Products with Schubert classes

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 17 February 2013

Products with Schubert classes

For wW0 define Schubert classes [Xw] by [Xw]= (σw)!(1) as in (5.1). Continue to use notations f=wW0 fwbw for elements of ΩT (G/B), as in (3.17).

The Schubert product problem: Find a combinatorial description of the cuvwR given by

[Xu][Xv]= wW0 cuvw [Xw]. (6.1)

As is visible from the formula (6.3) below and the formulas at the end of this section, if vu in Bruhat order then

[Xu][Xv]= [Xu]v [Xv]+ w<v cuvw [Xw], (6.2)

and so the determination of the moment graph values [Xu]v is a subproblem of the Schubert product problem. The other coefficients cuvw are determined by the [Xu]v in an intricate but, perhaps, controllable fashion. Furthermore, our computations of products in the rank two cases display a certain amount of positivity, indicating that there may be a positivity statement for equivariant cobordism analogous to that which holds for equivariant cohomology and equivariant K-theory (see [Gra9908172] and [AGM0808.2785]).

Properties (a) and (c) are already enough to provide an algorithm for expanding an element f=wW0fwbw in terms of Schubert classes. If f has support on w with (w)k then

f=(w)=k fw1[Xw]w [Xw]= (v)k-1 ( fv-(w)=k fw [Xw]v [Xw]w ) bv

has support on v with (v)k-1. Then

f-(w)=k fw1[Xw]w [Xw]- (v)=k-1 ( fv- (v)=k-1 (w)=k fw [Xw]v [Xw]w ) 1[Xv]v [Xv] =(z)k-2 ( fz-(w)=k fw [Xw]z [Xw]w - (v)=k-1 fv [Xv]z [Xv]v + (v)=k-1 (w)=k fw [Xw]v [Xw]w [Xv]z [Xv]v ) bz

and induction gives that

f=zW0 ( k=1(w0) w1>>wk=z (-1)k-1 fw1 [Xw1]w2 [Xw1]w1 [Xw2]w3 [Xw2]w2 [Xwk-1]wk [Xwk-1]wk-1 1 [Xwk]wk ) [Xz] (6.3)

with the terms in the sum naturally indexed by chains in the Bruhat order (compare to, for example, [BSo9703001]).

For example, in rank 2 using notations as in Section 7, if f=ws1s2s1s2 f2bw then

f = fs1s2s1s2 1 [Xs1s2s1s2] s1s2s1s2 [Xs1s2s1s2] + ( fs1s2s1- fs1s2s1s2 ) 1 [Xs1s2s1] s1s2s1 [Xs1s2s1]+ ( fs2s1s2- fs1s2s1s2 ) 1 [Xs2s1s2] s2s1s2 [Xs2s1s2] + ( ( fs1s2- fs2s1s2 ) + ( fs1s2s1s2 -fs1s2s1 ) [Xs1s2s1] s1s2 [Xs1s2s1] s1s2s1 ) 1[Xs1s2]s1s2 [Xs1s2] + ( ( fs2s1- fs1s2s1 ) + ( fs1s2s1s2 -fs2s1s12 ) [Xs2s1s2] s2s1 [Xs2s1s2] s2s1s2 ) 1[Xs2s1]s2s1 [Xs2s1] + ( ( fs1- fs2s1 ) + ( fs2s1s2 -fs1s2 ) [Xs1s2]s1 [Xs1s2]s1s2 + ( fs1s2s1s2 -fs1s2s1 ) ( [Xs1s2s1] s1 [Xs1s2s1] s1s2s1 - [Xs1s2s1] s1s2 [Xs1s2s1] s1s2s1 [Xs1s2] s1 [Xs1s2] s1s2 -1 ) ) 1[Xs1]s1 [Xs1] + ( ( fs2- fs1s2 ) + ( fs1s2s1 -fs2s1 ) [Xs2s1]s2 [Xs2s1]s2s1 + ( fs2s1s2s1 -fs2s1s2 ) ( [Xs2s1s2] s2 [Xs2s1s2] s2s1s2 - [Xs2s1s2] s2s1 [Xs2s1s2] s2s1s2 [Xs2s1] s2 [Xs2s1] s2s1 -1 ) ) 1[Xs2]s2 [Xs2] + ( f1-fs1- fs2+ fs1s2+ fs2s1- fs1s2s1- fs2s1s2+ fs1s2s1s2 ) 1[X1]1 [X1]

and we may use the explicit values of [Xw]v given in Figure 2 to derive

f = fs1s2s1s2 y-α1 y-s1α2 y-s1s2α1 y-s1s1s1α2 yR- [Xs1s2s1s2] + ( fs1s2s1- fs1s2s1s2 ) y-α1 y-s1α2 y-s1s2α1 yR- [Xs1s2s1]+ ( fs2s1s2- fs1s2s1s2 ) y-α2 y-s2α1 y-s2s1α2 yR- [Xs2s1s2] + ( ( fs1s2- fs2s1s2 ) + ( fs1s2s1s2 -fs1s2s1 ) y-α1 y-s1α2 y-s1s2α1 y-α1 y-α2 y-s2α1 ) y-α2 y-s2α1 yR- [Xs1s2] + ( ( fs2s1- fs1s2s1 ) + ( fs1s2s1s2 -fs2s1s2 ) y-α2 y-s2α1 y-s2s1α2 y-α1 y-α2 y-s1α2 ) y-α1 y-s1α2 yR- [Xs2s1] + ( ( fs1- fs2s1 ) + ( fs2s1s2 -fs1s2 ) y-α2 y-s2α1 y-α1 y-α2 + ( fs1s2s1s2 -fs1s2s1 ) ( Ny-α1 y-s1α2 y-s1s2α1 y-α1 y-α2 y-s1α2 - y-α1 y-s1α2 y-s1s2α1 y-α1 y-α2 y-s2α1 y-α2 y-s2α1 y-α1 y-α2 -1 ) ) y-α1 yR- [Xs1] + ( ( fs2- fs1s2 ) + ( fs1s2s1 -fs2s1 ) y-α1 y-s1α2 y-α1 y-α2 + ( fs2s1s2s1 -fs2s1s2 ) ( Ny-α2 y-s2α1 y-s2s1α2 y-α1 y-α2 y-s2α1 - y-α2 y-s2α1 y-s2s1α2 y-α1 y-α2 y-s1α2 y-α1 y-s1α2 y-α1 y-α2 -1 ) ) y-α2 yR- [Xs2] + ( f1-fs1- fs2+ fs1s2+ fs2s1- fs1s2s1- fs2s1s2+ fs1s2s1s2 ) 1yR- [X1]

which simplifies to

yR-f = fs1s2s1s2 y-α1 y-s1α2 y-s1s2α1 y-s1s1s1α2 [Xs1s2s1s2] + ( fs1s2s1- fs1s2s1s2 ) y-α1 y-s1α2 y-s1s2α1 [Xs1s2s1] + ( fs2s1s2- fs1s2s1s2 ) y-α2 y-s2α1 y-s2s1α2 [Xs2s1s2] + ( ( fs1s2- fs2s1s2 ) y-α2 y-s2α1+ ( fs1s2s1s2 -fs1s2s1 ) y-s1α2 y-s1s2α1 ) [Xs1s2] + ( ( fs2s1- fs1s2s1 ) y-α1 y-s1α2+ ( fs1s2s1s2 -fs2s1s2 ) y-s2α1 y-s2s1α2 ) [Xs2s1] + ( (fs1-fs2s1) y-α1+ ( fs2s1s2- fs1s2 ) y-s2α1 + ( fs1s2s1s2 -fs1s2s1 ) ( Ny-s1s2α1 y-α2 - y-s1α2 y-s1s2α1 y-α2 -y-α1 ) ) [Xs1] + ( (fs2-fs1s2) y-α2+ ( fs1s2s1- fs2s1 ) y-s1α2 + ( fs2s1s2s1 -fs2s1s2 ) ( y-s2s1α2 y-α1 - y-s2α1 y-s2s1α2 y-α1 -y-α2 ) ) [Xs2] + ( f1-fs1- fs2+fs1s2 +fs2s1- fs1s2s1- fs2s1s2+ fs1s2s1s2 ) [X1]

this last formulas allows for quick computation of products with Schubert classes in rank 2 for low dimensional Schubert varieties. In particular, for g=wW0 gwbw in ΩT(G/B),

g[X1] = g1[X1], g[Xs1] = gs1 [Xs1]+ g1,s1 [X1],where g1,s1= g1-gs1 y-α1 , g[Xs2] = gs2 [Xs2]+ g1,s2 [X1],where g1,s2= g1-gs2 y-α2 , g[Xs1s2] = gs1s2 [Xs1s2]+ gs1,s1s2 [Xs1]+ gs2,s1s2 [Xs2]+ g1,s1- gs2,s1s2 y-α2 [X1], g[Xs2s1] = gs2s1 [Xs2s1]+ gs1,s2s1 [Xs1]+ gs2,s2s1 [Xs2]+ g1,s2- gs2,s2s1 y-α1 [X1],

where

gs1,s1s2= gs1- gs1s2 y-α2 , gs2,s1s2= gs2- gs1s2 y-s2α1 , gs1,s2s1= gs1- gs2s1 y-s1α2 , gs2,s2s1= gs2- gs2s1 y-α1 .

Using (3.19), Pieri-Chevalley rules giving the expansions of products xλ[Xw] in terms of Schubert classes are directly determined from these formulas.

Notes and References

This is an excerpt from a paper entitled Generalized Schubert Calculus authored by Nora Ganter and Arun Ram. It was dedicated to C.S. Seshadri on the occasion of his 90th birthday.

page history