A Ribbon Hopf Algebra Approach to the Irreducible Representations of Centralizer Algebras: The Brauer, Birman-Wenzl, and Type A Iwahori-Hecke Algebras
Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
Last update: 13 March 2014
Appendix
Weight Polynomials
Q λ ( z , q ) =
∏ ( i , i ) ∈ λ
[ y + λ i - λ i ′ ]
+ [ h λ ( i , i ) ]
[ h λ ( i , i ) ]
∏ ( i , j ) ∈ λ i ≠ j
[ y + d λ ( i , j ) ]
[ h λ ( i , j ) ]
P λ ( x ) =
∏ ( i , j ) ∈ λ
x - 1 + d λ ( i , j )
h λ ( i , j )
λ
Q λ ( z , q )
P λ ( x )
∅
1
1
( 1 )
[ y + 0 ] + [ 1 ]
[ 1 ]
x
( 1 2 )
[ y - 1 ] + [ 2 ] [ 2 ]
[ y + 0 ] [ 1 ]
x ( x - 1 ) 2
( 2 )
[ y + 1 ] + [ 2 ] [ 2 ]
[ y + 0 ] [ 1 ]
( x + 2 ) ( x - 1 ) 2
( 1 3 )
[ y - 2 ] + [ 3 ] [ 3 ]
[ y - 1 ] [ 2 ]
[ y + 0 ] [ 1 ]
x ( x - 2 ) ( x - 1 ) 3 !
( 2 , 1 )
[ y + 0 ] + [ 3 ] [ 3 ]
[ y + 1 ] [ 2 ]
[ y - 1 ] [ 1 ]
( x + 2 ) x ( x - 2 ) 3
( 3 )
[ y + 2 ] + [ 3 ] [ 3 ]
[ y + 1 ] [ 2 ]
[ y + 0 ] [ 1 ]
( x + 4 ) x ( x - 1 ) 3 !
( 1 4 )
[ y - 3 ] + [ 4 ] [ 4 ]
[ y - 2 ] [ 3 ]
[ y - 1 ] [ 2 ]
[ y + 0 ] [ 1 ]
x ( x - 3 ) ( x - 2 ) ( x - 1 ) 4 !
( 2 , 1 2 )
[ y - 1 ] + [ 4 ] [ 4 ]
[ y + 1 ] [ 1 ]
[ y - 2 ] [ 2 ]
[ y + 0 ] [ 0 ]
( x + 1 ) x ( x - 3 ) ( x - 1 ) 4 · 2
( 2 2 )
[ y + 0 ] + [ 3 ] [ 3 ]
[ y + 0 ] + [ 1 ] [ 1 ]
[ y + 0 ] [ 2 ]
[ y + 0 ] [ 2 ]
x ( x + 2 ) ( x + 1 ) ( x - 3 ) 3 · 2 · 2
( 3 , 1 )
[ y + 1 ] + [ 4 ] [ 4 ]
[ y + 2 ] [ 2 ]
[ y + 0 ] [ 1 ]
[ y - 1 ] [ 1 ]
( x + 4 ) ( x + 1 ) ( x - 3 ) ( x - 2 ) 4 · 2
( 4 )
[ y + 3 ] + [ 4 ] [ 4 ]
[ y + 2 ] [ 3 ]
[ y + 1 ] [ 2 ]
[ y + 0 ] [ 1 ]
( x + 6 ) ( x + 1 ) x ( x - 1 ) 4 !
[ n ]
=
q n - q - n
q - q - 1
[ y + n ]
=
z q n - z - 1 q - 1
q - q - 1
h λ ( i , j )
=
λ i - i + λ j ′ - j + 1
d λ ( i , j )
=
{
λ i + λ j - i - j + 1
i ≤ j
- λ i ′ -
λ j ′ + i + j - 1
i > j
lim q → 1 Q λ
( q 2 r , q ) =
P λ ( 2 r + 1 )
Representations of BW ( z , q )
We give the representing matrices π λ ( g i )
for the irreducible representations π λ of BW m ( z , q ) ,
m = 2 , 3 , 4 with respect to a given ordered basis
v 1 , v 2 , … , v d λ
of 𝒵 λ labeled by paths in the Bratelli diagram B. The representations
π λ of BW m ( z , q )
such that | λ | = m are the irreducible representations of the Iwahori-Hecke
algebra H m ( q 2 ) of type A.
BW 2 ( z , q )
π ∅ ( g 1 ) =
(
z - 1 [ - y ]
( 1 - Q Q ∅ )
)
= ( z - 1 )
π
( g 1 ) = ( q - 1 [ - 1 ] )
π
( g 1 ) = ( q [ 1 ] )
v 1 =
(
∅ ,
, ∅
)
v 1 =
(
∅ ,
,
)
v 1 =
(
∅ ,
,
)
BW 3 ( z , q )
π ( g 2 ) =
π ( g 1 ) =
( q - 1 [ - 1 ] )
π ( g 2 ) =
π ( g 1 ) =
( q [ 1 ] )
v 1 =
(
∅ ,
,
,
)
v 1 =
(
∅ ,
,
,
)
π ( g 1 - ) =
(
q - 1 [ - 1 ]
0
0
q [ 1 ]
)
π ( g 2 ) =
(
q 2 [ 2 ]
[ 1 ] · [ 3 ] [ 2 ]
[ 1 ] · [ 3 ] [ 2 ]
q - 2 [ - 2 ]
)
v 1 =
(
∅ ,
,
,
)
v 2 =
(
∅ ,
,
,
)
π ( g 1 ) =
(
q - 1 [ - y ] ( 1 - Q Q ∅ )
0
0
0
q - 1 [ - 1 ]
0
0
0
q [ 1 ]
)
π ( g 2 ) =
(
z [ y ]
( 1 - Q ∅ Q )
- q [ 1 ]
Q ∅ Q Q
- q - 1 [ - 1 ]
Q ∅ Q Q
- q [ 1 ]
Q ∅ Q Q
z - 1 q 2 [ - y + 2 ]
( 1 - Q Q )
- z - 1 [ - y ]
Q Q Q
- q - 1 [ - 1 ]
Q ∅ Q Q
- z - 1 [ - y ]
Q Q Q
z - 1 q - 2 [ - y - 2 ]
( 1 - Q Q )
)
v 1
=
(
∅ ,
,
∅ ,
,
)
v 2
=
(
∅ ,
,
,
,
)
v 3
=
(
∅ ,
,
,
,
)
BW 4 ( z , q )
π ( g 3 ) =
π ( g 2 ) =
π ( g 1 ) =
( q - 1 [ - 1 ] )
π ( g 3 ) =
π ( g 2 ) =
π ( g 1 ) =
( q [ 1 ] )
v 1
=
(
∅ ,
,
,
,
)
v 1
=
(
∅ ,
,
,
,
)
π ( g 1 ) =
(
q - 1 [ - 1 ]
0
0
0
q - 1 [ - 1 ]
0
0
0
q [ 1 ]
)
π ( g 2 ) =
(
q - 1 [ - 1 ]
0
0
0
q 2 [ 2 ]
[ 1 ] · [ 3 ] [ 2 ]
0
[ 1 ] · [ 3 ] [ 2 ]
q - 2 [ - 2 ]
)
v 1
=
(
∅ ,
,
,
,
)
v 2
=
(
∅ ,
,
,
,
)
v 3
=
(
∅ ,
,
,
,
)
π ( g 3 ) =
(
q 3 [ 3 ]
[ 2 ] · [ 4 ] [ 3 ]
0
[ 2 ] · [ 4 ] [ 3 ]
q - 3 [ - 3 ]
0
0
0
q - 1 [ - 1 ]
)
π ( g 3 ) =
π ( g 1 ) =
(
q - 1 [ - 1 ]
0
0
q [ 1 ]
)
π ( g 2 ) =
(
q 2 [ 2 ]
[ 1 ] · [ 3 ] [ 2 ]
[ 1 ] · [ 3 ] [ 2 ]
q - 2 [ - 2 ]
)
v 1
=
(
∅ ,
,
,
,
)
v 2
=
(
∅ ,
,
,
,
)
π ( g 1 ) =
(
q - 1 [ - 1 ]
0
0
0
q [ 1 ]
0
0
0
q [ 1 ]
)
π ( g 2 ) =
(
q 2 [ 2 ]
[ 1 ] · [ 3 ] [ 2 ]
0
[ 1 ] · [ 3 ]
[ 2 ]
q - 2 [ - 2 ]
0
0
0
q [ 1 ]
)
v 1
=
(
∅ ,
,
,
,
)
v 2
=
(
∅ ,
,
,
,
)
v 3
=
(
∅ ,
,
,
,
)
π ( g 3 ) =
(
q [ 1 ]
0
0
0
q 3 [ 3 ]
[ 2 ] · [ 4 ] [ 3 ]
0
[ 2 ] · [ 4 ] [ 3 ]
q - 3 [ - 3 ]
)
π ∅ ( g 3 ) =
π ∅ ( g 1 ) =
(
z - 1 [ - y ]
( 1 - Q Q ∅ )
0
0
0
q - 1 [ - 1 ]
0
0
0
q [ 1 ]
)
v 1
=
(
∅ ,
,
∅ ,
,
∅ ,
)
v 2
=
(
∅ ,
,
,
,
∅ ,
)
v 3
=
(
∅ ,
,
,
,
∅ ,
)
π ∅ ( g 2 ) =
(
z [ y ]
( 1 - Q ∅ Q )
- q [ 1 ]
Q ∅ Q Q
- q - 1 [ - 1 ]
Q ∅ Q Q
- q [ 1 ]
Q ∅ Q Q
z - 1 q 2 [ - y + 2 ]
( 1 - Q Q )
- z - 1 [ - y ]
Q Q Q
- q - 1 [ - 1 ]
Q ∅ Q Q
- z - 1 [ - y ]
Q Q Q
z - 1 q - 2 [ - y - 2 ]
( 1 - Q Q )
)
π ( g 1 ) =
(
z - 1 [ - y ]
( 1 - Q Q ∅ )
0
0
0
0
0
0
q - 1 [ - 1 ]
0
0
0
0
0
0
q [ 1 ]
0
0
0
0
0
0
q - 1 [ - 1 ]
0
0
0
0
0
0
q - 1 [ - 1 ]
0
0
0
0
0
0
q [ 1 ]
)
π ( g 2 ) =
(
z [ y ]
( 1 - Q ∅ Q )
- q [ 1 ]
Q ∅ Q Q
- q - 1 [ - 1 ]
Q ∅ Q Q
0
0
0
- q [ 1 ]
Q ∅ Q Q
z - 1 q 2 [ - y + 2 ]
( 1 - Q Q )
- z - 1 [ - y ]
Q Q Q
0
0
0
- q - 1 [ - 1 ]
Q ∅ Q Q
- z - 1 [ - y ]
Q Q Q
z - 1 q - 2 [ - y - 2 ]
( 1 - Q Q )
0
0
0
0
0
0
q - 1 [ - 1 ]
0
0
0
0
0
0
q 2 [ 2 ]
[ 1 ] · [ 3 ] [ 2 ]
0
0
0
0
[ 1 ] · [ 3 ] [ 2 ]
q - 2 [ - 2 ]
)
π ( g 3 ) =
(
q - 1 [ - 1 ]
0
0
0
0
0
0
z q - 2 [ y - 2 ]
( 1 - Q Q )
0
- q [ 1 ]
Q Q Q
- q - 2 [ - 2 ]
Q Q Q
0
0
0
z [ y ]
0
0
[ y + 1 ] [ y - 1 ] [ y ]
0
- q [ 1 ]
Q Q Q
0
z - 1 q 4 [ - y + 4 ]
( 1 - Q Q )
- z - 1 q [ - y + 1 ]
Q Q Q
0
0
- q - 2 [ - 2 ]
Q Q Q
0
- z - 1 q [ - y + 1 ]
Q Q Q
z - 1 q - 2 [ - y - 2 ]
( 1 - Q Q )
0
0
0
[ y + 1 ] [ y - 1 ] [ y ]
0
0
z - 1 [ - y ]
)
v 1
=
(
∅ ,
,
∅ ,
)
v 2
=
(
∅ ,
,
∅ ,
)
v 3
=
(
∅ ,
,
∅ ,
)
v 4
=
( ∅ ,
,
,
,
)
v 5
=
( ∅ ,
,
,
,
)
v 6
=
( ∅ ,
,
,
,
)
π ( g 1 ) =
(
z - 1 [ - y ]
( 1 - Q Q ∅ )
0
0
0
0
0
0
q - 1 [ - 1 ]
0
0
0
0
0
0
q [ 1 ]
0
0
0
0
0
0
q - 1 [ - 1 ]
0
0
0
0
0
0
q - 1 [ 1 ]
0
0
0
0
0
0
q [ 1 ]
)
π ( g 2 ) =
(
z [ y ]
( 1 - Q ∅ Q )
- q [ 1 ]
Q ∅ Q Q
- q - 1 [ - 1 ]
Q ∅ Q Q
0
0
0
- q [ 1 ]
Q ∅ Q Q
z - 1 q 2 [ - y + 2 ]
( 1 - Q Q )
- z - 1 [ - y ]
Q Q Q
0
0
0
- q - 1 [ - 1 ]
Q ∅ Q Q
- z - 1 [ - y ]
Q Q Q
z - 1 q - 2 [ - y - 2 ]
( 1 - Q Q )
0
0
0
0
0
0
q 2 [ 2 ]
[ 1 ] · [ 3 ] [ 2 ]
0
0
0
0
[ 1 ] · [ 3 ] [ 2 ]
q - 2 [ - 2 ]
0
0
0
0
0
0
q [ 1 ]
)
π ( g 3 ) =
(
q [ 1 ]
0
0
0
0
0
0
z [ y ]
0
[ y + 1 ] [ y - 1 ] [ y ]
0
0
0
0
z q 2 [ y + 2 ]
( 1 - Q Q )
0
- q 2 [ 2 ]
Q Q Q
- q - 1 [ - 1 ]
Q Q Q
0
[ y + 1 ] [ y - 1 ] [ y ]
0
z - 1 [ - y ]
0
0
0
0
- q 2 [ 2 ]
Q Q Q
0
z - 1 q 2 [ - y + 2 ]
( 1 - Q Q )
- z - 1 q - 1 [ - y - 1 ]
Q Q Q
0
0
- q - 1 [ - 1 ]
Q Q Q
0
- z - 1 q - 1 [ - y - 1 ]
Q Q Q
z - 1 q - 4 [ - y - 4 ]
( 1 - Q Q )
)
v 1
=
(
∅ ,
,
∅ ,
,
)
v 2
=
(
∅ ,
,
,
,
)
v 3
=
(
∅ ,
,
,
,
)
v 4
=
(
∅ ,
,
,
,
)
v 5
=
(
∅ ,
,
,
,
)
v 6
=
(
∅ ,
,
,
,
)
Representations of B ( x )
We give the representing matrices π λ ( s i )
and π λ ( e i ) for the irreducible
representations of π λ of B m ( x ) ,
m = 2 , 3 , 4 with respect to a given ordered basis
v 1 , v 2 , … , v d λ
of Z λ labeled by paths in the Bratelli diagram B. The representations π λ
of B m ( x ) such that
| λ | = m are the irreducible representations of the group algebra of the
symmetric group S m . In these cases
π λ ( e i ) = 0
for all 1 ≤ i ≤ m - 1 .
B 2 ( x )
π ∅ ( s 1 ) =
(
1 1 - x
( 1 - P P ∅ )
)
= ( 1 )
π
( s 1 ) = ( - 1 )
π
( s 1 ) = ( 1 )
π ∅ ( e 1 ) =
( P P ∅ )
= ( x )
v 1 =
(
∅ ,
,
)
v 1 =
(
∅ ,
,
)
v 1 =
(
∅ ,
,
∅
)
B 3 ( x )
π ( s 2 ) =
π ( s 1 ) =
( - 1 )
π ( s 2 ) =
π ( s 1 ) =
( 1 )
v 1
=
(
∅ ,
,
,
)
v 1
=
(
∅ ,
,
,
)
π ( s 1 ) =
( - 1 0 0 1 )
π ( s 2 ) =
(
1 2
1 · 3 2
1 · 3 2
1 - 2
)
v 1
=
(
∅ ,
,
,
)
v 2
=
(
∅ ,
,
,
)
π ( s 1 ) =
(
1 1 - x ( 1 - P P ∅ )
0
0
0
- 1
0
0
0
1
)
π ( e 1 ) =
(
P P ∅
0
0
0
0
0
0
0
0
)
π ( s 2 ) =
(
1 x - 1 ( 1 - P ∅ P )
- P ∅ P P
P ∅ P P
- P ∅ P P
1 3 - x ( 1 - P P )
- 1 1 - x P P P
P ∅ P P
- 1 1 - x P P P
1 - ( x + 1 ) ( 1 - P P )
)
v 1
=
(
∅ ,
,
∅ ,
)
v 2
=
(
∅ ,
,
,
)
v 3
=
(
∅ ,
,
,
)
π ( e 2 ) =
(
P ∅ P
P ∅ P P
P ∅ P P
P P ∅ P
P P
P P P
P P ∅ P
P P P
P P
)
π ( s 3 ) =
π ( s 2 ) =
π ( s 1 ) =
( - 1 )
π ( s 3 ) =
π ( s 2 ) =
π ( s 1 ) =
( 1 )
v 1
=
(
∅ ,
,
,
,
)
v 1
=
(
∅ ,
,
,
,
)
π ( s 1 ) =
(
- 1 0 0
0 - 1 0
0 0 0
)
π ( s 2 ) =
(
- 1
0
0
0
1 2
1 · 3 2
0
1 · 3 2
1 - 2
)
v 1
=
(
∅ ,
,
,
,
)
v 1
=
(
∅ ,
,
,
,
)
v 1
=
(
∅ ,
,
,
,
)
π ( s 3 ) =
(
1 / 3
2 · 4 3
0
2 · 4 3
1 - 3
0
0
0
- 1
)
π ( s 3 ) =
π ( s 1 ) =
( - 1 0 0 1 )
π ( s 2 ) =
(
1 2
1 · 3 2
1 · 3 2
1 - 2
)
v 1
=
(
∅ ,
,
,
,
)
v 2
=
(
∅ ,
,
,
,
)
π ( s 1 ) =
(
- 1
0
0
0
1
0
0
0
1
)
π ( s 2 ) =
(
1 2
1 · 3 2
0
1 · 3 2
1 - 2
0
0
0
1
)
v 1
=
(
∅ ,
,
,
,
)
v 2
=
(
∅ ,
,
,
)
v 3
=
(
∅ ,
,
,
)
π ( s 3 ) =
(
1
0
0
0
1 / 3
2 · 4 3
0
2 · 4 3
1 - 3
)
π ∅ ( s 3 ) =
π ∅ ( s 1 ) =
(
1 1 - x ( 1 - P P ∅ )
0
0
0
- 1
0
0
0
1
)
π ∅ ( e 3 ) =
π ∅ ( e 1 ) =
(
P P ∅ 0 0
0 0 0
0 0 0
)
π ∅ ( s 2 ) =
(
1 x - 1 ( 1 - P ∅ P )
- P ∅ P P
P ∅ P P
- P ∅ P P
1 3 - x ( 1 - P P )
- 1 1 - x P P P
P ∅ P P
- 1 1 - x P P P
1 - ( x + 1 ) ( 1 - P P )
)
v 1
=
(
∅ ,
,
∅ ,
,
∅
)
v 2
=
(
∅ ,
,
,
,
∅
)
v 3
=
(
∅ ,
,
,
,
∅
)
π ∅ ( e 2 ) =
(
P ∅ P
P ∅ P P
P ∅ P P
P P ∅ P
P P
P P P
P P ∅ P
P P P
P P
)
π ( s 1 ) =
(
1 1 - x ( 1 - P P ∅ )
0
0
0
0
0
0
- 1
0
0
0
0
0
0
1
0
0
0
0
0
0
- 1
0
0
0
0
0
0
- 1
0
0
0
0
0
0
1
)
π ( s 2 ) =
(
1 x - 1 ( 1 - P ∅ P )
- P ∅ P P
P ∅ P P
0
0
0
- P ∅ P P
1 3 - x ( 1 - P P )
- 1 1 - x P P P
0
0
0
P ∅ P P
- 1 1 - x P P P
1 - ( x + 1 ) ( 1 - P P )
0
0
0
0
0
0
- 1
0
0
0
0
0
0
1 2
1 · 3 2
0
0
0
0
1 · 3 2
1 - 2
)
π ( s 3 ) =
(
- 1
0
0
0
0
0
0
1 x - 3 ( 1 - P P )
0
- P P P
- 1 - 2 P P P
0
0
0
1 x - 1
0
0
x ( x - 2 ) x - 1
0
- P P P
0
1 5 - x ( 1 - P P )
- 1 2 - x P P P
0
0
- 1 - 2 P P P
0
- 1 2 - x P P P
1 - ( x + 1 ) ( 1 - P P )
0
0
0
x ( x - 2 ) x - 1
0
0
1 1 - x
)
v 1
=
(
∅ ,
,
∅ ,
,
)
v 2
=
(
∅ ,
,
,
,
)
v 2
=
(
∅ ,
,
,
,
)
v 4
=
(
∅ ,
,
,
,
)
v 5
=
(
∅ ,
,
,
,
)
v 6
=
(
∅ ,
,
,
,
)
π ( e 1 ) =
(
P P ∅
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
)
π ( e 2 ) =
(
P ∅ P
P ∅ P P
P ∅ P P
0
0
0
P P ∅ P
P P
P P P
0
0
0
P P ∅ P
P P P
P P
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
)
π ( e 3 ) =
(
0
0
0
0
0
0
0
P P
0
P P P
P P P
0
0
0
0
0
0
0
0
P P P
0
P P
P P P
0
0
P P P
0
P P P
P P
0
0
0
0
0
0
0
)
v 1
=
(
∅ ,
,
∅ ,
)
v 2
=
(
∅ ,
,
∅ ,
)
v 3
=
(
∅ ,
,
∅ ,
)
v 4
=
(
∅ ,
,
,
,
)
v 5
=
(
∅ ,
,
,
,
)
v 6
=
(
∅ ,
,
,
,
)
π ( s 1 ) =
(
1 1 - x ( 1 - P P ∅ )
0
0
0
0
0
0
- 1
0
0
0
0
0
0
1
0
0
0
0
0
0
- 1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
)
π ( s 2 ) =
(
1 x - 1 ( 1 - P ∅ P )
- P ∅ P P
P ∅ P P
0
0
0
- P ∅ P P
1 3 - x ( 1 - P P )
- 1 1 - x P P P
0
0
0
P ∅ P P
- 1 1 - x P P P
1 - ( x + 1 ) ( 1 - P P )
0
0
0
0
0
0
1 · 3 2
1 - 2
0
0
0
0
1 2
1 · 3 2
0
0
0
0
0
0
1
)
π ( s 3 ) =
(
1
0
0
0
0
0
0
1 x - 1
0
x ( x - 2 ) x - 1
0
0
0
0
1 x + 1 ( 1 - P P )
0
- 1 2 P P P
P P P
0
x ( x - 2 ) x - 1
0
1 1 - x
0
0
0
0
- 1 2 P P P
0
1 3 - x ( 1 - P P )
- 1 - x P P P
0
0
P P P
0
- 1 - x P P P
1 - ( x + 3 ) ( 1 - P P )
)
v 1
=
(
∅ ,
,
∅ ,
,
)
v 2
=
(
∅ ,
,
,
,
)
v 3
=
(
∅ ,
,
,
,
)
v 4
=
(
∅ ,
,
,
,
)
v 5
=
(
∅ ,
,
,
,
)
v 6
=
(
∅ ,
,
,
,
)
π ( e 1 ) =
(
P P ∅
0
0
0
0
0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
)
π ( e 2 ) =
(
P ∅ P
P ∅ P P
P ∅ P P
0
0
0
P P ∅ P
P P
P P P
0
0
0
P P ∅ P
P P P
P P
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
)
π ( e 3 ) =
(
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P P
0
P P P
P P P
0
0
0
0
0
0
0
0
P P P
0
P P
P P P
0
0
P P P
0
P P P
P P
)
v 1
=
(
∅ ,
,
∅ ,
,
)
v 2
=
(
∅ ,
,
,
,
)
v 3
=
(
∅ ,
,
,
,
)
v 4
=
(
∅ ,
,
,
,
)
v 5
=
(
∅ ,
,
,
)
v 6
=
(
∅ ,
,
,
)
Notes and References
This is a typed version of the paper A Ribbon Hopf Algebra Approach to the Irreducible Representations of Centralizer Algebras: The Brauer, Birman-Wenzl, and Type A Iwahori-Hecke Algebras by Robert Leduc * and Arun Ram † .
The paper was received June 24, 1994; accepted September 12, 1994.
* Supported in part by National Science Foundation Grant DMS-9300523 to the University of Wisconsin.
† Supported in part by National Science Foundation Postdoctoral Fellowship DMS-9107863.
page history