity given by the Young
orthogonal minimal idempotents of S,. [Gy] constructs a partition of unity in
H , with the property that at g = 1 it is the partition of unity in €S, given by Young
symmetrizers. Either of these is sufficient for our purposes. The only advantage of
the [Gy] approach is that it is immediate from the definition of the minimal
idempotents that they are the same as the Young symmetrizers at g = 1.

4 The Frobenius formula for the characters of H,

The crucial step in this development is to evaluate the left hand side of the
expression in Theorem 3.8 by another means.

(4.1) Theorem. For 1 <r < fthe trace of the operator DT, on V'®" is given by
tr(DT,) =Y ¢°P(g — 1)'Px; x;, . .. x;
I
where the sum is over all sequences I = (iy,i,,...,0,)suchthat 1 <i; <...51,,
e(I) denotes the number of i; = i;, , in I and I(I) denotes the number of i; < i;,, in .
Proof. The proof is by induction on r.
Letw=v,0,...0, W =v;01,...0,_,and w' =v;,05,...0; _,.
Case 1 i,_1>i,:
Dwg, -1 ... g1lw=q"2DW" v, v;,_,)gr—2. . Gilv,. . .o, -
Since g,_» . . . g; acts only on the letters in w”v; and v; _, *+v;, DwT, |, = 0.
Case 2 i, <i,:
DwT, |, = (g — )DWT, _ |\ + ¢'?w"v,0, T, |\
=(q— Dx;,(DW' T, _,)lw + 0.
Case 3 i,y =1I,:
DwT, |, = gDwT, _ |, = qx;,(DW'T, _ )|, .

So, by induction,

tr(DT,,) = Z DwT, |,
Wl =r
= Z Dvix Uiy ... U, I;,[vnv,-z coa b
VS iy, ig . osi S

= > g*oli=in(g — Pl <hex x, . ox, . O
i Sh ... i
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(4.2) Proposition. For any composition ckf,

tr(DT,) = [[ tr(DT;,) .

Proof. 1t is sufficient to prove that for permutations peS,, and 0€8,,,r, + 1, =,
tr(DT,.,) = tr(DT,) tr(DT;)

By direct computation, since T, acts only on the first r, letters of a word w and T,
acts only on the remaining letters of w,

ZDWT;)XU|W= Z DWIWZT;‘)XUlw;wz

wiwa=w
Wil =ry,|wal =1y

=< y Dw11;|wl>< y Dsz,,|wz>. 0

wiy w2
Wyl =1, [wal =ry
Remark. The above proposition is just a proof of the fact that the trace of the
action of H; ®H,;,®... on the tensor product representation _V® L ®
V®% ® . . . is the product of the traces of the actions of the H, on V®*,

A-ring notation and Hall-Littlewood symmetric functions

In order to simplify the derivation of formulas for the irreducible characters of the
Hecke algebras we shall use A-ring notation for symmetric functions. The following
is a short exposition of A-ring notation. The identities (4.3-4.10) are all well known
and can be found in [Mac].

An alphabet is a sum of commuting variables so that, for example,
X =x; + X3 + ...+ x,is the alphabet of commuting variables xi, . . ., x,. In this
notation, if X =x; +...+x, and Y=y, +...+ y, then XY represents the
alphabet of variables {x;y;}1 < <n-

For each r > 1 the power symmetric function p, is given by

p,(0)=0,
pe(x) = x",
p(X +Y)=p(X) + p(Y), (4.3)

p(XY) = p,(X)p(Y) ,

where x is any single variable and X and Y are any two alphabets. For each
partition u = (uy, s, . - ., t) define

Pu(X) =P, (X)pu,(X) . .. pu(X) .

For an alphabet X, we define
X
Q(X) = exp< z _p.f.(__)> .

rz1 r
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For each r = 0 define the homogeneous symmetric function h,(X) to be the
coefficient of t" in Q(X1t), i.e.

QX =Y hX). 4.4)
rz0
For a partition g = (y, Uy, - - ., i) define

hu(X) = hux(X)huz(X) cee huk(X) .

For any partition 4 = (14, 4,, . . . ), the Schur function s,(X) in the alphabet X can
be given by

s;(X) =det(hy,—i+ i (X)1<ij<n»

where n 2 /(4), and h,(X) = 0 for any r < 0.
Let X, Y be two alphabets. The addition formula for Schur functions is

S X+ )= 5,X)suu(Y). 4.5)

=y

The duality formula for Schur functions is
si(— X) = (= DHsz(X) (4-.6)

where 2’ denotes the conjugate partition to A.

For a brief moment let S;, S,, S, denote the irreducible representations of the
symmetric group S, corresponding to the partitions 4, g, v f respectively. Set
Ciwv to be the multiplicity of the representation S, in the Kronecker product of
symmetric group representations S, ® S,. The numbers c,,, are symmetric with
respect to all three partitions A, y, v. This given, the product formula for Schur
functions is

:XY) =Y cins,(X)s(Y). 4.7

Let m,;(X) be the monomial symmetric function in the alphabet X. For any
alphabet X,
h(X) =Y s;(X)K;,, and

A

s1(X) =Y K;,m,(X), 4.8)

where K, is the Kostka number, the number of column strict fillings of the shape
A with weight .
For alphabets X = x; +...+ x,, Y=y, +...+ y, and a variable ¢,

QXY -g= ] =

1<ijsn L= Xy

4.9)




A Frobenius formula for the characters of the Hecke algebras 473

The following expansions of Q(X Y(1 — t)) follow from the expansions in [Mac,
Chapter I, §41].

QXY - 1) =} 5:(X)sx(Y(1 = 1))
A

=Y ha(X(1 — ))my(Y) (4.10)
A

=2 200 pm),

A
where A? is given by (1.1).
Chapter III of [Mac] is devoted to the study of Hall-Littlewood symmetric

functions. In particular the Hall-Littlewood symmetric function g,(xy,. . ., X,; t) is
defined by

go(x;t) =1,

a,(xt) = (1 —1t) —i I'[—’lt—x& rz1.

jEI M T A

For a partition u,

2(p)
4,00 =[] gu.(x0) .
i=1

The generating function for the g,(x; t) is ([Mac, Chapter III (2.10)])

it l—txi
T abs 0y _Ilifi;g' (4.11)

Expressions for tr(DT,,)

(4.12) Lemma. Let t be a variable and A& f. Then, in A-ring notation,

L e (1=0(=0"™ if A=(1'""m) for some m=1
i )= 0, otherwise .

Proof. By the addition formula

Sl(l - t) = Z Su(l)s,w(— t) .

=y
s,(1) = 0 unless u = (k) for some k. Using duality,

(— )Yk if A/(k) is a vertical strip,

— —_{— Sk , =
So(= 0 = (= D" oo (0 {0, if A/(k) is not a vertical strip .
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There are only two cases when A/(k) is a vertical strip: either 1 =

A. Ram

(17 7%k) or

A=1T"* Yk + 1)). Soif s;(1 — t) # 0, A = (1 "™m) for some m.

)

(17 "m)

S1r-mm(l —£) =
(k)

(=pf7m+

(4.13) Theorem. Let X = x; + x5 + ..

S5 -mmypemy(— ) + S5 - mmyyom-1)(—

Sty (1) S1 7= mmyso(— 1)

t)

(=t ™ =(1-0)(=-t/"". O

.+ X,. Then, in A-ring notation, for r 2 1,

@ t(DT,) = T g~ Wig — 10 m,(X)
ner

®) =(0T,) = L5a.xia7),
© 4®F,) = "_' Ch(X( =g,

1 Hi(qui —1)
d) tr(DT,) = X),
@ w0n,) = Ty ¥ L0
© EOT)= ¥ (~ 1 surw(X),

g¥ .

(f) For pu+f, tr(DT,) =mh"(x(1 —q ).

Proof. (a) follows immediately from Theorem 4.1. Let §,(X;q) =

rewrite §,(x; ¢) in the form

tr(DT,,) and

. r g-1 £(u)
G a) = Y (——) m,(X) .
— Lubkr q
If Go(x; ¢) = 1/(g — 1) then the generating function for the §,(x, q) is
g—1 £(u)
> ér(x;q)y'———}: ay Y ( ) m,(X)
r=20 rZO ukr q
-1
1
Tq—1 ﬂ (1 —qyx; i
I 1-1/q + l/q)(l — qyxi)
1 ; 1 —yx;
1 —(1/q)qyx;
1U< 1—qyx; )’
giving (b).
1 —(1/q)qyx;

i

1—-qyx;

> =QXqy(1—-q7")),
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and the expansions in (4.10) give

1
Y Gy = Y QXqy(1 —q™1))

rz0

1 -1

1 _
=—5 L hXU—a")qy
q— r20
1 [T:(1 —q7*)
= — 2 - - 7 X r r‘
q-— 1 r;O y;r H? pu( )q y

(c) and (d) follow from the last two expressions respectively by comparing coeffic-
ients of y” with the left hand side. Using Lemma 4.12,

Y5 (X)sgy(l =g~ ) =Y Y s.X)gHys,1—q71)

rz0putr

r

=Y gV Y Sur-mmX)A =g Y=gy ™™

r=0 m=1

= Zoy’(q~ DY (=07 sr-mm(X)
r= m=1

giving (e). (f) follows immediately from (c). O

The Frobenius formula

Let m,(x) and s;(x) denote the monomial symmetric function and the
Schur function respectively, in the variables x,x,,...,x,. Recall that
1, =¢g,_16r-2...91 and that for any partition p=(uy,..., M)
L=T x...xT.

For each r = 1, and each partition u define

Gg =Y ¢ Oqg—1)""m(x),
ukr

4100] .
qu(xl’ sy X (1) = H qm(x; q) s
i=1

respectively.
We have the following Frobenius type formula for the characters of H,.

(4.14) Theorem. For each ut-f,

g% q) = Y, xM(T,)s:(x)
iFf

where y* denotes the irreducible character of H ; corresponding to A and s,(x) denotes
the Schur function in the variables x,, . . ., X,.
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Proof. The theorem follows immediately from Theorem 3.8 and Theorem
4.13(a). O

5 Formulas for the irreducible characters of H,

(5.1) Theorem. For each T,, c€S;, there exists a Z[q] linear combination
cd = Z adu I;)" b
ukf

a,,€Z[q], such that y(1;) = x(c,) for all characters y of H,.

Proof. Let ¢ be a composition of fand let ¢ be the partition of f determined by
rearranging the parts of ¢ in decreasing order. Then by Theorem 4.2 we know that
tr(DT, ) = tr(DT,). Since the Schur functions s;(x;, x», . . ., X,) are linearly inde-
pendent, it follows from Theorem 3.8 that y*(T,) = y*(Z;,) for all irreducible
characters x* of H . This shows that it is sufficient to prove that there exists a Z[q]
linear combination

do‘ = z bo‘cT}:c >
ckf

b,.€ €C(q), such that x(7,) = x(d,) for all characters y of H,.

Let yx be a character of H, and let ceS,. Let i be the first i such that
o(i) > i + 1. The proof is by induction on i and reverse induction on ¢ (i). Note that
any o that does not have such an i is of the form v, for some ckf.

Let j=o0()—1. Since o7 !(j)>i and ¢ *(j+1)=i we have that
£(0s;) < £(0) and thus T, = T, g;.

Case 1 £(s;os;) > £(0s;):
Then
21(L) = 1(Tos,9,)

= 19 Ts;)
= 1(T5;0s,) -
Note now that for the permutation ¢’ = s;6s; we have ¢'(i) = j = o(i) — 1.
Case 2 ((sjos;) < £(os;):
Then T, = g;T;,qs; and thus T; = g;T; 45,9;. SO
2(15) = x(9; T5y05,95)
= (97 Bas,)
=@ — Dx(@9;Tyos) + 92(Lj05)
=(q — D(Ts) + qx(Tos,) -
Here again, for each of the permutations ¢’ = os; and ¢’ = s;05; we have that
o'iy=j=o0(i)— 1.

Thus x(7,) can be written as a linear combination of y(7,.) where for each o’ we
have that ¢’(i) = o(i) — 1. This completes the induction. [
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The following corollary is an immediate consequence of Theorem 5.1.

(5.2) Corollary. Any character of H is determined by its values on the elements T, ,
pf

Since H  is semisimple and its irreducible components are indexed by partitions
of f, every character of H, must be a linear combination of the irreducible
characters x*, A+ f, of H,. This implies that the set of values (7, ) A= £, is actually
a minimal set of values necessary to determine the character y of H,.

The following is an example to illustrate the algorithm used for finding the
linear combination ¢, in Theorem 5.1. The notation is such that 3421 denotes the

. <1 2 3
permutation

3 4 2 1> in two line notation.

X(Tza21) = (@ — Vx(T2a31) + qx(Ta341)
=(q — D((q — Dt(Ta341) + qx(T2314)) + qx(T2341)

= ((q - 1)2 + q)];’s + (q - l)qI;ZXVl .

A formula in terms of characters of the symmetric group

For each partition 4 = (44,...,4) of flet ¢*: €S;— € be the character of the
representation of S, given by inducing the trivial representation of the group
S;, x...x8;, toS;. Let ¢*(u) denote the value ¢* on elements of S of cycle type
. It is well known that the ¢*(u) are the coefficients in the expansion,

=Y oM (wm;(x) (5:3)

of the power symmetric functions p,(x) in terms of the monomial symmetric
functions m,;(x) in the variables x,. . ., X,.

(5.4) Theorem. Let /. fand let y* be the irreducible character of the Hecke algebra
H, corresponding to A. Then

1 ilg" — u
Xl(];’,‘) (q _ 1)/(;4) gfn v? f(v)¢ (V) s

where v? is given by (1.1) and x§, is the irreducible character of S ; corresponding to the
partition u. The v; are the parts of the partition v.

Proof. Using the expansions in (4.10),

hu(X (1 = D)ls,x) = Z h (X (1 = D)m,(V)ls,00m,1)

_ZH

pv(X)pv(Y)|sA(X)m,,(Y)
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By the expansion

Pu(X) = ; x5, (w)s1(X)
and (5.3),

B (L = )]0 = S 2D (; xé,(v)sA(X))( ) ¢~(v)m,,(¥)>

s1(X)m, ()
(1=
—y L) 1 o).

The result follows from Theorem 4.13(f) and the Frobenius formula. O

Remark. For each permutation me S, define t(n) = (74, . . ., 74) to be the cycle type
of n and for each utf define a class function @*: S, — Z[q] by

¢*m L@ -1
@—0"% @

d*(n) =
The usual inner product on class functions is given by
1
A X2 = = Z x1(m) x2(m)
f' neSy
for class functions ¥, x, on S;. Using this one can restate Theorem 5.4 in the form
(T, = {xs,, P4,

where, as before, x§f denotes the irreducible character of S, corresponding to the
partition A.

A formula in terms of multiplicities

(5.5) Theorem. Let c;,, denote the Kronecker coefficient and let K ;,, be the Kostka
number. Then the irreducible character of the Hecke algebra corresponding to the
partition A is given by the formula
A 1 ! - -1
(T,) 7ENCE Y (=D Y s mm Ko -

=1

Proof. Using the product formula for Schur functions and then Lemma 4.12 we
have that

h(X(1 = 1) = Y s,(X(1 - ))K,,

=YY ¥ cupsalX)s,(1 — 0K,
v A p

S
= Z SA(X)Z z Cya1s-mmSas-mm(l — Ky,
2

v m=1

S
= ;SA(X) Z (1 _ t)(—‘ t)f‘mz cvl(lf‘"‘m)Kv# .
m=1 v
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Then, by Theorem 4.13(f) and the Frobenius formula,
q’ !

(T, = (g — 1)’® Y A= Y(=a ) "Y cougr-mmKy - O
m=1 v

6 A combinatorial rule for computing the irreducible characters
of the Hecke algebras
In this section we rewrite the formula
1 J o ome
) = —m L (VT = D D K 6D
m=1 v

from Theorem 5.5 to derive a combinatorial rule for computing the irreducible
characters of the Hecke algebra. For the remainder of this section we will assume
that all symmetric functions are in the variables x,, x5, . . ., x,, so that we may
write s, for s;(x1,. .., X,).

For any two partitions 4, u I f define

S ® su = Z ciuvsv 5
vif

where, as in (4.7), c;,, denotes the Kronecker coefficient. Extend this definition
linearly to aill symmetric functions.

(6.2) Lemma.
2:, Crap Ky, = (h, ® 5,)l5,
Proof.
LK =L (5. @5l Ko,

= (Z 5, Ky ® sp>

= (h, ®s,)ls, - U

Evaluation of the product h, ®s, is facilitated by the following theorem of
Garsia and Remmel [G-R].

(6.3) Theorem.

Sa

K
h®s, =3, [ spoppen

(pi=1

where the sum is over all sequences of partitions (p) = (& = pPPecpVc. . . c
p® = p) such that |p® — pt~ Y| = ;.

Applying Theorem 6.3 when p = (1/~™m) gives

k
hy @ S(1s-mmy = Z S(rsmmmy) H N, €1~ ms »
=3

(m) i
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where the sum is over all sequences of nonnegative integers (m) = (my, m,, . . ., my)
such that m; >0, Y, m; = m and m; < ;. Then

S
2 (=1DI"g" g — D(h, @ s(1s-mm)
m=1

S k
= Z Z (— l)fqum-l(q - l)s(l‘“'""ml) H hMieui—mi .
i=2

m=1 (m)

Since |u| = f we can write this in the form

f k
Z Z (__ 1)#1—m1qm1—1(q _ I)S(I“""“ml) n (_ l)mnmithm;em—mi
i=2

m=1 (m)

k
=Y (=)™ g~ Dsgmommy [T (= D" gy m; »
(m) i=2
where the last sum is over all sequences of nonnegative integers
(m) = (my, m,, . . ., my) such that m; > 0 and m; < y;. Summarizing, we may write
(6.1) in the form

(‘1 - 1)((#)Xl(1;“) = Z ("' 1)u1—mqm1—1(q - l)s(l‘“'"“ml)
(m)

k
X n (_ 1)"‘_Miqmihmieu(—m‘|sl . (64)
i=2

In the standard fashion (see [Mac]), to each partition 4 =(4;,4,,...) we
associate a diagram of Z(4) rows of boxes such that each row i contains 4; boxes. If
A, 1 are partitions, u < A, then the skew diagram A/u, also denoted 4 — p, is the set
theoretic difference of the diagrams A and p. A horizontal (resp. vertical) strip is
a skew diagram with at most one box in each column (row). A strip is a skew
diagram that does not contain any 2 x 2 block of boxes. Two boxes are connected if
they have an edge in common. A connected strip is called a hook. Any strip is
a union of connected components, each of which is a hook. As an example, in the
diagram (6.5), the diagonally hatched boxes form a horizontal strip, the cross
hatched boxes form a vertical strip, and together the diagonally hatched boxes and
the vertically hatched boxes form a strip.

Pieri’s rule states that

Sahm; = ZSB ]
B

where the sum is over all partitions f such that f/x is a horizontal strip of length m;.
Pictorially the shape of g is produced by adding a horizontal strip of m; boxes to
the shape of «. Similarly,

Salpui—m = Z S »
[

where this time the sum is over all partitions § such that B/« is a vertical strip of
length y; — m;.

Thus one can view the product s,h,,e,,—m, as the sum of Schur functions of
shapes obtained by an application of m; boxes in a horizontal strip followed by an
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application of y; — m; boxes in a vertical strip. In the same fashion the product
Sz (— D# 7™ g™y, e,, - m, is @ sum of Schur functions obtained similarly except that
each horizontal box contributes a weight of g and each vertical box contributes
a weight of — 1 to the resulting Schur function. Observe that the result of an
application of m; boxes in a horizontal strip and x; — m; boxes in a vertical strip to
a shape o produces a shape f such that S/« is a strip of length y;.

(6.5)

Now, consider a strip of length u; and assume that it arose from an application
of a horizontal strip followed by an application of a vertical strip. The strip is
a union of components each of which is a hook. Any box with a box to its right
must have come from the horizontal application. Any box with a box under it must
have come from the vertical application. In any component only the rightmost
bottommost (end of the hook) box could have been placed by either the horizontal
or the vertical application of boxes.

Y

224 ?)

Not including the ? box, the number of boxes resulting from a vertical application is
equal to the number of rows in the hook minus 1. Similarly, the number of boxes
resulting from a horizontal application is the number of columns in the hook minus
1. If we weight horizontal boxes by g and vertical boxes by — 1 then the weight of
the hook over all applications (first horizontal boxes and then vertical boxes) which
produce this hook is

q#cols—- 1(_ 1)# rows—l(q _ 1) )

The ¢ in the (g — 1) factor arises from the application in which the ? box is
a horizontal box and the — 1in the (g — 1) factor from the application in which the
? box is a vertical box. The weight of the whole strip is the product of the above
weight over all components in the strip.

In a similar fashion we can view the factor

(_ 1)#1—m1qrm—1(q — I)S(l""m'ml)

in (6.4) as having arisen from an application of a strip of length x, to the empty
partition .
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Byom

] |
—_—

ml—l

In this case the strip has exactly one component receiving a weight of

q#cols—l( )#rows—l(q )
In this way we rewrite the sum in (6.1) in the form

1
@ 1@ ; wt(T)szls, »
where the sum is over all tableaux T of shape A arising from applications of strips of
lengths u; and wt(T') is given by

Wt(T) = H q# cols inhook—l(_ 1)# rowsinhook—l(q_ 1) . (66)
compolzuo:ri(ts of T
Define a diagonally strict tableau of shape A and weight u to be a filling of the
shape 4 with u, I’s, pu, 2’s, etc., such that

(1) the rows of T are weakly increasing from left to right,
(2) the columns of T are weakly increasing from bottom to top,
(3) the diagonals are strictly increasing in the northeast direction.

For each 1 £i</(u) the i’s in T form a strip. A hook component of T is
a component of one of these strips. We have proved the following theorem.

(6.7) Theorem. For any two partitions A, ut f the value of the irreducible character
x* at the element T, € H  is given by

1
NT,) = P ZT: wi(T') ,

(4
where the sum is over all diagonally strict tableaux T of shape A and weight u and
wi(T) is given by (6.6).

As an example to illustrate Theorem 6.7 we calculate y*(7, ,) for the partitions

=(42)and p = (33) The following g1ves the diagonally strlct tableaux of shape
/1 and weight u. y*(T;) is given by summing the weights ((6.6)) of these tableau and
dividing by (g — 1)/¥. z

1] 22

—

1{2]

1*P(Ti3) = ((— qyag — 1)* + ¢*qqg — 1)’) = q* - 2¢> + ¢*

1
(g — 1y¥
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7 Work of King-Wybourne and Vershik-Kerov

After the preparation of the preliminary version of this manuscript other work
concerning characters of the Hecke algebra has come to our attention. It is clear
that the Frobenius formula for the characters of the Hecke algebra, our Theorem
4.14, has also been discovered independently by Vershik-Kerov and King-
Wybourne.

The work of King and Wybourne is written up in a letter [KW1] and another
more complete preprint [KW2]. Their approach to the Frobenius formula is by
a formula relating the Ocneanu trace on the infinite Hecke algebra H,, the
inductive limit of H, as f goes to infinity, to the irreducible characters. The
following gives their derivation of the Frobenius formula.

The Ocneanu trace tr is given as follows (see [O, FYHLMO, Jo]).

(7.1) Theorem. ([Jo] Theorem 5.1) To each ze @ there is a linear trace tr on
\JF=1 Hy uniquely defined by

tr(ab) = tr(ba) ,
tr(h=1,
tr(hg;) = ztr(h), for heH, .

Any trace in H, can be given as a linear combination of the irreducible
characters of H,. In particular for the Ocneanu trace we have

te(h) =Y, Walg, 2)¢*(h) (7.2)
A

where y* is the irreducible character of H, and W,(qg, z) is given by

i-1 i-1
w—z wq' Tt —zq
W(w,z)=s< )= —_—
’ ’ l1—g¢q (i,jl_)[s). 1—g"®d

where w = 1 — q + z. Here h(i,j) = 4; — i + Aj — j + 1 denotes the hook length at
the position (i, j) in A. The coefficients W;(q, z) appearing in this decomposition are
called the weights of the trace. The weights of tr were computed by Ocneanu [O].
A derivation of these weights is given in [Wz1]. The W,(q, z) can be written as
Schur functions, see [Mac, §3, Example 3]. In A-ring notation we have

m&n=»@j9.

This given, King and Wybourne prove the following lemma.

(7.3) Lemma. ([KW2, Lemma 2]) For each T, , ut-f,

ful w—z
R . 1—qYH).
k) == (q—lwm“(l—q( ! O

Proof. Recall that if p=(uy,....m), L,=T,x...xT,, and that T, =
gr—1...9,. Thus, from the definition of tr we have that tr(7,,) = 2"~ ! and that
(L) =zt ozt =gk
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Now,

w—z _ w—z qg—1 -r -r
hr<1_q(1_q 1)>=hr(1_q°T>=q h,(z—w)=q S(,)(Z—-W).

Then using the addition formula for Schur functions and duality we have that

h(z —w) = Z Se-i(2)(— 1)k5(1k)(W) .
k=0

s(w) = 1, 51y(w) = 1, and s;x)(w) = O for k > 1 giving
h(z — W) =54(2) — Wsp—1)(2) =2" —wz' ' =(z—w)z" 7!

Substituting w = 1 — g + z we have shown that

q w—z - -
h 1_ 1 —— 1'
1_qr<l_q( q )> z

O

The lemma follows since h, = h, h,, ... h,,.

Combining the lemma with formula (7.2) we have

q“‘| w—z _ _ w—z
PR "“(1 i 1)> - g"l("”‘<1 = q> |

Then, extending to an arbitrary alphabet, one gets the Frobenius formula

mhu(X(l —-q7 ') = ;x‘(k)sl(X) ,

for any alphabet X.

Work of Vershik and Kerov

The Frobenius formula appears explicitly on p. 36 of a recent preprint of Kerov
[K] with a reference to [VK1] for a proof. We have not been able to find any
reference to or proof of the Frobenius formula in [VK1]. There is, however,
another paper of Vershik-Kerov [VK 2] which gives the relationship of the function
g, to the characters of the infinite dimensional Hecke algebra H (g). In [VK2] they
give the generating function of the §, and remark that this is a Hall-Littlewood
polynomial. They also remark that the characters of H(q) are related to the
solutions of the quantum Yang-Baxter equation (our §2) and give the action of the
R-matrix on tensor space (our (3.2)). Lastly, they give necessary and sufficient
conditions that a character of H(q) is semi-Markov, i.e. whether the character is
an Ocneanu trace. Despite the fact that there are no proofs given, these remarks
give an outline of the mechanisms involved in obtaining the Frobenius formula.
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8 Tables and formulas for special cases

The following special cases follow immediately from Theorem 6.7. For all f = 1 and
all u+f,

AT, = (= 1/ =W, @1
{INT,) = g/~ (8.2)
Forall f=1and all Af

0 if A is not a hook ,

()= {(— ) mgmt i A= (17 ""m)

8.3)

The following are tables of x"(];u) for Hy,up to f=6.

Ha(g):

A 1% @)

(1% 1 -1

03] 1 q

Hi(q):

Ap (1% @y ®

(1% 1 -1 1

@y 2 g-—1 —q

©) 1 q q’

Ha(g):

Ap 1% |t @ ¢n @
1* 1 -1 1 1 ~1

(21%) 3 q-—2 1-29 {1—¢q q

(2% 2 qg—1 @?+1 | —¢q 0

(31 3 |29—1 |¢*-29|q*—q | —¢*

(4) 1 q q* q* q°
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Hs(q):

Ap o (1% |@1%) @Y (31%) (32 (41) 5)
1% 1 -1 1 1 -1 -1 1
(213 |4 q—3 |2—-2¢q 2—-¢q 2 —1 qg-—1 —q
%1 |5 29—3 |q*—2g+2 1-2q -q>+q-1|gq 0
(31%) |6 3g—3 |g*—4g+1 |g°—29+1 —29*+2q —q*+q |q*
(32) |5 3g—2 |2g*—2q+1 |g*-2q ?—q*+q —q? 0
@n |4 |3q¢—1 |29 -2 29° —q q° —29° q° — ¢ -q°
®) q q q’ 'S 7’ q*
Hs(q):

A\p (1% @1%) @21 2%

(19) 1 -1 1 -1

(214 5 q—4 —29+3 3g—2

(221%) 9 3g—6 | g>—49+4 —-3g243¢-3

%) 5 2q—-3 [ g*-2q+2 |q*+3q-1

(313 10 4g—-6 |g>—6g+3 -3¢ +6g—1

@1 |16 8g—8 |4g2—8q+4 |q®—5¢%+5q—1

413 10 6g—4 |3¢2—6g+1 |q®—6g9>+3q

3?) 5 3g—2 |22 —2q+1 |g®—3¢> —1

42) 9 6g—3 |4g>—49+1 |3¢®—3q%+3q

(51) 5 4g—1 | 3¢q2—-2q 2q% — 3¢

©6) 1 q q* @’
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Ap (31%) (321) “41?)

1% 1 -1 -1

Q1Y) |3-4 24 -2 g—2

(2%1%) {3-3q —q*+3¢g-2 2qg -1

2% 1—-2g —¢*+q-1 q

(31°) | 4q*-3g+3 —2¢* +4q—1 —q*+29—1

(321) 2q> —6q+2 |2g°—69>+6q—2| —2¢*+2q

(41%)  |3¢>—3q+1 |¢*—49°+24 q®—29*+¢q

63 |a*-2 @’ -q*+q -q’

42 3¢> - 3q 24° - 3¢° + ¢ q° —2q°

51 34> — ¢ 29> - 24° 2¢* — ¢*

(6) q’ 'S 7

AV, (3% (42) (51) (6)

% |1 1 1 —1

(214 -2q+1 —29+1 —gqg+1 q
(2212) | ¢q*-29+1 g —q+1 —q 0

2% g +1 —q 0 0

B1%)  |3¢>-2q 29 -2 7’ —q -q

(321) —-2¢°+2¢>~29 | —q*+2¢*—q |q* 0
(412) ~2¢° +3¢? —2q% +2¢° —q*+q* |

3 |a*+q’ -4’ 0 0

“42) q*—2g° + ¢ ¢ —q’+q -q° 0
1 q* —2¢° q* —2¢° 7 -q -q*
| © q* q* q* qa°
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