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Abstract

This paper develops the theory of Macdonald-Koornwinder polynomials in parallel analogy with the
work done for the GLn case in [CR22]. In the context of the type CCn affine root system the Mac-
donald polynomials of other root systems of classical type are specializations of the Koornwinder
polynomials. We derive c-function formulas for symmetrizers and use them to give E-expansions,
principal specializations and norm formulas for bosonic, mesonic and fermionic Koornwinder poly-
nomials. Finally, we explain the proof of the norm conjectures and constant term conjectures for
the Koornwinder case.
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0 Introduction

The Koornwinder polynomials are multivariate generalizations of the classical orthogonal polynomials
that appear in the Askey scheme [K92]. At the top of this hierarchy we find the Askey-Wilson
polynomials and the other families of orthogonal polynomials in the Askey scheme are obtained from
the Askey-Wilson polynomials by specializing parameters.

Macdonald’s 1987 paper [Mac87] provides a very general framework for associating orthogonal
polynomials Pλ to any affine root system. It turns out that the Koornwinder polynomials are the
Macdonald polynomials for the affine root system of type CCn (in Macdonald’s notation (C∨

n , Cn))
and the Askey-Wilson polynomials are the Macdonald polynomials for the affine root system of type
CC1. One of the key features of Macdonald’s picture is that the norms 〈Pλ, Pλ〉+ are generalizations
of Macdonald’s “constant terms” 〈P0, P0〉+. In this way, Macdonald stated conjectures for the values
of 〈Pλ, Pλ〉+ which vastly expanded his earlier constant-term conjectures.

Cherednik introduced the double affine Hecke algebra as a tool for extending Opdam’s ideas to
prove the norm conjectures [C03]. This perspective pointed to a larger family of orthogonal polynomi-
als Eµ, from which the Pλ are obtained by a process of symmetrization. All of these tools, including
the proof of the norm conjectures, were wonderfully exposited in the full generality of a possibly
non-reduced affine root system in Macdonald’s book [Mac03]. For a wonderful history of the exciting
trajectory of these amazing developments see [HKO24].

Particularly in the type GLn case, the Macdonald polynomials have been of interest to the combi-
natorial community because of the wealth of wonderful q, t-generalizations of classical combinatorial
formulas in symmetric function theory. It is also stimulating that there are many fascinating connec-
tions to adjacent fields (representations of p-adic groups and affine Lie algebras, geometry of Hilbert
schemes and affine Springer fibers, torus knot invariants, vertex models in statistical mechanics, par-
ticle process in probability, etc). For this reason it is desirable to provide expositions of the tools that
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bridge the language gaps between the generality of affine root systems and the standard conventions in
classical symmetric function theory. In [CR22] we explained how, in the type GLn case, many of the
combinatorial formulas can be understood from the theory of c-functions, which are the analogs of the
Harish-Chandra c-functions surveyed by Helgason [Hel94] and that appear everywhere in Macdonald’s
monograph [Mac03].

In the type GLn case, the Macdonald polynomials depend on two parameters q and t. In the

Koornwinder case (type CCn), the polynomials depend on 6 parameters, q, t, t
1
2
0 , u

1
2
0 , t

1
2
n and u

1
2
n . Be-

cause of this plethora of parameters, sometimes it is not so easy to see how the combinatorial formulas
familiar in the type GLn case generalize to the Koornwinder case. This paper follows the same pattern
as our earlier paper [CR22], generalizing from the type GLn case to the Koornwinder (type CCn) case.

There is a constantly increasing literature on Koornwinder polynomials. There are interesting
technical advances and also fascinating connections to other fields (see, for example, [CGdGW16,
CMW23, Ra17, RW15, Yam20, YY21]). The foundational work in [Nou95, Ra01, Sah99, Sto00, vD95,
vD96], among others, continues to be extremely useful for clarifying the role and position of the
double affine Hecke algebra as a tool for the Koornwinder case. There are also important and very
useful surveys of the theory of Koornwinder polynomials (see, for example, [Sto04, Sto21]). There is a
significant intersection between the content of this paper and the content presented in these surveys.
We hope that our combinatorial and c-function point of view can be useful in continuing research on
Koornwinder polynomials.

The plan of this paper is as follows:

At the end of this introduction we include some remarks on the different sets of parameters used in
the literature and establish the ones we will use for the paper. Since there are 6 different parameters
to keep track of and lots of literature to navigate, perhaps this dictionary will be useful to readers (as
it was for us). Following these remarks we present a diagram of the affine root systems of classical
types together with the specializations of the parameters for obtaining the Macdonald polynomials of
the corresponding type from Koornwinder polynomials, which are the Macdonald polynomials for the
affine root system of type (C∨

n , Cn). A thorough study can be found in [YY21].
Section 1 is dedicated to the affine Weyl group and root system for type CCn, and we include the

affine coroots and affine roots. Our new contribution in Section 1 is the diagram giving the relative
positions of the affine root systems of classical type and the specializations that give the Macdonald
polynomials of the other classical type from Koornwinder polynomials. Although these relationships
are, in principle, well-known (from Macdonald [Mac72] and Bruhat-Tits [BT72]), we have not seen
this way of presenting this information, which we find very useful, and not broadly known.

In Section 2 we introduce the main tools for working with Koornwinder polynomials, including the
c-functions and the double affine Hecke algebra. Our contribution here is to provide a framework for
the DAHA in terms of c-functions, which makes the, sometimes daunting, formulas for the operators
on the polynomial representation seem obvious and natural.

In the second half of Section 2 we introduce four families of symmetrizers together with the
relations between them, their c-function formulas and the case when the stabilizers are nontrivial.
Our contribution here is to treat the four types of symmetrizers in tandem so that their role in the
theory (and the symmetry between them) becomes clearer.

Sections 3 and 4 examine the main objects of study:

(a) electronic Macdonald-Koornwinder polynomials (Section 3);

(b) bosonic Macdonald-Koornwinder polynomials;

(c) fermionic Macdonald-Koornwinder polynomials;
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(d) mesonic Macdonald-Koornwinder polynomials.

We introduce the electronic Macdonald-Koornwinder polynomials Eµ as eigenfunctions of Cherednik-
Dunkl operators and then give a recursive formula and a creation formula for the Eµ. For the other
variants, our study includes:

(a) definition of the Weyl denominators;

(b) study of the bosonic, fermionic and mesonic spaces;

(c) formulas for the Poincaré polynomial;

(d) expansions in terms of Eµ, and

(e) principal specializations.

Our contribution here is to put the focus on the fermionic and mesonic Koornwinder polynomials so
that the four-fold structure is clearly visible. This four-fold structure eventually leads to powerful
recursions for computing norms.

Finally, Section 5 is dedicated to the study of the Macdonald-Koornwinder polynomials as a family
of orthogonal polynomials. In particular, we

(a) define the Macdonald-Koornwinder inner product via multiplication by a kernel and taking the
constant term and characterize the electronic and bosonic Macdonald-Koornwinder polynomials
in terms of the inner product;

(b) compute adjoints of the operators from the double affine Hecke algebra;

(c) prove the going up a level and Weyl character formulas to provide recursions for norms; and

(d) use the recursions for norms to compute the norms 〈Pλ, Pλ〉+ and the Macdonald constant term
for type CCn.

This section follows the same trajectory as that taken in [Mac03, Ch. 5]. Our contribution here is to
use the fermionic and mesonic framework to organize the recursions for norms and make the proof of
norm conjectures easy and natural.
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0.0.1 The poset of affine root systems of classical type

(C∨
n , Cn) = C-BCII

n

2O3

O3

2O1

O1O5 O5 O5 O5

Eµ(x; q, t, t
1/2
0 , u

1/2
0 , t

1/2
n , u

1/2
n )

(C∨
n , BCn) = C-BCI

n
O3

2O1

O1O5 O5 O5 O5

Eµ(x; q, t, t
1/2
0 , t

1/2
0 , t

1/2
n , u

1/2
n )

(BCn, Cn) = C-BCIV
n

2O3 2O1

O1O5 O5 O5 O5

Eµ(x; q, t, t
1/2
0 , 1, t

1/2
n , u

1/2
n )

D
(2)
n+1 = C∨

n = C-Bn
O3 O1O5 O5 O5 O5

Eµ(x; q, t, t
1/2
0 , t

1/2
0 , t

1
2
n , t

1/2
n )

(Bn, B
∨
n ) = B-BCn

2O1

O1O5 O5 O5 O5

O5

O5

Eµ(x; q, t, 1, 1, t
1/2
n , u

1/2
n )

A
(2)
2n = BCn = C-BCIII

n

2O3

O1O5 O5 O5 O5

Eµ(x; q, t, t
1/2
0 , 1, t

1/2
n , t

1/2
n )

C
(1)
n = Cn = Cn

2O3 2O1

O5 O5 O5 O5

Eµ(x; q, t, t
1
2
0 , 1, t

1/2
n , 1)

B
(1)
n = Bn = Bn

O1O5 O5 O5 O5

O5

O5

Eµ(x; q, t, 1, 1, t
1/2
n , t

1/2
n )

A
(2)
2n−1 = B∨

n = B-Cn

2O1

O5 O5 O5 O5

O5

O5

Eµ(x; q, t, 1, 1, t
1/2
n , 1)

D
(1)
n = Dn = Dn

O5 O5 O5 O5

O5

O5

O5

O5

Eµ(x; q, t, 1, 1, 1, 1)

GLn

See Section 1.3 for the explanation of this diagram.
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0.1 Remarks on parameters

Depending on the reference, the notation for the parameters varies. In this article, we follow [Nou95]
and [Sah99] and mostly use the parameters

q, t
1
2 , t

1
2
0 , u

1
2
0 , t

1
2
n , u

1
2
n .

Remark 0.1. In an attempt to relate the parameter notations in [Mac03, §4.7], [Sah99, §3] and [C03,
Def. 2.1] let

τ ′0 = u
1
2
0 , τ ′n = u

1
2
n , τ0 = t

1
2
0 , τn = t

1
2
n , and τi = τ ′i = t

1
2 for i ∈ {1, . . . , n− 1}.

The summary of (1.5.1), (4.4.1), (4.4.2), (4.4.3), and (5.1.4) in [Mac03] is that, for an affine root a,

τa = (tat2a)
1
2 = q

1
2
κa = q

1
2
(k(a)+k(2a)), and τ ′a = t

1
2
a = q

1
2
κ′
a = q

1
2
(k(a)−k(2a)).

In our situation

t
1
2
n = τn = q

1
2
κn = t

1
2
εnt

1
2
2εn

= q
1
2
k(εn)+

1
2
k(2εn) = q

1
2
k1+

1
2
k2 ,

u
1
2
n = τ ′n = q

1
2
κ′
n = t

1
2
εn = q

1
2
k(εn)−

1
2
k(2εn) = q

1
2
k1−

1
2
k2 ,

t
1
2
0 = τ0 = q

1
2
κ0 = t

1
2

−ε1+
1
2
δ
t
1
2
−2ε1+δ = q

1
2
k(−ε1+

1
2
δ)+ 1

2
k(−2ε1+δ) = q

1
2
k3+

1
2
k4 ,

u
1
2
0 = τ ′0 = q

1
2
κ′
0 = t

1
2

−ε1+
1
2
δ
= q

1
2
k(−ε1+

1
2
δ)− 1

2
k(−2ε1+δ) = q

1
2
k3−

1
2
k4 , and

t
1
2 = τi = q

1
2
κ = t

1
2
εi−εi+1

= q
1
2
k5 , for i ∈ {1, . . . , n− 1},

and the formulas in [Mac03, (1.5.1)] correspond to interchanging κ0 and κ′n.

Remark 0.2. Askey-Wilson parameters. In type (C∨
1 , C1), the bosonic Macdonald polynomi-

als Pλ(q, t1, u1, t0, u0) are also known as the Askey-Wilson polynomials. Following [Nou95, §3], the
correspondence to the original Askey-Wilson parameters is given by

q = q, a = q
1
2 t

1
2
0 u

1
2
0 , b = −q

1
2 t

1
2
0 u

− 1
2

0 , c = t
1
2
nu

1
2
n , d = −t

1
2
nu

− 1
2

n . (0.1)

These conversions are equivalent to

t0 = −q−1ab, tn = −cd, u0 = −ab−1, un = −cd−1,

and it is useful to note that

a+ b = q
1
2 t

1
2
0 (u

1
2
0 − u

− 1
2

0 ) and c+ d = t
1
2
n (u

1
2
n − u

− 1
2

n ).

Up to permutations of a, b, c, d, these parameters are used in [Sah00, (1)], in [CGdGW16, (17)],
in [CMW23, Def. 2.2] and, with different notation, in [Mac03, (5.1.14)].
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1 The affine Weyl group and root system for type CCn

The affine root system of type CCn (in Macdonald’s notation (C∨
n , Cn)) is the structure that holds the

combinatorics of Koornwinder polynomials in place as they are the Macdonald polynomials for this
affine root system. The affine Weyl group W plays the role of the group of symmetries of the affine
root system. In this section we introduce the definitions and notations for working with the affine
Weyl group W and the affine root system of type CCn.

The coroots S∨ and the roots S for the affine root system of type CCn play just slightly different
roles in the theory, especially in the computations involving Koornwinder polynomials. One of the
challenges in this work is to keep these two mirror worlds in proper focus. For this purpose, in
Section 1.2, we carefully lay out two versions of the affine Weyl group W , one denoted WX which acts
on the coroots (with 5 orbits), and one denoted WY which acts on the roots (with 5 orbits). While
the groups WX , WY and W are all isomorphic, being pedantic about the notation at this early stage
prevents future headaches.

To conclude this section we present a brief explanation of the reasoning for how the Macdonald

polynomials of other classical types (such as Bn, Cn, BCn, A
(2)
2n−1, D

(2)
n+1 etc.) are derived from the

Koornwinder polynomials by specialization. This specialization process is summarized in the diagram
included in Section 0.0.1.

1.1 The affine Weyl group W and the finite Weyl group Wfin

Use a graphical notation for relations so that

gi gj means gigj = gjgi,

gi gj means gigjgi = gjgigj , and

gi gj means gigjgigj = gjgigjgi.

The affine Weyl group is the group W presented by generators s0, s1, . . . , sn and relations

s2i = 1 and s0 sns1 s2 sn−2 sn−1

The finite Weyl group is the subgroup Wfin generated by s1, . . . , sn.
Let w ∈ W . The length of w, ℓ(w), is the minimal ℓ ∈ Z≥0 such that

w = si1 . . . siℓ with i1, . . . , iℓ ∈ {0, 1, . . . , n− 1, n}.

The expression w = si1 . . . siℓ is a reduced word for w and any other expression of the form w =
sj1 . . . sjk , with j1, . . . , jk ∈ {0, 1, . . . , n− 1, n}, has k ≥ ℓ(w).

1.1.1 Translation presentation of W

Define hε1 , . . . , hεn ∈ W by

hε1 = s0s1s2 · · · sn−1snsn−1 · · · s2s1, and hεj = sjhεj−1sj, for j ∈ {2, . . . , n}.

For µ = (µ1, . . . , µn) ∈ Z
n define the translation hµ by

hµ = (hε1)
µ1 · · · (hεn)

µn (1.1)
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and define uµ ∈ W and vµ ∈ Wfin by the equation

hµ = uµvµ, where vµ ∈ Wfin and uµ is minimal length in the coset hµWfin. (1.2)

Define an action of Wfin on Z
n by

si(µ1, . . . , µn) = (µ1, . . . , µi−1, µi+1, µi, µi+2, . . . , µn), for i ∈ {1, . . . , n− 1},

sn(µ1, . . . , µn) = (µ1, . . . , µn−1,−µn). (1.3)

Then
W = Z

n
⋉Wfin.

In other words, if µ, ν ∈ Z
n and v ∈ Wfin then

vhµ = hvµv, hµhν = hµ+ν and W = {hµv | µ ∈ Z
n, v ∈ Wfin}.

Remark 1.1. In [CR22], we use tµ to denote the translations in the type A case. We use the notation
hµ for type CCn to avoid conflict with the set of parameters for Koornwinder polynomials (specified
in Section 2.1).

1.2 Affine coroots, affine roots and the groups WX and WY

In this subsection we set up the notation for the affine Weyl groups WX and WY . Both groups WX

and WY are isomorphic to W , but they serve slightly different roles and it is necessary to set up the
notation to distinguish them.

1.2.1 The dual lattices aZ and a
∗
Z

Let ε1, . . . , εn and ε∨1 , . . . , ε
∨
n be symbols and define dual lattices (i.e. dual free Z-modules)

a
∗
Z = {γ1ε1 + · · · + γnεn | γ1, . . . , γn ∈ Z} and aZ = {µ1ε

∨
1 + · · ·+ µnε

∨
n | µ1, . . . , µn ∈ Z}

with Z-bilinear pairing

〈 , 〉 : a∗Z × aZ → Z given by 〈εi, ε
∨
j 〉 = δij .

Both aZ and a
∗
Z
are isomorphic to Z

n.

1.2.2 The affine coroots for type CCn

Let
Q∨ = Z-span{ε∨1 , . . . , ε

∨
n ,

1
2K}

be the Z-vector space spanned by symbols ε∨1 , . . . , ε
∨
n and 1

2K. The affine Weyl group WX is the group
of Z-linear transformations of Q∨ generated by the transformations s∨0 , s

∨
1 , . . . , s

∨
n given as follows: If

λ∨ = λ1ε
∨
1 + · · ·+ λnε

∨
n + k

2K then

s∨0λ
∨ = −λ1ε

∨
1 + λ2ε

∨
2 + · · · + λnε

∨
n +

(
k
2 + λ1

)
K,

s∨nλ
∨ = λ1ε

∨
1 + · · ·+ λn−1ε

∨
n−1 − λnε

∨
n + k

2K, and (1.4)

s∨i λ
∨ = λ1ε

∨
1 + · · ·+ λi−1ε

∨
i−1 + λi+1ε

∨
i + λiε

∨
i+1 + λi+2ε

∨
i+2 + · · · + λnε

∨
n + k

2K,

7



for i ∈ {1, . . . , n− 1}. Let

s∨ε1 = s∨1 · · · s∨n · · · s∨1 , hε1 = s∨0 s
∨
ε1 = s∨0 s

∨
1 · · · s∨n · · · s

∨
1 and hεi+1 = s∨i hεis

∨
i ,

for i ∈ {1, . . . , n− 1}. Then hε1λ
∨ = s∨0 s

∨
ε1λ

∨ = λ1ε
∨
1 + · · ·+ λnε

∨
n +

(
k
2 − λ1

)
K and

hεiλ
∨ = λ1ε

∨
1 + · · ·+ λnε

∨
n +

(
k
2 − λi

)
K, for i ∈ {1, . . . , n}.

If γ = γ1ε1 + · · · γnεn and λ∨ = λ1ε
∨
1 + · · ·+ λnε

∨
n + k

2K then

hγλ
∨ = hγ1ε1 · · · h

γn
εnλ

∨ = λ∨ + (k2 − (λ1γ1 + · · · + λnγn))K = λ∨ + (k2 − 〈γ, λ∨〉)K,

and special cases of this last formula are

hγε
∨
i = ε∨i − γiK and hγK = K. (1.5)

The set of coroots S∨ for type CCn is the union of the five WX-orbits given by

O∨
1 = WX · α∨

n = WX · ε∨n = {±ε∨i + rK | i ∈ {1, . . . , n}, r ∈ Z},

2O∨
1 = WX · 2α∨

n = WX · 2ε∨n = {±2ε∨i + 2rK | i ∈ {1, . . . , n}, r ∈ Z},

O∨
3 = WX · α∨

0 = WX · (−ε∨1 + 1
2K) = {±(ε∨i + 1

2(2r + 1)K | i ∈ {1, . . . , n}, r ∈ Z},

2O∨
3 = WX · 2α∨

0 = WY · (−2ε∨1 +K) = {±2ε∨i + (2r + 1)K | i ∈ {1, . . . , n}, r ∈ Z},

O∨
5 = WX · α∨

1 = WX · (ε∨1 − ε∨2 ) =

{
±(ε∨i + ε∨j ) + rK,

±(ε∨i − ε∨j ) + rK

∣∣∣ i, j ∈ {1, . . . , n}, i < j, r ∈ Z

}
,

where

2α∨
n = 2ε∨n

α∨
n = ε∨n

2α∨
0 = −2ε∨1 +K

α∨
0 = −ε∨1 + 1

2K α∨
i = ε∨i − ε∨i+1

(1.6)

Remark 1.2. Throughout this paper we present several diagrams imitating the Dynkin diagram
with the labeling related to the coroots (like the one above), roots, or parameters. These are merely
intended for conceptual association rather than to specify relations between the objects.

1.2.3 The affine roots for type CCn

Let
Q = Z-span{ε1, . . . , εn,

1
2δ}

be the Z-vector space spanned by symbols ε1, . . . , εn and 1
2δ. The affine Weyl group WY is the group

of Z-linear transformations of Q generated by the transformations s0, s1, . . . , sn given as follows: If
µ = µ1ε1 + · · ·+ µnεn + k

2δ then

s0µ = −µ1ε1 + µ2ε2 + · · ·+ µnεn +
(
k
2 + λ1

)
δ,

snµ = µ1ε1 + · · ·+ µn−1εn−1 − µnεn + k
2δ, and (1.7)

siµ = µε1 + · · ·+ µi−1εi−1 + µi+1εi + µiεi+1 + µi+2εi+2 + · · ·+ µnεn + k
2δ,

for i ∈ {1, . . . , n− 1}. Let

sε1 = s1 · · · sn · · · s1, hε∨1 = s0sε1 = s0s1 · · · sn · · · s1 and hε∨i+1
= sitε∨i si,

8



for i ∈ {1, . . . , n− 1}. Then hε∨1 µ = s0sε1µ = µ1ε1 + · · ·+ µnεn +
(
k
2 − µ1

)
δ and

hε∨i µ = µ1ε1 + · · · + µnεn +
(
k
2 − µi

)
δ, for i ∈ {1, . . . , n}.

If ν∨ = ν1ε
∨
1 + · · · νnε

∨
n and µ = µ1ε1 + · · ·+ µnεn + k

2δ then

hν∨µ = hν1
ε∨1

· · · hνnε∨n
µ = µ− (k2 + (µ1ν1 + · · ·+ µnνn))δ = µ+ (k2 − 〈µ, ν∨〉)δ,

and special cases of this last formula are

hν∨εi = εi − νiδ and hν∨δ = δ.

The set of roots S for type CCn is the union of the five WY -orbits given by

O1 = WY · αn = WY · εn = {±εi + rδ | i ∈ {1, . . . , n}, r ∈ Z},

2O1 = O2 = WY · 2αn = WY · 2εn = {±2εi + 2rδ | i ∈ {1, . . . , n}, r ∈ Z},

O3 = WY · αn = WY · (−ε1 +
1
2δ) = {±(εi +

1
2 (2r + 1)δ | i ∈ {1, . . . , n}, r ∈ Z},

2O3 = O4 = WY · 2αn = WY · (−2ε1 + δ) = {±2εi + (2r + 1)δ | i ∈ {1, . . . , n}, r ∈ Z},

O5 = WY · α1 = WY · (ε1 − ε2) =

{
±(εi + εj) + rδ
±(εi − εj) + rδ

∣∣∣ i, j ∈ {1, . . . , n}, i < j, r ∈ Z

}
,

where

2αn = 2εn

αn = εn
2α0 = −2ε1 +K

α0 = −ε1 +
1
2δ αi = εi − εi+1

(1.8)

1.3 Other classical types

With the notations as in Section 1.2.3, each affine root system of classical type is a subset of Q.
The irreducible affine root systems of classical type (and the appropriate specializations for obtaining
the Macdonald polynomials of each type from the Macdonald polynomials of type (C∨

n , Cn)) are
given by the diagram in Section 0.0.1. The middle notation for each root system is the notation in
Macdonald [Mac03, §1.3], the right notation is that of Bruhat-Tits [BT72] and the left notation is
that of Kac [Kac, Ch. 6].

To determine the specializations, we look at the kernel for the inner product (see Section 5.1).
Following [Mac03, (5.1.3)] the orthogonal polynomials are determined by the inner product which, in
turn, is determined by factors of the form in (1.9) corresponding to orbits of roots.

For instance, when both O1 and 2O1 are present then the factor corresponding to the root εn is

1

∆εn∆2εn

=
(1− t

1
2
nu

1
2
nxn)(1 + t

1
2
nu

− 1
2

n xn)

1− x2n
. (1.9)

(The notation 1
∆εn∆2εn

for this factor is as in [Mac03, (5.1.3)]; the notation that we use for this factor

in Section 5.1 is κXεn .) If only the orbit O1 is present then the factor is

1

∆εn

=
1− tnxn
1− xn

which is obtained by specializing t
1
2
n = u

1
2
n in (1.9).

If only the orbit 2O1 is present then the factor is

1

∆2εn

=
1− tnx

2
n

1− x2n
which is obtained by specializing u

1
2
n = 1 in (1.9).

In this way, the parameter specializations in the diagram in Section 0.0.1 are determined by which
orbits of roots are present in the root system.
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2 c-functions and DAHA relations

This section collects the tools for working with Koornwinder polynomials as polynomials in x±1
1 , . . . , x±1

n

that depend on 6 parameters. The root system of type CCn provides the structure for organizing the
many symmetries between the variables and the various parameters and this section specifies care-
fully the links to the root system. The c-functions, introduced in Section 2.3, are a core structure to
providing explicit formulas for Koornwinder expansions, specializations and norm formulas. With the
notation for the c-functions in hand, Section 2.4 describes briefly the relations of the double affine
Hecke algebra. These relations provide a convenient summary of the calculus of the operators on
polynomials which are used in the rest of the paper.

2.1 Parameters

Let

q, t
1
2 , t

1
2
0 , u

1
2
0 , t

1
2
n , u

1
2
n be independent parameters,

and let

K = C(q, t
1
2 , t

1
2
0 , u

1
2
0 , t

1
2
n , u

1
2
n ) be the field of fractions of C[q, t

1
2 , t

1
2
0 , u

1
2
0 , t

1
2
n , u

1
2
n ].

The field K will be the base field for most algebras in this paper.
Recalling the simple coroots and simple roots from (1.6) and (1.8), set

uα∨
n
= t0

tα∨
n
= tn

uα∨
0
= u0

tα∨
0
= un tα∨

i
= uα∨

i
= t

(2.1)

and

uαn = un

tαn = tn
uα0 = u0

tα0 = t0 tαi
= uαi

= t
(2.2)

Let S∨ be the set of affine coroots and let S be the set of affine roots. Define tα∨ , uα∨ and tα, uα
for arbitrary coroots α∨ and arbitrary roots α by requiring

twα = tα and twα∨ = tα∨ , for w ∈ W , α∨ ∈ S∨ and α ∈ S. (2.3)

The difference between the parameters for the coroots in (2.1) and the parameters for the roots in (2.2)
corresponds exactly to introduction of the “dual labels” in [Mac03, (1.5.1)].

2.2 The polynomial rings K[X ] and K[Y ]

Let K[X] = K[X±1
1 , . . . ,X±1

n ] be the Laurent polynomial ring in the variables X1, . . . ,Xn. Identify
K[X] with the group algebra of Q = Z-span{ε1, . . . , εn,

1
2δ} via the notations

q
1
2 = X

1
2
δ and Xi = Xεi , and q

k
2Xµ1

1 · · ·Xµn
n = X

k
2
δ+µ1ε1+···+µnεn = Xµ,

for i ∈ {1, . . . , n} and µ = µ1ε1 + · · ·+µnεn+
k
2δ ∈ Q. The image of the simple roots in K[X] is given

by

Xαn = XnXα0 = q
1
2X−1

1
Xαi = XiX

−1
i+1 (2.4)
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Let K[Y ] = K[Y ±1
1 , . . . , Y ±1

n ] be the Laurent polynomial ring in the variables Y1, . . . , Yn. Identify
K[Y ] with the group algebra of Q∨ = Z-span{ε∨1 , . . . , ε

∨
n ,

1
2K} via the notations

q
1
2 = Y − 1

2
K and Yi = Y ε∨i , and q−

k
2Y λ1

1 · · ·Y λn
n = Y

k
2
K+λ1ε∨1 +···+λnε∨n = Y λ∨

,

for i ∈ {1, . . . , n} and λ∨ = λ1ε
∨
1 + · · · + λnε

∨
n + k

2K ∈ Q∨. The image of the simple coroots in K[Y ]
is given by

Y α∨
n = YnY α∨

0 = q−
1
2Y −1

1
Y α∨

i = YiY
−1
i+1 (2.5)

2.3 c-functions

Let K(Y ) be the field of fractions of the Laurent polynomial ring K[Y ]. For a coroot α∨ let (see [Mac03,
(4.2.2) and (4.3.9)]),

cYα∨ = t
− 1

2
α∨

(1− t
1
2
α∨u

1
2
α∨Y α∨

)(1 + t
1
2
α∨u

− 1
2

α∨ Y α∨
)

(1− Y 2α∨
)

and κYα∨ = t
1
2
α∨c

Y
α∨ . (2.6)

If t
1
2
α∨ = u

1
2
α∨ then cYα∨ =

t
− 1

2
α∨ − t

1
2
α∨Y α∨

1− Y α∨ and κYα∨ =
1− tα∨Y α∨

1− Y α∨ .

(More accurately, the function cYα∨ should be considered as a local factor of a c-function, see [Sto11].)
The expression κYα∨ is a slightly renormalized version of the c-function cYα∨ which, although not tech-
nically necessary, is immensely helpful for making the formulas more palatable.

In general, for arbitrary t
1
2
α∨ and u

1
2
α∨ ,

cYα∨ + cY−α∨ =
(1− t

1
2
α∨u

1
2
α∨Y α∨

)(1 + t
1
2
α∨u

− 1
2

α∨ Y α∨
)

t
1
2
α∨(1− Y 2α∨)

+
(1− t

1
2
α∨u

1
2
α∨Y −α∨

)(1 + t
1
2
α∨u

− 1
2

α∨ Y −α∨
)

t
1
2
α∨(1− Y −2α∨)

=
(1− t

1
2
α∨u

1
2
α∨Y α∨

)(1 + t
1
2
α∨u

− 1
2

α∨ Y α∨
)

t
1
2
α∨(1− Y 2α∨)

+
tα∨(1− t

− 1
2

α∨ u
− 1

2
α∨ Y α∨

)(1 + t
− 1

2
α∨ u

1
2
α∨Y α∨

)

t
1
2
α∨(1− Y 2α∨)

=
1− t

1
2
α∨u

1
2
α∨Y α∨

+ t
1
2
α∨u

− 1
2

α∨ Y α∨
− tα∨Y 2α∨

+ tα∨ − t
1
2
α∨u

− 1
2

α∨ Y α∨
+ t

1
2
α∨u

1
2
α∨Y α∨

− Y 2α∨
)

t
1
2
α∨(1− Y 2α∨)

=
(1 + tα∨)(1 − Y 2α∨

)

t
1
2
α∨(1− Y 2α∨)

= t
1
2
α∨ + t

− 1
2

α∨ . (2.7)

Let w ∈ W and let w = si1 · · · siℓ be a reduced word for w. The coroot sequence of the reduced
word w = si1 · · · siℓ is

the sequence (β∨
k | k ∈ {1, . . . , ℓ} and ik 6= π}) given by β∨

k = s−1
iℓ

· · · s−1
ik+1

α∨
ik
. (2.8)

Then define
κYw =

∏

β∨∈Inv(w)

κYβ∨ , where Inv(w) = {β∨
1 , . . . , β

∨
ℓ } (2.9)

is the set of elements in a coroot sequence for a reduced word for w. If w = uv with ℓ(u)+ ℓ(v) = ℓ(w)
then the coroot sequence of w is v−1 times the coroot sequence of u followed by the coroot sequence
of v so that

Inv(uv) = v−1Inv(u) ∪ Inv(v).
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The inversions of elements of Wfin come in two types: ‘droite’ and ‘standard’. Using the indicators
d for ‘droite’ and s for ‘standard’, let

(S∨
0,d)

+ = {ε∨1 , . . . , ε
∨
n} and (S∨

0,s)
+ =

{
ε∨i − ε∨j ,

ε∨i + ε∨j

∣∣∣ i, j ∈ {1, . . . , n} with i < j

}
,

and for v ∈ Wfin, define

Invd(v) = Inv(v) ∩ (S∨
0,d)

+ and Invs(v) = Inv(v) ∩ (S∨
0,s)

+.

For v ∈ Wfin define

κ+v =




∏

β∨∈Invs(v)

κYβ∨






∏

β∨∈Invd(v)

κYβ∨


 , κ±v =




∏

β∨∈Invs(v)

κYβ∨






∏

β∨∈Invd(v)

κY
−1

β∨


 ,

κ−v =




∏

β∨∈Invs(v)

κY
−1

β∨






∏

β∨∈Invd(v)

κY
−1

β∨


 , κ∓v =




∏

β∨∈Invs(w)

κY
−1

β∨






∏

β∨∈Invd(w)

κYβ∨


 . (2.10)

Finally, define also

κYdr =
n∏

i=1

κYε∨i
=

n∏

i=1

(1− t
1
2
n t

1
2
0 Yi)(1 + t

1
2
n t

− 1
2

0 Yi)

(1− Y 2
i )

and

κYst =

n∏

1≤i<j≤n

κYε∨i −ε∨j
κYε∨i +ε∨j

=

n∏

1≤i<j≤n

(1− tYiY
−1
j )

(1− YiY
−1
j )

(1− tYiYj)

(1− YiYj)
(2.11)

so that
κYw0

= κYdrκ
Y
st. (2.12)

This subsection has presented the c-functions and related functions κYβ∨ in terms of the {Y1, · · · , Yn}

variables. We will also consider these notions in other sets of variables, like {Y −1
1 , · · · , Y −1

n }, {X1, · · · ,Xn},

and {X−1
1 , · · · ,X−1

n }, and use notations like κY
−1

β∨ , κXβ , κX
−1

β , respectively. For example

κX
−1

w0
=




n∏

i=1

(1− t
1
2
nu

1
2
nX

−1
i )(1 + t

1
2
nu

− 1
2

n X−1
i )

(1 −X−2
i )






∏

1≤i<j≤n

(1− tX−1
i Xj)(1− tX−1

i X−1
j )

(1−X−1
i Xj)(1−X−1

i X−1
j )


 . (2.13)

2.4 The algebras H̃loc and H̃int

The Koornwinder polynomials are elements of the polynomial ring K[x±1
1 , . . . , x±1

n ] which are charac-
terized, up to normalization, by the fact that they are eigenvectors for the Cherednik-Dunkl operators
Y1, . . . , Yn (see (3.5)). However the c-functions, which form the core calculus for working with Koorn-
winder polynomials, are elements of K(X), the field of fractions of the polynomial ring. Thus extending
from K[X] to K(X) is necessary for handling the tools.

The Cherednik-Dunkl operators are elements of the double affine Hecke algebra H̃int, which is
formed by pasting the two polynomial rings K[X] and K[Y ] together with a finite Hecke algebra Hfin.
However, the right home for the c-functions and the operators for creating Koornwinder polynomials
is a larger algebra H̃loc which extends the algebra H̃int by extending K[X] and K[Y ] to the fraction
fields K(X) and K(Y ). In this subsection we introduce the algebras H̃loc and H̃int by generators and
relations.
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Let K(X) and K(Y ) be the fraction fields of K[X] and K[Y ] respectively. Recall that K[X] is the
group algebra of Q and K[Y ] is the group algebra of Q∨, that

X
1
2
δ = q and Y − 1

2
K = q

1
2

and that WX acts on Q∨ and WY acts on Q by the formulas given in (1.7) and (1.4) so that

wXµ = Xwµ and zY λ∨

= Y zλ∨

, (2.14)

for w ∈ WY , z ∈ WX , λ∨ ∈ Q∨ and µ ∈ Q.
Let H̃loc be the K-algebra generated by ηs∨0 , . . . , ηs∨n , ξs0 , . . . , ξsn , T1, . . . , Tn, Tα0 , Tα1 , . . . , Tαn and

Tα∨
0
, Tα∨

1
, . . . , Tα∨

n
and Tsε1

and K(X) and K(Y ) with relations

ηs∨0 ηs∨nηs∨1 ηs∨2
ηs∨n−2

ηs∨n−1 η2si = 1, ηsiY
λ∨

= Y siλ
∨
ηsi

ξs0 ξsnξs1 ξs2 ξsn−2 ξsn−1 ξ2si = 1, ξsiX
µ = Xsiµξsi ,

(2.15)

for i ∈ {0, 1, . . . , n}, λ∨ ∈ Q∨ and µ ∈ Q, and

Tα∨
i
+ t

− 1
2

α∨
i
= (1 + ηs∨i )c

Y
α∨
i

and Tαi
+ t

− 1
2

αi = (1 + ξsi)c
X−1

αi
, for i ∈ {0, 1, . . . , n}, (2.16)

Tj = Tαj
= Tα∨

j
for j ∈ {1, . . . , n} and Tsε1

= T1 · · ·Tn−1TnTn−1 · · ·T1, (2.17)

Y ε∨1 = Tα0Tsε1
Xε1 = (Tα∨

0
)−1T−1

sε1
(2.18)

Y ε∨j+1 = T−1
αj

Y ε∨j T−1
αj

, and Xεj+1 = Tαj
XεjTαj

, for j ∈ {1, . . . , n− 1}, (2.19)

Y −ε∨1 Xε1 = q
1
2 (u

1
2
0 − u

− 1
2

0 )T−1
sε1

+ qT−1
sε1

X−ε1Y ε1T−1
sε1

. (2.20)

This presentation of H̃loc is not minimal as there are many redundant generators and many re-
dundant relations. It is designed to specify notations and list the relations that we will need, and to
motivate the operators on polynomials which are the main tools for working with Macdonald polyno-
mials in general. To be precise, since

(1 + ξsi)c
X−1

αi
= Tαi

+ t
− 1

2
αi = (Tαi

− t
1
2
αi) + t

− 1
2

αi + t
1
2
αi = (Tαi

− t
1
2
αi) + cX

−1

αi
+ cX

−1

−αi

then
Tαi

− t
1
2 = −cX

−1

−αi
+ ξsic

X−1

αi
= −cX

−1

−αi
(1− ξsi) = −cXαi

(1− ξsi), (2.21)

and this is the formula used to define the action of the double affine Hecke algebra on K[X] in (3.3).
The double affine Hecke algebra (DAHA) is the subalgebra H̃int inside H̃loc

generated by X±1
1 , . . . ,X±1

n , Y ±1
1 , . . . , Y ±1

n , and T1, . . . , Tn.

The algebra H̃int is an integral form of H̃loc (alternatively, the algebra H̃loc is a completion, or localized
form, of H̃int). A common definition of the DAHA uses the relations listed in the following proposition,
which follow without difficulty from the defining relations of H̃loc.
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Proposition 2.1. Let i ∈ {0, 1, . . . , n}, λ∨ ∈ Q∨ and µ ∈ Q. Let T#
0 = q−

1
2T−1

α∨
0
T−1
sε1

T−1
α0

. Then

Tα∨
0

Tα∨
n

T∨
α1

Tα∨
2

Tα∨
n−2

Tα∨
n−1 Tα0 Tαn

Tα1 Tα2
Tαn−2 Tαn−1

(2.22)

Tα∨
0
T−1
α1

Tα0Tα1 = T−1
α1

Tα0Tα1Tα∨
0
, (T#

0 − u
1
2
0 )(T

#
0 + u

1
2
0 ) = 0, (2.23)

(Tα∨
i
− t

1
2

α∨
i
)(Tα∨

i
+ t

− 1
2

α∨
i
) = 0 and Tα∨

i
Y λ∨

= Y s∨i λ
∨

Tα∨
i
+ (cYα∨

i
− t

− 1
2

α∨
i
)(Y λ∨

− Y s∨i λ
∨

), (2.24)

(Tαi
− t

1
2
αi)(Tαi

+ t
− 1

2
αi ) = 0 and Tαi

X−µ = X−siµTαi
+ (cX

−1

αi
− t

− 1
2

αi )(X−µ −X−siµ). (2.25)

Remark 2.2. In personal communication, J. Stokman insightfully points out that the algebra H̃loc

defined in (2.15)–(2.20) is fishy. One can Ore-localize DAHA in either the X-elements (so that the
normalized intertwiners ξsj are in the localized algebra), or in the Y -elements (so that the ηsj are in
the ones in the localized algebra) but not simultaneously. This difficulty is alluded to in a different
form in [CR22, Remark 3.5]. However, trying to set up the accurate formal framework for handling
an X-Y -localized algebra would be distracting from the combinatorial perspective of this paper. We
feel that, even if the right localization formalism is not in place, the concept of an algebra H̃loc that
contains all the useful relations for computations with these operators is a healthy point of view and
so we have chosen to include it. The algebra H̃loc is not absolutely necessary for the results in this
paper as the operators on the polynomial representation that we use are well-defined and the proofs
that we give are valid.

2.5 Symmetrizers

There are four ways of symmetrizing/antisymmetrizing in the Koornwinder polynomial context, cor-
responding to the four 1-dimensional representations of Wfin. These 1-dimensional representations are
the analogues of the usual sign of a permutation. The four symmetrizers, and useful formulas for them,
are presented in Sections 2.5, 2.6 and 2.7. The symmetrizers will be used in Section 4 to construct and
manage the bosonic (symmetric), fermionic (antisymmetric) and the two mesonic (half symmetric-half
antisymmetric) versions of the Koornwinder polynomials. These four symmetrized/antisymmetrized
versions of Koornwinder polynomials, and the relations between them, turn out to be fundamental in
the proof of the norm formulas and constant term formulas that are established in Section 5.

The finite Hecke algebra Hfin is the K-subalgebra of H̃int generated by T1, . . . , Tn−1 and Tn. The
finite Hecke algebra

Hfin has K-basis {Tv | v ∈ Wfin}, (2.26)

where Tv = Ti1 . . . Tik if v = si1 · · · sik is a reduced word for v in Wfin. The four one dimensional
representations of Hfin are

χ+ : Hfin → K, χ± : Hfin → K, χ∓ : Hfin → K, χ− : Hfin → K,

given by

χ+(Ti) =

{
t
1
2 , if i ∈ {1, . . . , n − 1},

t
1
2
n , if i = n,

χ±(Ti) =

{
t
1
2 , if i ∈ {1, . . . , n − 1},

(−tn)
− 1

2 , if i = n,

χ∓(Ti) =

{
(−t)−

1
2 , if i ∈ {1, . . . , n− 1},

t
1
2
n , if i = n,

χ−(Ti) =

{
(−t)−

1
2 , if i ∈ {1, . . . , n − 1},

(−tn)
− 1

2 , if i = n.
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For v ∈ Wfin define ℓs(v) and ℓd(v) by

χ+(Tv) = (t
1
2 )ℓs(v)(t

1
2
n )

ℓd(v).

The Hecke symmetrizers are

the elements ε+, ε±, ε∓ and ε− of Hfin

which are defined such that, in terms of the basis in (2.26), the coefficient of Tw0 is 1 and for w ∈ Wfin,

Twε+ = χ+(Tw)ε+, Twε± = χ±(Tw)ε±, Twε∓ = χ∓(Tw)ε∓, Twε− = χ−(Tw)ε−.

In other words, if Ξ ∈ {+,±,∓,−} then TwεΞ = χΞ(Tw)εΞ.
A reduced word for the longest element of Wfin is

w0 = (s1 · · · sn · · · s1)(s2 · · · sn · · · s2) · · · (sn−1snsn−1)sn and t
1
2
ℓs(w0)t

1
2
ℓd(w0)

n = t
1
2
n(n−1)t

1
2
n

n .

In terms of the basis in (2.26) the symmetrizers are given explicitly by

εΞ =
1

χΞ(Tw0)

∑

v∈Wfin

χΞ(Tv)Tv, for Ξ ∈ {+,±,∓,−}. (2.27)

The Poincaré polynomial for Wfin is

W0(t, tn) =
∑

w∈Wfin

tℓs(w)tℓd(w)
n =

∑

w∈Wfin

χ+(Tw)
2. (2.28)

Three alternate formulas for W0(t, tn) are given in Proposition 4.3. Then

ε2+ =
1

χ+(Tw0)
W0(t, tn)ε+, ε2± =

1

χ±(Tw0)
W0(t, t

−1
n )ε±,

ε2− =
1

χ−(Tw0)
W0(t

−1, t−1
n )ε−, ε2∓ =

1

χ∓(Tw0)
W0(t

−1, tn)ε∓. (2.29)

Example 2.1. For Ξ = ±,

ε± =
1

χ±(Tw0)

∑

w∈Wfin

χ±(Tw)Tw = t−
1
2
ℓs(w0)(−t

1
2
n )

ℓd(w0)
∑

w∈Wfin

t
1
2
ℓs(w)(−t

− 1
2

n )ℓd(w)Tw,

and since Twε± = χ±(Tw)ε± then

ε2± =
1

χ±(Tw0)

∑

w∈Wfin

χ±(Tw)
2ε± =

1

χ±(Tw0)
W0(t, t

−1
n )ε±.

2.6 c-function formulas for symmetrizers

The definition of the Hecke symmetrizers and the formulas for them given in Section 2.5, are purely
in terms of the Tw in the double affine Hecke algebra H̃int. However the Koornwinder polynomials
are more naturally constructed and managed with the ηw and ξw that are in H̃loc and so it becomes
desirable to have expressions for the symmetrizers that are in terms of the ηw and ξw (and c-functions).
Perhaps surprisingly, these conversion formulas, presented in Proposition 2.3, are compact and elegant
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(and useful!). We will use them in Section 4 to provide formulas for the symmetric (bosonic), anti-
symmetric (fermionic) and half symmetric-half antisymmetric (mesonic) Koornwinder polynomials.

For w ∈ Wfin let
ξw = ξsi1 · · · ξsiℓ and ηw = ηs∨i1

· · · ηs∨iℓ
,

if w = si1 · · · siℓ is a reduced word for w. There are four X-symmetrizers

eX+ =
∑

w∈Wfin

ξw, eX− =
∑

w∈Wfin

(−1)ℓs(w)+ℓd(w)ξw,

eX± =
∑

w∈Wfin

(−1)ℓd(w)ξw, eX∓ =
∑

w∈Wfin

(−1)ℓs(w)ξw,

and four Y -symmetrizers

eY+ =
∑

w∈Wfin

ηw, eY− =
∑

w∈Wfin

(−1)ℓs(w)+ℓd(w)ηw,

eY± =
∑

w∈Wfin

(−1)ℓd(w)ηw, eY∓ =
∑

w∈Wfin

(−1)ℓs(w)ηw.

The following proposition writes the Hecke symmetrizers in terms of the X-symmetrizers and the
Y -symmetrizers.

Proposition 2.3. Let κXst , κ
X
dr be as defined in (2.11).

χ+(Tw0)ε+ = eX+κX
−1

st κX
−1

dr = eY+κ
Y
stκ

Y
dr and χ+(Tw0)ε− = κXstκ

X
dre

X
− = κY

−1

st κY
−1

dr eY−,

χ+(Tw0)ε± = κXdre
X
±κX

−1

st = κY
−1

dr eY±κ
Y
st and χ+(Tw0)ε∓ = κXste

X
∓κX

−1

dr = κY
−1

st eY∓κ
Y
dr.

Proof. Let us prove the formula χ+(Tw0)ε± = κXdre
X
±κX

−1

st . The proof for the other cases is similar.
Let

R± = κXdre
X
±κX

−1

st .

For i ∈ {1, . . . , n− 1}, and using (2.21),

(Ti − t
1
2 )R± = (Ti − t

1
2 )κXdre

X
±κX

−1

st = −cXαi
(1− ξsi)κ

X
dre

X
±κX

−1

st

= −κXdrc
X
αi
(1− ξsi)e

X
±κX

−1

st = −κXdrc
X
αi

· 0 · κX
−1

st = 0, so that TiR± = t
1
2R±.

Using (2.16),

(Tn + t
− 1

2
n )R± = (Tn + t

− 1
2

n )κXdre
X
±κX

−1

st = (1 + ξsn)c
X−1

αn
κXdre

X
±κX

−1

st = (1 + ξsn)κ
X
drc

X−1

αn
eX±κX

−1

st

= κXdr(1 +
cX

−1

αn

cXαn

ξsn)c
X−1

αn
eX±κX

−1

st = κXdr

(
cX

−1

αn
+

cX
−1

αn

cXαn

cXαn
ξsn

)
eX±κX

−1

st

= κXdr

(
cX

−1

αn
+ cX

−1

αn
ξsn

)
eX±κX

−1

st = κXdr

(
cX

−1

αn
− cX

−1

αn

)
eX±κX

−1

st = 0,

so that TnR± = −t
− 1

2
n R±.

Since Ti = ξsic
X−1

αi
+ (cX

−1

αi
− t−

1
2 ) and the coefficient of Tw0 is 1 then there are rational functions

aX
−1

w such that

χ+(Tw0)ε± = χ+(Tw0)
∑

w∈Wfin

ξwa
X−1

w = χ+(Tw0)ξw0c
X−1

w0
+ χ+(Tw0)

∑

w<w0

ξwa
X−1

w

= κXdrξw0κ
X−1

st + χ+(Tw0)
∑

w<w0

ξwa
X−1

w .
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The element ε± ∈ Hfin is determined by the conditions that the coefficient of Tw0 is 1, and Tnε± =

−t
− 1

2
n ε± and Tiε± = t

1
2 ε± for i ∈ {1, . . . , n− 1}. So χ+(Tw0)ε± = R±.

2.7 Symmetrizers and stabilizers

The finite Weyl group Wfin acts on Z
n by the formulas in (1.3). Since the action of Wfin on Z

n is
not free, there are elements of Zn that have nontrivial stabilizer, and one is forced to confront these
stabilizers. This subsection computes formulas for the symmetrizers which take into account, and
allow us to manage, the cases when the stabilizer is nontrivial.

Let
(Zn

≥0)
+ = {λ = (λ1, . . . , λn) ∈ Z

n | λ1 ≥ · · · ≥ λn ≥ 0}.

The set (Zn
≥0)

+ is a set of representatives of the Wfin-orbits on Z
n. For λ ∈ (Zn

≥0)
+, let

Wλ = {w ∈ Wfin | wλ = λ} and W λ =

{
minimal length representatives

of cosets in Wfin/Wλ

}
.

Let wλ be the longest element of Wλ and let vλ be the maximal element of W λ. As in (1.2), then vλ
is the minimal length element of Wfin such that vλλ is increasing with all entries ≤ 0. Let

ε+λ =
1

χ+(Twλ
)

∑

w∈Wλ

χ+(Tw)Tw (2.30)

so that Twε
+
λ = χ+(Tw)ε

+
λ , for w ∈ Wλ, and the coefficient of Twλ

in ε+λ is 1.
Define ρ, ω, π ∈ (Zn

≥0)
+ by

ρ = (n, n− 1, . . . , 2, 1), ω = (1, 1, . . . , 1), π = (n− 1, . . . , 2, 1, 0). (2.31)

The statement of the following proposition is designed to stress the analogies between the four sym-
metrizers ε+, ε±, ε∓ and ε−. As in Remark (4.1), in practice, there are simplifications since the
stabilizers Wλ+ρ and Wλ+π have order 1 or 2. Specifically,

Wλ+ρ = 1, W λ+ρ = Wfin, χ+(Twλ+ρ
) = 1 and ε+λ+ρ = 1;

if λn = 0 then Wλ+π = {1, sn}, χ+(Twλ+π
) = t

1
2
n and ε+λ+π = Tn + t

− 1
2

n ;

and
if λn 6= 0 then Wλ+π = 1, W λ+π = Wfin, χ+(Twλ+π

) = 1 and ε+λ+π = 1.

Proposition 2.4. Let λ ∈ (Zn
≥0)

+. Then

χ+(Tw0)ε+ = χ+(wλ)



∑

z∈Wλ

κ+vλzηzκ
Y
z


 ε+λ ,

χ+(Tw0)ε± = χ+(wλ+ω)




∑

z∈Wλ+ω

(−1)ℓd(z)κ±vλ+ωz
ηzκ

Y
z


 ε+λ+ω,

χ+(Tw0)ε∓ = χ+(wλ+π)




∑

z∈Wλ+π

(−1)ℓs(z)κ∓vλ+πz
ηzκ

Y
z


 ε+λ+π,

χ+(Tw0)ε− = χ+(wλ+ρ)




∑

z∈Wλ+ρ

(−1)ℓ(z)κ−vλ+ρz
ηzκ

Y
z


 ε+λ+ρ.
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Proof. We will prove the ± case. The proof for the other cases is similar.
Let

Jλ+ω = {α ∈ (S∨)+0,s | α∨ 6∈ Inv(wλ+ω)}

so that Jλ+ω is the complement of Inv(wλ+ω) in S+
0,s. If v ∈ Wλ+ω then vJλ+ω = Jλ+ω, since v

permutes the elements of Jλ+ω.

If z ∈ W λ+ω then κY
−1

dr ηzκ
Y
Jλ+ω

= κ±vλ+ωz
ηzκ

Y
z .

Then

χ+(Tw0)ε± = κY
−1

dr eY±κ
Y
st = κY

−1

dr



∑

w∈Wfin

(−1)ℓd(w)ηw


κYst

= κY
−1

dr




∑

z∈Wλ+ω

∑

v∈Wλ+ω

(−1)ℓd(z)ηzηv


κYst

= κY
−1

dr




∑

z∈Wλ+ω

(−1)ℓd(z)ηz






∑

v∈Wλ+ω

ηv


κYJλ+ω

κYwλ+ω

= κY
−1

dr




∑

z∈Wλ+ω

(−1)ℓd(z)ηz


κYJλ+ω




∑

v∈Wλ+ω

ηv


κYwλ+ω

=




∑

z∈Wλ+ω

(−1)ℓd(z)κ±vλ+ωz
ηzκ

Y
z






∑

v∈Wλ+ω

ηv


κYwλ+ω

=




∑

z∈Wλ+ω

(−1)ℓd(z)κ±vλ+ωz
ηzκ

Y
z


χ+(Twλ+ω

)ε+λ+ω.

Remark 2.5. With ω = (1, 1, . . . , 1) and π = (n − 1, . . . , 2, 1, 0) and vω and vπ as defined in (1.2)
then

vω(i) = −(n− i+ 1) so that Invs(vω) = {εi + εj | i < j} and Invd(vω) = {ε1, . . . , εn}

since, for example, vω(ε1 − εn) = −εn + ε1 = ε1 − εn. Then

vπ(i) =

{
−i, if i 6= n,

n, if i = n,
so that Invs(vπ) = {εi ± εj} and Invd(vπ) = {ε1, . . . , εn−1}.

If λ ∈ (Zn
≥0)

+ then Wλ+ω ⊆ Wω and Wλ+π ⊆ Wπ giving

Invd(vλ+ω) ⊇ Invd(vω) and Invs(vλ+π) ⊇ Invs(vπ).

Thus
Invd(vλ+ω) = {ε1, . . . , εn} and Invs(vλ+π) = {εi ± εj | i < j}.
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3 Electronic Macdonald-Koornwinder polynomials

The electronic Koornwinder polynomials Eµ form a basis of the polynomial ring K[x±1
1 , . . . , x±1

n ]. They
are simultaneous eigenvectors for the Cherednik-Dunkl operators Y1, . . . , Yn. This is in analogy to the
way that, in quantum mechanics, Hermite polynomials are eigenfunctions of a Hamiltonian operator.
In this section we set up the operators Y1, . . . , Yn on the polynomial ring, characterize the electronic
Macdonald polynomials Eµ as eigenvectors, and provide recursive formulas for computing them.

3.1 Operators on polynomials

Let K[x] = K[x±1
1 , . . . , x±1

n ]. Let Zn denote the set of length n sequences µ = (µ1, . . . , µn) of integers.
The ring

K[x] has basis {xµ | µ = (µ1, . . . , µn) ∈ Z
n}, where xµ = xµ1

1 · · · xµn
n .

Define operators ξs0 , ξs1 , . . . , ξsn on K[x±1
1 , . . . , x±1

n ] by

(ξs0f)(x1, . . . , xn) = f(qx−1
1 , x2, . . . , xn),

(ξsif)(x1, . . . , xn) = f(x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xn),

(ξsnf)(x1, . . . , xn) = f(x1, . . . , xn−1, x
−1
n ),

for f ∈ K[x±1
1 , . . . , x±1

n ] and i ∈ {1, . . . , n − 1}. Define operators X1, . . . ,Xn on K[x±1
1 , . . . , x±1

n ] by

Xjf = xjf, for j ∈ {1, . . . , n}. (3.1)

Consider the induced representation

IndH̃HY
(1Y ) = H̃int1Y = K-span{Xµ1

1 · · ·Xµn
n 1Y | µ = (µ1, . . . , µn) ∈ Z

n}

determined by

Tα01Y = t
1
2
0 1Y , and Ti1Y = t

1
21Y , for i ∈ {1, . . . , n}.

Then the map

K[x±1
1 , . . . , x±1

n ] −→ H̃int1Y
xµ1
1 · · · xµn

n 7−→ Xµ1
1 · · ·Xµn

n 1Y
is an H̃int-module isomorphism. (3.2)

We shall often identify K[x] = K[x±1
1 , . . . , x±1

n ] and H̃int1Y and K[X] = K[X±1
1 , . . . ,X±1

n ] via this
isomorphism.

3.2 The operators Tα0 , . . . , Tαn
and Y1, . . . , Yn

Define operators Tα0 , Tα1 , . . . , Tαn by

Tαi
= t

1
2
αi − cXαi

(1− ξsi), for i ∈ {0, 1, . . . , n}. (3.3)

Define
Yj = T−1

αj−1
· · ·T−1

α1
Tα0Tα1 · · · Tαn · · ·Tαj

, for j ∈ {1, . . . , n}.
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Using (2.2) and (2.4),

t
1
2
0 Tα0 = t0 −


(x1 + q

1
2 t

1
2
0 u

− 1
2

0 )(x1 − q
1
2 t

1
2
0 u

1
2
0 )

x21 − q


 (1− ξs0),

t
1
2
nTαn = tn −


(1 + t

1
2
nu

− 1
2

n xn)(1 − t
1
2
nu

1
2
nxn)

1− x2n


 (1− ξsn), (3.4)

t
1
2Tαi

= t−
xi+1 − txi
xi+1 − xi

(1− ξsi), for i ∈ {1, . . . , n− 1}

(see [Nou95, §3] and [Sah99, (13)] and [CGdGW16, (73)]).

3.3 Electronic Macdonald polynomials Eµ

For µ ∈ Z
n let vµ ∈ Wfin be the minimal length signed permutation such that vµµ is weakly increasing

with all entries ≤ 0. The electronic Macdonald polynomials

Eµ(x1, . . . , xn; q, t, t
1
2
0 , u

1
2
0 , t

1
2
n , u

1
2
n ) ∈ K[x±1

1 , . . . , x±1
n ] are indexed by µ = (µ1, . . . , µn) ∈ Z

n

and are defined by the eigenvalue conditions

YjEµ = q−µj t−vµ(j)(t
1
2
0 t

1
2
n t

n)sgn(vµ(j))Eµ, (3.5)

for µ = (µ1, . . . , µn) ∈ Z
n and j ∈ {1, . . . , n}. The normalization of Eµ is such that the coefficient of

xµ in Eµ is 1.
Let K(Y ) be the field of fractions of K(Y ). For µ = (µ1, . . . , µn) ∈ Z

n define homomorphisms
evtµ : K[Y ] → K[Y ] by

evtµ(Yi) = q−µit−vµ(j)(t
1
2
0 t

1
2
n t

n)sgn(vµ(j)), for i ∈ {1, . . . , n}. (3.6)

Extend evtµ to those elements of the field K(Y ) for which the evaluated denominator is nonzero.
By (3.5)

fEµ = evtµ(f)Eµ, for f ∈ K[Y ] and µ ∈ Z
n. (3.7)

3.4 The recursion for the Eµ

Although the eigenvalue conditions together with the normalization completely characterize the Koorn-
winder polynomials Eµ, computing them by solving directly for eigenvectors is not efficient. Fortu-

nately, the operators τ∨i = ηs∨i c
Y
α∨
i
from the algebra H̃loc provide a very nice recursive way of computing

the Eµ. This is analogous to the way that, in Schubert calculus, the Schubert polynomials are con-
structed recursively using divided-difference operators.

Define operators Tα∨
0
, Tα∨

1
, . . . , Tα∨

n
on K[X] by

(Tα∨
0
)−1 = X1Tα1 · · ·Tαn · · ·Tα1 and Tα∨

i
= Tαi

for i ∈ {1, . . . , n}. (3.8)

and define

τ∨i = Tα∨
i
+ (t

− 1
2

α∨
i
− cYα∨

i
) = (Tα∨

i
)−1 + (t

1
2

α∨
i
− cYα∨

i
), for i ∈ {0, 1, . . . , n}. (3.9)
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By (2.16), τ∨i = ηYsic
Y
α∨
i
so that

τ∨i Y
λ∨

= Y s∨i λ
∨

τ∨i , for i ∈ {0, 1, . . . , n}. (3.10)

The group WX (generated by s∨0 , . . . , s
∨
n) acts on Z

n by

s∨0 (µ1, . . . , µn) = (−µ1 + 1, µ2, . . . , µn),

s∨i (µ1, . . . , µn) = (µ1, . . . , µi−1, µi+1, µi, µi+2, . . . , µn), for i ∈ {1, . . . , n − 1}, and

s∨n(µ1, . . . , µn) = (µ1, . . . , µn−1,−µn).

The relation (3.10) is the reason that the electronic Macdonald polynomials Eµ are equivalently defined
by the following recursive relations:

(E0) E(0,...,0) = 1;

(E1) if µ1 ≤ 0 then Es∨0 µ
= tn−1t

1
2
nτ∨0 Eµ;

(E2) if i ∈ {1, . . . , n− 1} and µi > µi+1 then Es∨i µ
= t

1
2 τ∨i Eµ; and

(E3) if µn > 0 then Es∨nµ = t
1
2
nτ∨nEµ.

3.5 The creation formula for Eµ

The recursion of the previous subsection can be packaged nicely as a single formula for creating the
Koornwinder polynomial Eµ. This is the creation formula in (3.11).

Let µ ∈ Z
n and let hµ ∈ WX denote the corresponding translation. Let uµ ∈ WX and vµ ∈ Wfin

be as defined in (1.2), so that

uµ ∈ WX and vµ ∈ Wfin and hµ = uµvµ, with ℓ(hµ) = ℓ(uµ) + ℓ(vµ).

Using the identification of K[x±1
1 , . . . , x±1

n ] with H̃int1Y as in (3.2), the creation formula for Eµ is

Eµ =
1

χ+(Tv−1
µ
)
τ∨uµ

1Y , where τ∨uµ
= τ∨i1 · · · τ

∨
iℓ

(3.11)

if uµ = si1 · · · siℓ is a reduced word for uµ.

Proof. Using

Yi1Y = T−1
αi−1

· · ·T−1
α1

Tα0Tα1 · · ·Tαn · · ·Tαi
1Y = t−

1
2
(i−1)t

1
2
0 t

1
2
(n−1)t

1
2
n t

1
2
(n−i)1Y = t−i(t

1
2
0 t

1
2
n t

n)1Y ,

and h−1
µ ε∨j = h−µε

∨
j = ε∨j − 〈µ,−ε∨j 〉K = ε∨j + µjK gives

Yjτ
∨
uµ
1Y = Y ε∨j τ∨uµ

1Y = Y ε∨j τ∨uµ
1Y = τ∨uµ

Y u−1
µ ε∨j 1Y = τ∨uµ

Y vµh
−1
µ ε∨j 1Y

= τ∨uµ
Y vµ(ε∨j +µjK)

1Y = q−µjτ∨uµ
Y

ε∨
vµ(j)1Y

= q−µjτ∨uµ
Yvµ(j)1Y = q−µj t−vµ(j)(t

1
2
0 t

1
2
n t

n)sgn(vµ(j))τ∨uµ
1Y .

Thus τ∨uµ
1Y is an eigenvector of Yj with eigenvalue q−µj t−vµ(j)(t

1
2
0 t

1
2
n tn)sgn(vµ(j)).
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Using the formulas (3.9) the product τ∨uµ
can be expanded in terms of the elements

{XγTv | γ ∈ Z
n, v ∈ Wfin}.

Since uµ = tµv
−1
µ then the top term in this expansion is XµTv−1

µ
and

XµTv−1
µ
1Y = Xµχ+(Tv−1

µ
)1Y , where χ+(Tv−1

µ
) = t

1
2
ℓs(v

−1
µ )t

1
2
ℓd(v

−1
µ )

n .

Thus multiplying τ∨uµ
1Y by χ+(Tv−1

µ
)−1 makes the coefficient of Xµ equal to 1.

4 Bosonic, Fermionic and Mesonic

The Weyl character formula is the formula that expresses the Schur function (a symmetric polynomial)
as a quotient of two determinants (antisymmetric polynomials). There are Weyl character formulas
in the Koornwinder context as well (see Section 5.6). However, in the Koornwinder context, one finds
that there are four Weyl character formulas, corresponding to the four symmetrizers ε+, ε±, ε∓, ε−
introduced in Section 2.5.

This section sets up the components for Weyl character formulas in the Koornwinder context.
There are four types of symmetrized Koornwinder polynomials: the bosonic (symmetric) Koornwinder
polynomials, the fermionic (antisymmetric) Koornwinder polynomials and two types of mesonic (half
symmetric-half antisymmetric) Koornwinder polynomials.

The denominator in the classical Weyl character formula is the Vandermonde determinant, an an-
tisymmetric polynomial with a magical factorization. In the Koornwinder case the Weyl denominators
also have magical factorizations. These Weyl denominators are presented in Section 4.2.

Every antisymmetric function can be obtained by multiplying a symmetric function by the Weyl
denominators. In [CR22, §4.3] we viewed this correspondence between symmetric functions and anti-
symmetric functions as an analog of the Boson-Fermion correspondence relating the symmetric algebra
realization of Fock space and exterior algebra realization of Fock space (a representation of a Heisen-
berg algebra, see [Kac, §14.10]). In the Koornwinder context there are four spaces: the bosonic
space (symmetric functions), fermionic space (antisymmetrized functions) and two mesonic spaces
(half symmetric-half antisymmetric functions). These four spaces are all isomorphic as vector spaces,
the isomorphisms being given by multiplying by the different Weyl denominators. This structure is
explained Section 4.3.

In Sections 4.4, 4.5 and 4.6, we use the symmetrizers to give formulas for the Poincaré polynomial of
Wfin, for the E-expansions of bosonic, fermionic and mesonic Koornwinder polynomials and formulas
for the principal specializations. These results are Koornwinder analogues of the formulas in [CR22,
Propositions 4,6 and 4.7 and Theorem 5.1]. All of these formulas are given, in an even more general
setting, in [Mac03, (5,5,16), (5,7,8), (5.2.14),(5.3.9)].

4.1 Bosonic, Fermionic and Mesonic Macdonald-Koornwinder polynomials

Let
(Zn

≥0)
+ = {λ = (λ1, . . . , λn) ∈ Z

n | λ1 ≥ · · · ≥ λn ≥ 0}.

For λ ∈ (Zn
≥0)

+, let

Wλ = {v ∈ Wfin | vλ = λ} and Wλ(t, tn) =
∑

v∈Wλ

tℓs(v)tℓd(v)n =
∑

v∈Wλ

χ+(Tv)
2.
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Let ρ, ω, π ∈ (Zn
≥0)

+ be as defined in (2.31). Then, for λ ∈ (Zn
≥0)

+, define the bosonic and fermionic
Macdonald-Koornwinder polynomials are

Pλ =
χ+(Tw0)

Wλ(t, tn)
ε+Eλ and Aλ+ρ =

χ+(Tw0)

Wλ+ρ(t, tn)
ε−Eλ+ρ, (4.1)

and the mesonic Koornwinder polynomials are

A±
λ+ω =

χ+(Tw0)

Wλ+ω(t, tn)
ε±Eλ+ω and A∓

λ+π =
χ+(Tw0)

Wλ+π(t, tn)
ε∓Eλ+π. (4.2)

Remark 4.1. The notation in (4.1) and (4.2) displays the parallelism among the expressions. For
computation it is useful to note that the denominators can be given very explicitly:

Wλ+ρ(t, tn) = 1, Wλ+ω(t, tn) =
∏

i

(1− tmi)

1− t
, Wλ+π(t, tn) =

{
tn + 1, if λn = 0,

1, if λn 6= 0,

where mi is the number of parts of size i in λ = (λ1, . . . , λn). In particular, Wλ+π(t, tn) depends
only on tn and Wλ+ω(t, tn) depends only on t. The factor χ+(Tw0) guarantees that the coefficient
of Xw0λ = X−λ is equal to 1 in Pλ. Similarly, the coefficient of X−(λ+ρ) is equal to 1 in Aλ+ρ, the
coefficient of X−(λ+ω) is equal to 1 in A±

λ+ω and the coefficient of X−(λ+π) is equal to 1 in A∓
λ+π.

4.2 Weyl denominators

Define a±ω , a
∓
π , aρ, A

±
ω , A

∓
π , Aρ ∈ K[X] by

a±ω = x−ω
n∏

i=1

(1− x2i ), A±
ω = x−ω

(
n∏

i=1

(1− t
1
2
nu

1
2
nxi)(1 + t

1
2
nu

− 1
2

n xi)

)
,

a∓π = x−π
∏

1≤i<j≤n

(1− xix
−1
j )(1 − xixj), A∓

π = x−π




∏

1≤i<j≤n

(1− txixj)(1− txix
−1
j )


 ,

aρ = a∓π a
±
ω , Aρ = A∓

πA
±
ω . (4.3)

Then

a±ω = 1
n!e

X
±xω, a∓π = 1

2e
X
∓xπ, aρ = e−x

ρ,

A±
ω =

t
1
2
n(n−1)t

1
2
n

n

[n]!
εX±xω, A∓

π =
t
1
2
n(n−1)t

1
2
n

n

(1 + tn)
εX∓xπ, Aρ = t

1
2
n(n−1)t

1
2
n

n ε−x
ρ,

where

t
1
2
n(n−1)t

1
2
n

n = χ+(Tw0), [n]! =

n∏

i=1

(1− ti)

1− t
= Wω(t, tn), 1 + tn = Wπ(t, tn).

By (2.11),
A±

ω

a±ω
= κXdr,

A∓
π

a∓π
= κXst ,

Aρ

aρ
= κXw0

.

Since

Aρ =
χ+(Tw0)

Wλ+ρ(t, tn)
ε−x

ρ =
χ+(Tw0)

Wλ+ρ(t, tn)
ε−Eρ,

A±
ω =

χ+(Tw0)

Wω(t, tn)
ε±x

ω =
χ+(Tw0)

Wω(t, tn)
ε±Eω, and A∓

π =
χ+(Tw0)

Wπ(t, tn)
ε∓x

π =
χ+(Tw0)

Wπ(t, tn)
ε∓Eπ,

there is no conflict of notation with the mesonic Macdonald polynomials introduced in (4.2).
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4.3 Bosonic, fermionic and mesonic spaces

The polynomial ring K[X] is a module for the action of K[X]Wfin and the structure of K[X] as a
K[X]Wfin-module is of classical importance in the theory of reflection groups. In fact, there are two
commuting actions on K[X], the action of Wfin and the action of K[X]Wfin . The part of this picture
that is captured by the X-symmetrizers can be stated as follows.

Define

K[X]Wfin = {f ∈ K[X] | if w ∈ Wfin then wf = f},

K[X]± = {f ∈ K[X] | if w ∈ Wfin then wf = (−1)ℓd(w)f},

K[X]∓ = {f ∈ K[X] | if w ∈ Wfin then wf = (−1)ℓs(w)f},

K[X]det = {f ∈ K[X] | if w ∈ Wfin then wf = (−1)ℓs(w)+ℓd(w)f}.

Then

eX+K[X] = K[X]Wfin , eX±K[X] = K[X]± = a±ωK[X]Wfin ,

eX−K[X] = K[X]det = aρK[X]Wfin , eX∓K[X] = K[X]∓ = a∓πK[X]Wfin . (4.4)

Now we proceed to a t-analogue of the equalities in (4.4). In this case Hecke algebra Hfin replaces
the finite Weyl group, and the actions of Hfin and K[X]Wfin are commuting actions on K[X]. The part
of this picture captured by the Hecke symmetrizers is the following.

The bosonic, fermionic, and mesonic spaces are

K[X]Bos = {f ∈ K[X] | Tnf = t
1
2
nf and Tif = t

1
2 f for i ∈ {1, . . . , n}},

K[X]Fer = {f ∈ K[X] | Tnf = −t
− 1

2
n f and Tif = −t−

1
2 f for i ∈ {1, . . . , n}},

K[X]Mes± = {f ∈ K[X] | Tnf = −t
− 1

2
n f and Tif = t

1
2 f for i ∈ {1, . . . , n}},

K[X]Mes∓ = {f ∈ K[X] | Tnf = t
1
2
nf and Tif = −t−

1
2 f for i ∈ {1, . . . , n}},

With these definitions, the following proposition establishes t-analogues of the equalities in (4.4). The
Weyl denominators of Section 4.2 are a key part of the structure.

Proposition 4.2. Let ε+, ε±, ε∓, ε− be the symmetrizers defined in (2.27).

K[X]Bos = ε+K[X] = K[X]Wfin , K[X]Fer = ε−K[X] = AρK[X]Wfin ,

K[X]Mes± = ε±K[X] = A±
ωK[X]Wfin , K[X]Mes∓ = ε∓K[X] = A∓

πK[X]Wfin ,

Moreover, with Pλ, A
±
λ+ω, A

∓
λ+π and Aλ+ρ as in (4.1) and (4.2),

{Pλ | λ ∈ (Zn
≥0)

+} is a basis of ε+K[X], {Aλ+ρ | λ ∈ (Zn
≥0)

+} is a basis of ε−K[X],

{A±
λ+ω | λ ∈ (Zn

≥0)
+} is a basis of ε±K[X], {A∓

λ+π | λ ∈ (Zn
≥0)

+} is a basis of ε∓K[X],

Proof. We will give the proof for the ± case. The proofs for the other cases are similar.
Assume f ∈ ε±K[X]. Then there exists g ∈ K[X] such that f = ε±g and

Tnf = Tnε±g = −t
− 1

2
n ε±g = −t

− 1
2

n f and Tif = Tiε±g = t
1
2 ε±g = t

1
2 f,

for i ∈ {1, . . . , n− 1}. So f ∈ K[X]Mes± and ε±K[X] ⊆ K[X]Mes±.
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If f ∈ K[X]Mes± then

f =
χ±(Tw0)

W0(t, t
−1
n )

ε±f =
χ±(Tw0)

W0(t, t
−1
n )

cXdre
X
± cX

−1

st f =
χ±(Tw0)

W0(t, t
−1
n )

A±
ω

a±ω
eX± cX

−1

st f ∈
A±

ω

a±ω
K[X]±.

Since
A±

ω

a±ω
K[X]± =

A±
ω

a±ω
a±ωK[X]Wfin = A±

ωK[X]Wfin then K[X]Mes± ⊆ A±
ωK[X]Wfin .

Assume f ∈ A±
ωK[X]Wfin . Then there exists g ∈ K[X]Wfin such that f = A±

ω g. Then

f = A±
ω g =

(
χ+(Tw0)

Wω(t, tn)
ε±x

ω

)
g = ε±

(
χ+(Tw0)

Wω(t, tn)
xωg

)
∈ ε±K[X].

So A±
ωK[X]Wfin ⊆ ε±K[X]. This completes the proof that K[X]Mes± = ε±K[X] = A±

ωK[X]Wfin .
Define

M±
µ = ε±Eµ for µ ∈ Z

n.

Let i ∈ {1, . . . , n}. If µn = 0 then snµ = µ and TnEµ = t
1
2
nEµ so that

M±
µ = ε±Tα∨

n
Eµ = (−tn)

1
2 ε±Tα∨

n
Eµ = −Mµ, which forces M±

µ = 0 when µn = 0.

If i ∈ {1, . . . , n} and siµ > µ then

M±
siµ = ε±Esiµ = ε±t

1
2 τ∨i Eµ = ε±t

1
2 (Tα∨

i
+ (t−

1
2 − cYα∨

i
)Eµ

= ε±t
1
2 (t

1
2 + t−

1
2 − cYα∨

i
)Eµ = ε±t

1
2 cY−α∨

i
Eµ = evtµ(κ

Y
−α∨

i
)Mµ,

so that M±
µ and M±

siµ are linearly dependent. It follows that

ε±K[X] = K-span{M±
λ | λ ∈ Z

n} = K-span{M±
λ+ω | λ ∈ (Zn

≥0)
+} = K-span{A±

λ+ω | λ ∈ (Zn
≥0)

+}

Since A±
λ+ω has top coefficient x−(λ+ω) (in the DBlex order, see Section 5.3) and the monomials are

linear independent in K[X] then the set {A±
λ+ω | λ ∈ (Zn

≥0)
+} is linearly independent.

4.4 Formulas for the Poincaré polynomial

Recall from (2.28) and (3.6) that the Poincaré polynomial for Wfin is

W0(t, tn) =
∑

w∈Wfin

χ+(Tw)
2 and evt0(Yi) = tn−it

1
2
0 t

1
2
n

defines the evaluation homomorphism evt0 : K[Y ] → K. The following Proposition gives four ways
of looking at the Poincaré polynomial: as a sum, as a product, as an evaluation of κYw0

, and as a

symmetrization of κX
−1

w0
.

Proposition 4.3. The group Wfin acts on K[X] as in (2.14). Let w0 denote the longest element of
Wfin and let κYw0

and κX
−1

w0
be the noramlized c-functions given in (2.12) and (2.13). Then

W0(t, tn) =

n∏

i=1

(1− ti)(1 + tnt
i−1)

(1− t)
= evt0(κ

Y
w0
) =

∑

w∈Wfin

w(κX
−1

w0
).
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Proof. Since χ+(Tw)
2 = tℓs(w)t

ℓd(w)
n then

χ+(Tw0)ε+1Y =
∑

w∈Wfin

χ+(Tw)Tw1Y =
∑

w∈Wfin

(χ+(Tw))
21Y = W0(t, tn)1Y .

Using the first formula in Proposition 2.3,

χ+(Tw0)ε+1Y = eX+κX
−1

w0
1Y =

∑

w∈Wfin

ξwκ
X−1

w0
1Y =

∑

w∈Wfin

w(κX
−1

w0
).

Using the second formula in Proposition 2.3, ε+1Y = eY+κ
Y
w0
1Y and

χ+(Tw0)ε+1Y =



∑

w∈Wfin

ηw


κYw0

1Y = evt0
(
κYw0

)

1 +

∑

w∈Wfin,w 6=1

ηw


1Y

= evt0
(
κYw0

)
(1 + 0)1Y = evt0

(
κYw0

)
1Y .

Finally,

evt0
(
κYw0

)
= evt0



∏

i<j

(1− tYiY
−1
j )(1− tYiYj)

(1− YiY
−1
j )(1− YiYj)


 evt0




n∏

i=1

(1− t
1
2
n t

1
2
0 Yi)(1 + t

1
2
n t

− 1
2

0 Yi)

(1− Y 2
i )




=



∏

i<j

(1− ttn−it
1
2
0 t

1
2
n t−(n−j)t

− 1
2

n t
− 1

2
0 )(1− ttn−it

1
2
0 t

1
2
n tn−jt

1
2
0 t

1
2
n )

(1− tn−it
1
2
n t

1
2
0 t

−(n−j)t
− 1

2
n t

− 1
2

0 )(1− tn−it
1
2
n t

1
2
0 t

n−jt
1
2
0 t

1
2
n )







n∏

i=1

(1− t
1
2
n t

1
2
0 t

1
2
0 t

1
2
n tn−i)(1 + t

1
2
n t

− 1
2

0 t
1
2
0 t

1
2
n tn−i)

(1− t0tnt2(n−i))




=



∏

i<j

(1− tj−i+1)(1− t2n−j−i+1tnt0)

(1− tj−i)(1− t2n−j−itnt0)



(

n∏

i=1

(1− tnt0t
n−i)(1 + tnt

n−i)

(1− t0tnt2(n−i))

)

=




n∏

j=2

(1− tj)(1− t2n−jtnt0)

(1− t)(1− t2(n−j)+1tnt0)



(

n∏

i=1

(1− tnt0t
n−i)(1 + tnt

n−i)

(1− t0tnt2(n−i))

)

=

(
n∏

i=1

(1− ti)(1 + tnt
i)

(1− t)

)


n∏

j=2

(1− t2n−jtnt0)

(1− t2(n−j)+1tnt0)



(

n∏

i=1

(1− tnt0t
n−i)

(1− t0tnt2(n−i))

)

=

(
n∏

i=1

(1− ti)(1 + tnt
i−1)

(1− t)

)(
2n∏

i=1

(1− ti−1tnt0)

(1− ti−1tnt0)

)
=

n∏

i=1

(1− ti)(1 + tnt
i−1)

(1− t)
.

4.5 E-expansions

The following Proposition uses the formulas for symmetrizers in terms of c-functions from Proposi-
tion 2.4 to give explicit expansion of the bosonic, fermionic and mesonic Koornwinder polynomials
in terms of the Eµ. The coefficients in these expansions are evaluations of c-functions. This is an
example of how the c-functions (which live in the field of fractions) appear in the structure even when
doing expansions of polynomials that live in K[x±1

1 , . . . , x±1
n ].
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Proposition 4.4. (E-expansion formulas) Let λ ∈ (Zn
≥0)

+ and let Pλ, A
±
λ+ω, A

∓
λ+π and Aλ+ρ be as

defined in (4.1) and (4.2). Let evtµ be the evaluation homomorphisms defined in (3.6) and let κΞvµ be
the normalized c-functions defined in (2.10) and (1.2). Then

Pλ =
∑

µ∈Wλ

evtµ(κ
+
vµ)Eµ, A±

λ+ω =
∑

µ∈W (λ+ω)

(−1)ℓd(vµ)evtµ(κ
±
vµ)Eµ,

Aλ+ρ =
∑

µ∈W (λ+ρ)

(−1)ℓ(vµ)evtµ(κ
−
vµ)Eµ, A∓

λ+π =
∑

µ∈W (λ+π)

(−1)ℓs(vµ)evtµ(κ
∓
vµ)Eµ.

Proof. Let us do the case A±
λ+ω. The other cases are similar.

Since τ∨i = ηYsic
Y
α∨
i
and t

1
2 τ∨i Eµ = Es∨i µ

then

Es∨i µ
= t

1
2 τ∨i Eµ = t

1
2 ηYsic

Y
α∨
i
Eµ = ηYsiκ

Y
αi
Eµ = κY

−1

αi
ηYsiEµ.

If z ∈ W λ+ω then

Ez(λ+ω) = ηsi1κ
Y
αi1

· · · ηsiℓκ
Y
αiℓ

Eλ+ω = ηzκ
Y
z Eλ+ω = κY

−1

z−1 ηzEλ+ω.

If w ∈ Wλ+ω then

TwEλ+ω = χ+(Tw)Eλ+ω (in the same way that Tw1Y = χ+(Tw)1Y for w ∈ Wfin).

This gives that

ε+λ+ωEλ+ω =
1

χ+(Twλ+ω
)

∑

w∈Wλ+ω

χ+(Tw)
2Eλ+ω =

1

χ+(Twλ+ω
)
Wλ+ω(t, tn)Eλ+ω.

Using Proposition (2.4) gives

A±
λ+ω =

χ+(Tw0)

Wλ+ω(t, tn)
ε±Eλ+ω =

1

Wλ+ω(t, tn)




∑

v∈Wλ+ω

(−1)ℓd(z)κ±vλ+ωz
ηYz κ

Y
z


χ+(Twλ+ω

)ε+λ+ωEλ+ω

=




∑

v∈Wλ+ω

(−1)ℓd(z)κ±vλ+ωz
ηYz κ

Y
z


Eλ+ω =

∑

v∈Wλ+ω

(−1)ℓd(z)κ±vλ+ωz
Ez(λ+ω)

=
∑

z∈Wfin

(−1)ℓd(z)evtz(λ+ω)(κ
±
vλ+ωz

)Ez(λ+ω).

4.6 Principal specializations

One of the most pleasing combinatorial miracles in Lie theory is that principal specializations of Schur
functions and Weyl characters factor as products (see [Kac, §10.9] and [Mac, Ch. I §3 Ex. 1]). This
feature extends to Macdonald-Koornwinder polynomials, and the result in this subsection shows that
the principal specializations of Macdonald-Koornwinder polynomials are evaluations of c-functions
which come naturally out of the recursive construction of the electronic Macdonald polynomial Eµ.

Define ring homomorphisms evt0 : K[Y ] → K and evt
−1

0 : K[Y ] → K by

evt0(Yi) = tn−it
1
2
0 t

1
2
n and evt0(Y

−1
i ) = t−(n−i)t

− 1
2

0 t
− 1

2
n , for i ∈ {1, . . . , n}.
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Theorem 4.5. Let µ, λ ∈ Z
n with λ1 ≥ · · · ≥ λn ≥ 0. Let uµ and hλ be as defined in (1.2) and the

normalized c-functions κY
−1

uµ
and κY

−1

hλ
as in (2.9). Let

a1 = t−(n−1)(t0tn)
− 1

2 , a2 = t−(n−2)(t0tn)
− 1

2 , . . . , an = (t0tn)
− 1

2 .

Then

Eµ(a1, . . . , an; q, t, t
1
2
0 , u

1
2
0 , t

1
2
n , u

1
2
n ) =

1

χ+(Tv−1
µ
)
evt0(c

Y −1

uµ
) and

Pλ(a1, . . . , an; q, t, t
1
2
0 , u

1
2
0 , t

1
2
n , u

1
2
n ) = evt

−1

0 (cY
−1

hλ
).

Proof. For this proof use the realization of the polynomial representation K[X] as an induced module

H̃1Y via the H̃-module isomorphism of (3.2). Let 1X be a formal symbol which satisfies 1XTj = t
1
21X

and 1XT∨
0 = t

1
2
0 1X . Using X1 = (T∨

0 )
−1T−1

1 · · ·T−1
n · · · T−1

1 and Xi+1 = TiXiTi gives

1XXi = t−(n−1)t
− 1

2
n t

− 1
2

0 ti−1, for i ∈ {1, . . . , n}.

Thus, if µ ∈ Z
n then

1XEµ(x1, . . . , xn; q, t, t
1
2
0 , u

1
2
0 , t

1
2
n , u

1
2
n ) = 1XEµ(a1, . . . , an; q, t, t

1
2
0 , u

1
2
0 , t

1
2
n , u

1
2
n ).

For i ∈ {0, 1, . . . , n}

1Xτ∨i = 1X

(
Tα∨

i
+ (cY

−1

α∨
i

− t
1
2 )
)
= 1X

(
t
1
2 + (cY

−1

α∨
i

− t
1
2 )
)
= 1XcY

−1

α∨
i

.

By (3.7),

cY
−1

α∨
i

1Y = evt0(c
Y −1

α∨
i

)1Y .

If w ∈ W and ℓ(siw) > ℓ(w) then

1Xτ∨i τ
∨
w1Y = 1XcY

−1

α∨
i

τ∨w1Y = 1Xτ∨wc
Y −1

w−1α∨
i
1Y = evt0(c

Y −1

w−1α∨
i
)1Xτ∨w1Y .

This is the induction step giving that if w ∈ W and w = si1 · · · siℓ is a reduced word for w then

1Xτ∨w1Y = 1Xτ∨i1 · · · τ
∨
iℓ
1Y = 1Xevt0(c

Y −1

w )1Y = evt0(c
Y −1

w )1X1Y .

Thus

1XEµ1Y =
1

χ+(Tv−1
µ
)
1Xτ∨uµ

1Y =
1

χ+(Tv−1
µ
)
evt0(c

Y −1

uµ
)1X1Y .

Using 1Xε+ = 1
χ+(Tw0 )

W0(t, tn)1X from (2.29) gives

Pλ(a1, . . . , an; q, t, t
1
2
0 , u

1
2
0 , t

1
2
n , u

1
2
n )1X1Y = 1XPλ1Y = 1X

χ+(Tw0)

Wλ(t, tn)
ε+Eλ1Y

=
W0(t, tn)

Wλ(t, tn)
1XEλ1Y =

1

χ+(Tv−1
λ
)

W0(t, tn)

Wλ(t, tn)
evt0(c

Y −1

uλ
)1X1Y .

Let
wλ ∈ Wfin be the longest element of Wλ = {v ∈ Wfin | vλ = λ}.
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Then by Proposition 4.3

v−1
λ = (w0wλ)

−1 = wλw0 and Wλ(t, tn) = evt0(κ
Y
wλ

) = evt
−1

0 (κY
−1

wλ
).

Since hλ = uλvλ then uλ = hλv
−1
λ = v−1

λ hvλλ = v−1
λ hvλλ = v−1

λ hw0λ. Using this and evt0(Yi) =

evt
−1

0 (Y −1
i ) = evt

−1

0 (Y−i) = evt
−1

0 (Yw0(i)) gives

evt0(c
Y −1

uλ
) = evt

−1

0 (v−1
λ cY

−1

uλ
).

Therefore

1

χ+(Tv−1
λ
)

W0(t, tn)

Wλ(t, tn)
evt0(c

Y −1

uλ
) =

χ+(Twλ
)

χ+(Tw0)
evt

−1

0

(
κY

−1

w0

κY −1

wλ

)
evt0(c

Y −1

uλ
) = evt

−1

0

(
cY

−1

w0

cY −1

wλ

)
evt

−1

0 (v−1
λ cY

−1

uλ
)

= evt
−1

0 (cY
−1

vλ
)evt

−1

0 (v−1
λ cY

−1

uλ
) = evt

−1

0 (cY
−1

uλvλ
) = evt

−1

0 (cY
−1

hλ
),

which completes the proof of the second statement.

Remark 4.6. The principal specializations of the fermionic and mesonic Macdonald polynomials are

Aλ+ρ(a1, . . . , an; q, t, t
1
2
0 , u

1
2
0 , t

1
2
n , u

1
2
n ) = 0,

A±
λ+ω(a1, . . . , an; q, t, t

1
2
0 , u

1
2
0 , t

1
2
n , u

1
2
n ) = 0, and A∓

λ+π(a1, . . . , an; q, t, t
1
2
0 , u

1
2
0 , t

1
2
n , u

1
2
n ) = 0.

To establish this for A±
λ+ω, use 1Xε± = 0 to get

A±
λ+ω(a1, . . . , an; q, t, t

1
2
0 , u

1
2
0 , t

1
2
n , u

1
2
n )1X1Y = 1XA±

λ+ω1Y =
χ+(Tw0)

Wλ+ω(t, tn)
1Xε±Eλ+ω1Y = 0.

The proof for the other cases is similar.

5 Orthogonality

In this section we study the Koornwinder polynomials as a family of orthogonal polynomials for a
specific inner product. The inner product ( , )+ is defined via multiplication by a kernel and taking
the constant term (for those with an analytic bent, taking the constant term is an integral and the
kernel is what defines the measure for the integral). The Macdonald-Koornwinder inner product is
defined in Sections 5.1 and 5.2. The kernel is a huge product of c-functions, one for each positive root
in the affine root system of type CCn.

The Koornwinder polynomials are characterized by orthogonality with respect to this inner product
and a triangular expansion in terms of monomials. In order to use the Hecke algebra as a tool in the
inner product setting it is crucial to establish that the adjoints of operators that come from the Hecke
algebra are tractable. This is done in Section 5.4. In particular, we find that the symmetrizers are
self adjoint operators.

The proof of the Weyl character formulas and the norm formulas for Koornwinder polynomials rely
on a shift of parameters coming from multiplying by the Weyl denominators. These going up a level
formulas, derived in Section 5.5, are the key to establishing recursive relations for computing norms.
The recursive relations are derived in Section 5.7 and the norm formula for (Pλ, Pλ)+ is established in
Section 5.9.

In the same way that there are four symmetrizers, there are four going up a level formulas, four
Weyl character formulas, four types of recursion relations. In each case, one of the four formulas is
usually a triviality, but we have included these trivial formulas in our exposition each time in order
to highlight the underlying symmetry of the structures. In the end, the various formulas combine and
complement each other to provide the inductive structure for computing norms in terms of c-functions.
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5.1 The kernel ∆+
CC

For an affine root β, define

κXβ = t
1
2
β c

X
β =

(1− t
1
2
βu

1
2
βX

β)(1 + t
1
2
βu

− 1
2

β Xβ)

(1−X2β)
. (5.1)

More specifically, if i, j ∈ {1, . . . , n} with i < j and r ∈ Z≥0 then

κXεi−εj+(r+1)δ =
1− tqr+1XiX

−1
j

1− qr+1XiX
−1
j

, κXεi+(r+1)δ =
(1− qr+1t

1
2
nu

1
2
nXi)(1 + qr+1t

1
2
nu

− 1
2

n Xi)

1− q2r+2X2
i

,

κXεi+εj+(r+1)δ =
1− tqr+1XiXj

1− qr+1XiXj
, κX

εi+(r+ 1
2
)δ

=
(1− qr+

1
2 t

1
2
0 u

1
2
0 Xi)(1 + qr+

1
2 t

1
2
0 u

− 1
2

0 Xi)

1− q2r+1X2
i

.

Let S+ be the set of positive roots for the affine root system so that

S+ = S+
g,+ ∪ S+

g,− ∪ S+
s,+ ∪ S+

s,− ∪ S+
d,+ ∪ S+

d,− ∪ S+
0,s ∪ S+

0,d,

where

S+
s,+ =

{
(εi − εj) + (r + 1)δ,
(εi + εj) + (r + 1)δ

∣∣∣ i, j ∈ {1, . . . , n},
i < j and r ∈ Z≥0

}
,

S+
s,− =

{
−(εi − εj) + (r + 1)δ,
−(εi + εj) + (r + 1)δ

∣∣∣ i, j ∈ {1, . . . , n},
i < j and r ∈ Z≥0

}
,

S+
g,+ =

{
εi + (r + 1

2)δ
∣∣∣ i ∈ {1, . . . , n}

r ∈ Z≥0

}
, S+

d,+ =

{
εi + (r + 1)δ

∣∣∣ i ∈ {1, . . . , n}
r ∈ Z≥0

}
,

S+
g,− =

{
−εi + (r + 1

2 )δ
∣∣∣ i ∈ {1, . . . , n}

r ∈ Z≥0

}
, S+

d,− =

{
−εi + (r + 1)δ

∣∣∣ i ∈ {1, . . . , n}
r ∈ Z≥0

}
,

S+
0,s = {εi ± εj | i, j ∈ {1, . . . , n} with i < j}, S+

0,d = {εi | i ∈ {1, . . . , n}}.

Then define
∆+

CC =
∏

β∈S+

κXβ . (5.2)

and

∆X
g =

∏

β∈S+
g,+

κXβ , ∆X
s =

∏

β∈S+
s,+

κXβ , ∆X
d =

∏

β∈S+
d,+

κXβ , ∆X
0,s =

∏

β∈S+
0,s

κXβ ,

∆X−1

g =
∏

β∈S+
g,−

κXβ , ∆X−1

s =
∏

β∈S+
s,−

κXβ , ∆X−1

d =
∏

β∈S+
d,−

κXβ , ∆X
0,d =

∏

β∈S+
0,d

κXβ ,

so that
∆+

CC = ∆X
g ∆X−1

g ∆X
s ∆X−1

s ∆X
d ∆X−1

d ∆X
0,s∆

X
0,d.

Remark 5.1. In terms of the Askey-Wilson parameters a, b, c, d (see (0.1)), the expression ∆+
CC used

to define the inner product is
∆+

CC = ∆(1)∆(2),
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where

∆(2) =
∏

1≤i<j≤n

(txix
−1
j ; q)∞(txixj; q)∞(tqx−1

i xj; q)∞(tqx−1
i x−1

j ; q)∞

(xix
−1
j ; q)∞(xixj; q)∞(qx−1

i xj ; q)∞(qx−1
i x−1

j ; q)∞

and

∆(1) =

n∏

i=1

(cxi; q)∞(qcx−1
i ; q)∞(dxi; q)∞(qdx−1

i ; q)∞(axi; q)∞(ax−1
i ; q)∞(bxi; q)∞(bx−1

i ; q)∞

(x2i ; q)∞(qx−2
i ; q)∞

.

This is verified by noting that ∆(2) = ∆X
s ∆X

0,s∆
X−1

s , and that ∆(1) = ∆X
g ∆X−1

g ∆X
d ∆X−1

d ∆X
0,d since

n∏

i=1

∏

r∈Z≥0

(cxi; q)∞(dxi; q)∞
(x2i ; q

2)∞
=

n∏

i=1

∏

r∈Z≥0

(1− t
1
2
nu

1
2
n qrxi)(1 + t

1
2
nu

− 1
2

n qrxi)

(1− q2rx2i )
= ∆X

d ∆X
0,d,

n∏

i=1

∏

r∈Z≥0

(qcx−1
i ; q)∞(qdx−1

i ; q)∞

(q2x−2
i ; q2)∞

=

n∏

i=1

∏

r∈Z≥0

(1− t
1
2
nu

1
2
n qr+1x−1

i )(1 + t
1
2
nu

− 1
2

n qr+1x−1
i )

(1− q2r+2x−2
i )

= ∆X−1

d ,

n∏

i=1

∏

r∈Z≥0

(axi; q)∞(bxi; q)∞
(qxi; q2)∞

=
n∏

i=1

∏

r∈Z≥0

(1− t
1
2
0 u

1
2
0 q

r+ 1
2xi)(1 + t

1
2
0 u

− 1
2

0 qr+
1
2xi)

(1− q2r+1x2i )
= ∆X

g ,

n∏

i=1

∏

r∈Z≥0

(ax−1
i ; q)∞(bx−1

i ; q)∞

(qx−2
i ; q2)∞

=

n∏

i=1

∏

r∈Z≥0

(1− t
1
2
0 u

1
2
0 q

r+ 1
2x−1

i )(1 + t
1
2
0 u

− 1
2

0 qr+
1
2x−1

i )

(1− q2r+1x−2
i )

= ∆X−1

g .

5.2 Definition of the inner product

Let K[x] = K[x±1
1 , . . . , x±1

n ]. Define an involution : K[x] → K[x] by

f(x1, . . . , xn; q, t, t
1
2
0 , u

1
2
0 , t

1
2
n , u

1
2
n ) = f(x−1

1 , . . . , x−1
n ; q−1, t−1, t

− 1
2

0 , u
− 1

2
0 , t

− 1
2

n , u
− 1

2
n ). (5.3)

Let ∆+
CC be as defined in (5.2). Define a scalar product ( , )+ : K[x]×K[x] → K by

(f1, f2)+ = ct

(
f1f2

∆+
CC

)
, where ct(f) = (constant term in f), for f ∈ K[x]. (5.4)

5.3 The inner product characterization of Eµ and Pλ

Define
(Zn)+ = {(γ1, . . . , γn) ∈ Z

n | γ1 ≥ · · · ≥ γn ≥ 0}.

The elements of (Zn)+ are partially ordered by the dominance order: For λ, µ ∈ (Zn
≥0)

+,

λ < µ if λ1 + · · · + λi ≤ µ1 + · · · + µi, for i ∈ {1, . . . , n}.

The elements of Zn are partially ordered by the DBlex order: For λ, µ ∈ Z
n,

λ ≤ µ if
λ+ < µ+ in dominance order

or
λ+ = µ+ and zλ < zµ in Bruhat order on Wfin,
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where λ+ ∈ Wfinλ ∩ (Zn
≥0)

+ and zλ is the minimal length element of Wfin so that λ = zλλ
+.

For µ = (µ1, . . . , µn) ∈ Z
n write xµ = xµ1

1 · · · xµn
n and for γ ∈ (Zn)+, define the monomial

symmetric function mγ by

mγ =
∑

µ∈Wfinγ

xµ, where the sum is over all elements of the orbit Wfin-orbit of γ.

With these definitions we have the following characterizations of the Eµ and the Pλ. The proofs of
Propositions 5.2 and 5.3 are exactly as in [Mac03, (5.2.1) and (5.3.1)] and [CR22, Prop. 6.2 and 6.3].

Proposition 5.2. Let µ ∈ Z
n. The electronic Macdonald polynomial Eµ is the unique element of

K[x±1
1 , . . . , x±1

n ] such that

(a) Eµ = xµ + (lower terms);

(b) If ν ∈ Zn and ν < µ then (Eµ, x
ν)+ = 0.

Proposition 5.3. Let λ ∈ (Zn)+. The bosonic Macdonald polynomial Pλ is the unique element of
K[x±1

1 , . . . , x±1
n ]Wfin such that

(a) Pλ = mλ + (lower terms);

(b) If γ ∈ (Zn)+ and γ < λ then (Pλ,mγ)+ = 0.

5.4 Adjoints and orthogonality

For a linear operator M : K[X] → K[X], the adjoint of M is the linear operator M∗ : K[X] → K[X]
determined by

(Mf1, f2)+ = (f1,M
∗f2)+ , for f1, f2 ∈ K[X],

where the inner product on K[X] is as defined in (5.4).
The following Proposition computes the adjoints of operators on K[X] which come from H̃loc.

Proposition 5.4. Let i ∈ {1, . . . , n} and k ∈ {0, 1, . . . , n}. Then, as operators on C[x±1
1 , . . . , x±1

n ],

x∗i = x−1
i , T ∗

αk
= T−1

αk
, Y ∗

i = Y −1
i , ξ∗sk =

κXαk

κX−αk

ξsk .

Proof. Let J =
1

∆+
CC

.

◦ Adjoint of multiplication by xi:

(xif, g)+ = ct(xif · g · J) = ct(f · x−1
i g · J) =

(
f, x−1

i g
)
+
.

◦ Adjoint of ξsk : With κβ as in (5.1),

(
κXβ
)∗

= κXβ =
(1− t

− 1
2

β u
− 1

2
β X−β)(1 + t

− 1
2

β u
1
2
βX

−β)

(1−X−2β)

=
t
− 1

2
β u

− 1
2

β X−βt
− 1

2
β u

1
2
βX

−β(1− t
1
2
βu

1
2
βX

β)(1 + t
1
2
βu

− 1
2

β Xβ)

X−2β(1−X2β)
= t−1

β κβ.
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Since skS
+ = (S+ − {αk}) ∪ {−αk}, we have

ξsk∆
+
CC = ξsk



∏

β∈S+

κβ


 =




∏

β∈S+−{αk}

κβ


κ−αk

= ∆+
CC

κ−αk

καk

. (5.5)

Using ct(ξskg) = ct(g) and the formula from (5.5),

(ξskf, g)+ = ct ((ξskf)gJ) = ct (ξsk(f(ξsk(gJ)))) = ct (f(ξsk(gJ)))

= ct

(
f(ξskg)J

καk

κ−αk

)
= ct

(
f

καk

κ−αk

(ξskg)J

)
=

(
f,

καk

κ−αk

(ξskg)

)

+

.

◦ Adjoint of Tαk
: Using the formula for Tαk

in (2.16) and recalling that ( , )+ is sesquilinear with
respect to the involution : K → K,

(Tαk
)∗ =

(
−t

− 1
2

αk
+ (1 + ξsk)c

X−1

αk

)∗

=

(
−t

− 1
2

αk
+ (1 + ξsk)t

− 1
2

αk
κ−αk

)∗

= −t
1
2
αk

+ t
1
2
αk
κ−αk

(1 + ξ∗sk)

= −t
1
2
αk

+ t
1
2
αk
t−1
αk

κ−αk

(
1 +

καk

κ−αk

ξsk

)
= −t

1
2
αk

+ t
− 1

2
αk

(κ−αk
+ καk

ξsk)

= −t
1
2
αk

+ (1 + ξsk)c
X
−αk

= T−1
αk

.

◦ Adjoint of Yj:

Y ∗
1 = (T0T1 · · ·Tn · · ·T1)

∗ = T−1
1 · · ·T−1

n · · ·T−1
1 T−1

0 = (T0T1 · · · Tn · · ·T1)
−1 = Y −1

1 ,

and if j ∈ {2, . . . , n} then

Y ∗
j = (T−1

j−1Yj−1T
−1
j−1)

∗ = Tj−1Y
−1
j−1Tj−1 = (T−1

j−1Yj−1T
−1
j−1)

−1 = Y −1
j .

Since T−1
j ε∗± = T ∗

j ε
∗
± = (ε±Tj)

∗ for j ∈ {1, . . . , n} then T−1
n ε∗± = (−tn)

1
2 ε∗± and T−1

i ε∗± = t−
1
2 ε∗±

for i ∈ {1, . . . , n− 1}. Since

ε∗± = T−1
w0

+ (lower terms) = Tw0 + (lower terms) then ε∗± = ε±.

A similar argument applies to the other symmetrizers to show that

ε∗Ξ = εΞ, for Ξ ∈ {+,±,∓,−}. (5.6)

The relations Y ∗
i = Y −1

i in combination with the knowledge of the eigenvalues for the action of
the Yi on the Eµ give the following orthogonality relations for Macdonald polynomials. The proof is
exactly as in [Mac03, (5.7.11)] and [CR22, Prop, 7.2].

Proposition 5.5. Let (Zn
≥0)

+ = {λ = (λ1, . . . , λn) | λ1 ≥ · · · ≥ λn ≥ 0} and, for λ ∈ (Zn
≥0)

+, let Pλ,

A±
λ+ω, A

∓
λ+π and Aλ+ρ be as defined in (4.1) and (4.2).

(a) Let λ, µ ∈ Z
n. If µ 6= λ then (Eλ, Eµ)+ = 0.

(b) Let λ, µ ∈ (Zn
≥0)

+. If µ 6= λ then

(Pλ, Pµ)+ = 0, (A±
λ+ω, A

±
µ+ω)+ = 0,

(Aλ+ρ, Aµ+ρ)+ = 0, (A∓
λ+π, A

∓
µ+π)+ = 0.
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5.5 Going up a level

We describe four slightly different collections of 5 parameters by the brief notations

t+ = (t, t
1
2
0 , u

1
2
0 , t

1
2
n , u

1
2
n ), t± = (t, t

1
2
0 , u

1
2
0 , qt

1
2
n , u

1
2
n ),

t− = (qt, t
1
2
0 , u

1
2
0 , qt

1
2
n , u

1
2
n ), t∓ = (qt, t

1
2
0 , u

1
2
0 , t

1
2
n , u

1
2
n ),

and define

(f, g)+ = (f, g)q,t+ (f, g)± = (f, g)q,t±

(f, g)− = (f, g)q,t− (f, g)∓ = (f, g)q,t∓ .

The following Proposition shows that the norms of polynomials in the fermionic, bosonic and
mesonic spaces can be computed as norms of symmetric polynomials, but with shifted parameters.
Alternatively, in the world of norms for symmetric polynomials, the shifted parameters are a residue
arising from the effect of multiplying by the Weyl denominators Aρ, A

±
ω , A

∓
π .

Proposition 5.6. (Going up a level) Let f, g ∈ K[X]Wfin so that f and g are symmetric functions. If
P0 = 1 and A±

ω , A
∓
π and Aρ are the Weyl denominators defined in (4.3) then

(f, g)+ =
W0(t, tn)

W0(t, tn)
(P0f, P0g)+, (f, g)± =

W0(t, qtn)

W0(t, t
−1
n )

(A±
ω f,A

±
ω g)+,

(f, g)− =
W0(qt, qtn)

W0(t−1, t−1
n )

(Aρf,Aρg)+, (f, g)∓ =
W0(qt, tn)

W0(t−1, tn)
(A∓

π f,A
∓
π g)+.

Proof. Let t± be the 5-tuple of parameters t± = (t, t
1
2
0 , u

1
2
0 , qt

1
2
n , u

1
2
n ) and let

∆±
CC = ∆X

g (t
1
2
0 , u

1
2
0 )∆

X−1

g (t
1
2
0 , u

1
2
0 )∆

X
s (t)∆X−1

s (t)∆X
d (qt

1
2
n , u

1
2
n )∆

X−1

d (qt
1
2
n , u

1
2
n )∆

X
0,s(t)∆

X
0,d(qt

1
2
n , u

1
2
n ).

Since

∆X
d (t

1
2
n , u

1
2
n ) = ∆X

d (qt
1
2
n , u

1
2
n ) ·



∏

1≤i≤n

(1− qt
1
2
nu

1
2
nxi)(1 + qt

1
2
nu

− 1
2

n xi)




= ∆X
d (qt

1
2
n , u

1
2
n ) · x

ωA±
ω (x, qt

1
2
n , u

1
2
n )

∆X
0,d(t

1
2
n , u

1
2
n ) = ∆X

0,d(qt
1
2
n , u

1
2
n ) ·



∏

1≤i≤n

(1− t
1
2
nu

1
2
nxi)(1 + t

1
2
nu

− 1
2

n xi)

(1− qt
1
2
nu

1
2
nxi)(1 + qt

1
2
nu

− 1
2

n xi)




= ∆X
0,d(qt

1
2
n , u

1
2
n )

xωA±
ω (x, t

1
2
n , u

1
2
n )

xωA±
ω (x, qt

1
2
n , u

1
2
n )

∆X−1

d (t
1
2
n , u

1
2
n ) = ∆X−1

d (qt
1
2
n , u

1
2
n ) ·



∏

1≤i≤n

(1− qt
1
2
nu

1
2
nx

−1
i )(1 + qt

1
2
nu

− 1
2

n x−1
i )




= ∆X−1

d (qt
1
2
n , u

1
2
n )x

−ωA±
ω (x

−1, qt
1
2
n , u

1
2
n )

then

∆+
CC

∆±
CC

= A±
ω (x, t

1
2
n , u

1
2
n )A

±
ω (x

−1, qt
1
2
n , u

1
2
n ).
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Using Proposition 4.3 and that Card(Wfin) = 2nn! gives that for h ∈ K[x±1
1 , . . . , x±1

n ]Wfin ,

ct(hκX
−1

w0
) =

1

2nn!
ct



∑

w∈Wfin

w(hκX
−1

w0
)


 =

1

2nn!
ct


h

∑

w∈Wfin

w(κX
−1

w0
)


 =

W0(t, tn)

2nn!
ct(h).

Let ∆X
∞ = ∆X

g ∆X
s ∆X

d and ∆X
0 = ∆0,s(t)∆

X
0,d so that

∆+
CC = ∆X

∞∆X−1

∞ ∆X
0 and ∆X

0 =
A±

ω (x, t
1
2
nu

1
2
n )

a±ω (x)

A∓
π (x, t)

a∓π (x)
.

Then

(A±
ω f,A

±
ω g)+ = ct

(
fg

∆+
CC

A±
ω (x, t

1
2
n , u

1
2
n )A

±
ω (x, t

1
2
n , u

1
2
n )

)

= ct


 fg

∆X
∞∆X−1

∞

A±
ω (x, t

1
2
n , u

1
2
n )

∆X
0

A±
ω (x

−1, t
− 1

2
n , u

− 1
2

n )




= ct

(
fg

∆X
∞∆X−1

∞

a±ω (x)a
∓
π (x)

A∓
π (x, t)

A±
ω (x

−1, t
− 1

2
n , u

− 1
2

n )

)

= ct


 fg

∆X
∞∆X−1

∞

a±ω (x)a
∓
π (x)a

±
ω (x

−1)a∓π (x
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A∓
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∓
π (x−1, t)

·
A±

ω (x
−1, t
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2

n , u
− 1

2
n )A∓

π (x
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a±ω (x−1)a∓π (x−1)
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fg

∆X
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∞
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∓
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A∓
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∓
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w0
(t, t

− 1
2

n , u
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∓
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and
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∆±
CC

)
= ct

(
fg

∆+
CC

A±
ω (x, t

1
2
n , u

1
2
n )A

±
ω (x

−1, qt
1
2
n , u

1
2
n )

)

= ct


 fg

∆X
∞∆X−1

∞

A±
ω (x, t

1
2
n , u

1
2
n )

∆X
0

A±
ω (x

−1, qt
1
2
n , u

1
2
n )




= ct

(
fg

∆X
∞∆X−1

∞

a±ω (x)a
∓
π (x)

A∓
π (x, t)

A±
ω (x

−1, qt
1
2
n , u

1
2
n )

)

= ct


 fg

∆X
∞∆X−1

∞

a±ω (x)a
∓
π (x)a

±
ω (x

−1)a∓π (x
−1)

A∓
π (x, t)A

∓
π (x−1, t)

·
A±

ω (x
−1, qt

1
2
n , u

1
2
n )A∓

π (x
−1, t)

a±ω (x−1)a∓π (x−1)




= ct

(
fg

∆X
∞∆X−1

∞

a±ω (x)a
∓
π (x)a

±
ω (x

−1)a∓π (x
−1)

A∓
π (x, t)A

∓
π (x−1, t)

· κX
−1

w0
(t, qt

1
2
n , u

1
2
n )

)

=
W0(t, qtn)

2nn!
ct

(
fg

∆X
∞∆X−1

∞

a±ω (x)a
∓
π (x)a

±
ω (x

−1)a∓π (x
−1)

A∓
π (x, t)A

∓
π (x−1, t)

)
.

which proves the ± case. The other cases are similar.
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5.6 Weyl character formulas

As in (2.31), let 0, ω, π, ρ ∈ Z
n by 0 = (0, 0, . . . , 0),

ω = (1, 1, . . . , 1), π = (n− 1, n − 2, . . . , 2, 1, 0), ρ = (n, n− 1, . . . , 3, 2, 1).

Theorem 5.7. (Weyl character formulas) Let λ ∈ Z
n with λ1 ≥ λ2 ≥ · · · ≥ λn > 0. Then

Pλ(q, t
+) =

Pλ+0(q, t
+)

P0(q, t+)
, Pλ(q, t

±) =
A±

λ+ω(q, t
+)

Aω
π(q, t

+)
,

Pλ(q, t
−) =

Aλ+ρ(q, t
+)

Aρ(q, t+)
, Pλ(q, t

∓) =
A∓

λ+π(q, t
+)

A∓
π (q, t+)

,

Proof. The following is the proof for the case Pλ(q, t
±). The proof for the other cases is similar. Since

A±
λ+ω = t

1
2
ℓ(w0)ε±Eλ+ω then A±

λ+ω ∈ C[X]Mes±. Thus, by Proposition 4.2,

there exists f ∈ K[X]Wfin such that A±
λ+ω = A±

ω f.

Since λ+ω is dominant then w0(λ+ω) = −(λ+ω) is antidominant (weakly increasing with all entries
≤ 0). If µ ∈ Z

n is such that the coefficient of xµ in A±
λ+ω is nonzero then µ ≤ −(λ+ ω) in the DBlex

order. Thus, using the notations of Section 5.3,

f = mλ + (lower terms).

The E-expansion for A±
λ+ω in Proposition 4.4 gives that

A±
λ+ω =

∑

µ∈Wfin(λ+π)

dµλ+ωEµ = Ew0(λ+ω) + (lower terms)

and, from the definitions of A±
ω and mν ,

A±
ωmν = xw0(ν+ω) + (lower terms).

Since (Ew0(λ+ω), x
γ)+ = 0 for γ < w0(λ+ ω) then

(A±
ω f,A

±
ωmν)+ = (A±

λ+ω, A
±
ωmν)+ = 0, for ν ∈ (Zn)+ with ν < λ.

Using Proposition 5.6, since f ∈ K[X]Wfn and mν ∈ K[X]Wfin then

(f,mν)± =
W0(t, qtn)

W0(t, t
−1
n )

(A±
ω f,A

±
ωmν)+ = 0, for ν ∈ (Zn)+ with ν < λ.

Thus, by Proposition 5.3, f = Pλ(q, t
±).

5.7 Reductions for norms

The following proposition shows that the c-functions provide an effective framework for describing the
differences between the norms of the various flavors of Koornwinder polynomials.

Proposition 5.8.

(a) Let µ = (µ1, . . . , µn) ∈ Z
n. Then

(Eµ, Eµ)+
(1, 1)+

= evt0(c
Y
uµ
cY

−1

uµ
).
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(b) Let λ ∈ (Zn
≥0)

+.

(Pλ, Pλ)+
(Eλ, Eλ)+

=
W0(t, tn)

Wλ(t, tn)
evtλ(κ

+
vλ
),

(A±
λ+ω, A

±
λ+ω)+

(Eλ+ω, Eλ+ω)+
=

W0(t, t
−1
n )

Wλ+ω(t, tn)
tnnev

t
λ+ω(κ

±
vλ+ω

),

(A∓
λ+π, A

∓
λ+π)+

(Eλ+π, Eλ+π)+
=

W0(t
−1, tn)

Wλ+π(t, tn)
tn(n−1)evtλ+π(κ

∓
vλ+π

),

(Aλ+ρ, Aλ+ρ)+
(Eλ+ρ, Eλ+ρ)+

=
W0(t

−1, t−1
n )

Wλ+ρ(t, tn)
tn(n−1)tnnev

t
λ+ρ(κ

−
vλ+ρ

).

(c) Let λ ∈ (Zn
≥0)

+.

(A±
λ+ω, A

±
λ+ω)+

(Pλ+ω, Pλ+ω)+
=

W0(t, t
−1
n )

W0(t, tn)
tnnev

t
λ+ω

(
κ±vλ+ω

κ+vλ+ω

)
,

(A∓
λ+π, A

∓
λ+π)+

(Pλ+π, Pλ+π)+
=

W0(t
−1, tn)

W0(t, tn)
tn(n−1)evtλ+π

(
κ∓vλ+π

κ+vλ+π

)
,

(Aλ+ρ, Aλ+ρ)+
(Pλ+ρ, Pλ+ρ)+

=
W0(t

−1, t−1
n )

W0(t, tn)
tn(n−1)tnnev

t
λ+ρ

(
κ−w0

κ+w0

)
.

(d) Let λ ∈ (Zn
≥0)

+. Then

(Pλ(q, t
±), Pλ(q, t

±))±
(Pλ+ω(q, t+), Pλ+ω(q, t+))+

=
W0(t, qtn)

W0(t, tn)
tℓd(w0)
n evtλ+ω

(
κ±vλ+ω

κ+vλ+ω

)

(Pλ(q, t
∓), Pλ(q, t

∓))∓
(Pλ+π(q, t+), Pλ+π(q, t+))+

=
W0(qt, tn)

W0(t, tn)
tℓs(w0)evtλ+π

(
κ∓vλ+π

κ+vλ+π

)

(Pλ(q, t
−), Pλ(q, t

−))−
(Pλ+ρ(q, t+), Pλ+ρ(q, t+))+

=
W0(qt, qtn)

W0(t, tn)
tℓs(w0)tℓd(w0)

n evtλ+ρ

(
κ−w0

κ+w0

)
.

Proof. (a) Using the creation formula for Eµ,

(Eµ, Eµ)+ = (t−
1
2
ℓ(v−1

µ )τ∨uµ
1Y , t

− 1
2
ℓ(v−1

µ )τ∨uµ
1Y )+ = (τ∨

u−1
µ
τ∨uµ

1Y ,1Y )+

= (cYuµ
cY

−1

uµ
1Y ,1Y )+ = evt0(c

Y
uµ
cY

−1

uµ
) · (1, 1)+.

(b) Using Proposition 4.4 (E-expansion formulas),

A±
λ+ω =

χ±(Tw0)

Wλ+ω(t, tn)
ε±Eλ+ω =

∑

µ∈Wfin(λ+ω)

dµλ+ωEµ, with dλ+ω
λ+ω = (−1)ℓd(vλ+ω)evtλ+ω(κ

±
vλ+ω

),

and (2.29)

ε2± =
1

χ±(Tw0)
W0(t, t

−1
n )ε±,
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gives

(A±
λ+ω, A

±
λ+ω)+ =

(
χ+(Tw0)

Wλ+ω(t, tn)
ε±Eλ+ω,

χ+(Tw0)

Wλ+ω(t, tn)
ε±Eλ+ω

)

+

(by (4.2))

=
1

Wλ+ω(t, tn)Wλ+ω(t−1, t−1
n )

(
ε2±Eλ+ω, Eλ+ω

)
+

(by (5.6))

=
1

χ±(Tw0)

W0(t, t
−1
n )

Wλ+ω(t, tn)Wλ+ω(t−1, t−1
n )

(ε±Eλ+ω, Eλ+ω)+ (by (2.29))

=
χ+(Twλ+ω

)2

χ±(Tw0)χ
+(Tw0)

W0(t, t
−1
n )

Wλ+ω(t, tn)

(
A±

λ+ω, Eλ+ω

)
+

(by (4.2))

=
tℓd(w0)

(−1)ℓd(w0)

W0(t, t
−1
n )

Wλ+ω(t−1, t−1
n )

dλ+ω
λ+ω(Eλ+ω, Eλ+ω)+

=
tnn

(−1)ℓd(w0)

W0(t, t
−1
n )

Wλ+ω(t, tn)
(−1)ℓd(vλ+ω)evtλ+ω(κ

±
vλ+ω

)(Eλ+ω, Eλ+ω)+

=
W0(t, t

−1
n )

Wλ+ω(t, tn)
tnnev

t
λ+ω(κ

±
vλ+ω

)(Eλ+ω , Eλ+ω)+,

because (−1)ℓd(vλ+ω) = (−1)ℓd(w0). This proves the ± case. The proof for the other cases is similar.

(c) By part (b),

(A±
λ+ω, A

±
λ+ω)+

(Eλ+ω, Eλ+ω)+
=

W0(t, t
−1
n )

Wλ+ω(t, tn)
tnnev

t
λ+ω(κ

±
vλ+ω

) and
(Pλ+ω, Pλ+ω)+
(Eλ+ω, Eλ+ω)+

=
W0(t, tn)

Wλ+ω(t, tn)
evtλ+ω(κ

+
vλ+ω

)

gives the relation between (A±
λ+ω, A

±
λ+ω)+ and (Pλ+ω, Pλ+ω)+. This proves the ± case. The proof for

the other cases is similar.

(d) Using Proposition 5.6 (going up a level) and Proposition 5.7 (Weyl character formula) gives

(Pλ(q, t
±), Pλ(q, t

±))± =
W0(t, qtn)

W0(t, t
−1
n )

(A±
ωPλ(q, t

±), A±
ωPλ(q, t

±))+

=
W0(t, qtn)

W0(t, t
−1
n )

(A±
λ+ω(q, t

+), A±
λ+ω(q, t

+))+

=
W0(t, qtn)

W0(t, tn)
tnnev

t
λ+ω

(
κ±vλ+ω

κ+vλ+ω

)
(Pλ+ω(q, t

+), Pλ+ω(q, t
+))+

This proves the ± case. The proof for the other cases is similar.

5.8 The symmetric inner product

In this subsection we define, for symmetric functions, a slightly different inner product 〈 , 〉+ that has
more symmetry than the original inner product ( , )+. Fortunately, the difference between these inner
products is only a factor of W0(t, tn), which makes the reduction relations of the previous subsection
even simpler. The symmetric inner product 〈 , 〉+ has another very useful advantage: in terms of the
Askey-Wilson parameters a, b, c, d, the inner product 〈 , 〉+ is completely symmetric in a, b, c and d.
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Define involutions : K[X] → K[X] and σ : K[X] → K[X] and t : K[X] → K[X] by

f̄(x1, . . . , xn; q, t, t
1
2
0 , u

1
2
0 , t

1
2
n , u

1
2
n ) = f(x−1

1 , . . . , x−1
n ; q−1, t−1, t

− 1
2

0 , u
− 1

2
0 , t

− 1
2

n , u
− 1

2
n ),

fσ(x1, . . . , xn; q, t, t
1
2
0 , u

1
2
0 , t

1
2
n , u

1
2
n ) = f(x−1

1 , . . . , x−1
n ; q, t, t

1
2
0 , u

1
2
0 , t

1
2
n , u

1
2
n ),

f t(x1, . . . , xn; q, t, t
1
2
0 , u

1
2
0 , t

1
2
n , u

1
2
n ) = f(x1, . . . , xn; q

−1, t−1, t
− 1

2
0 , u

− 1
2

0 , t
− 1

2
n , u

− 1
2

n ).

Let κX
−1

w0
be as given in (2.13) and define

∇CC = ∆+
CCκ

X−1

w0
. (5.7)

Then define a new scalar product 〈 , 〉+ : K[X]×K[X] → K by

〈f1, f2〉+ =
1

2nn!
ct

(
f1f2

1

∇CC

)
, where 2nn! = Card(Wfin). (5.8)

The following result provides a comparison of ( , )+ and 〈 , 〉+ as inner products on symmetric
polynomials.

Proposition 5.9. Let f, g ∈ K[x±1 , . . . , x
±1
n ]Wfin . Then

〈f, g〉+ =
1

W0(t, tn)
(f, gt)+.

Proof. Let f, g ∈ K[x±1 , . . . , x
±1
n ]Wfin . Since f , ḡt and ∇CC are all invariant under the action of Wfin

then

〈f, g〉+ =
1

2nn!
ct

(
fgσ

1

∇CC

)
=

1

2nn! ·W0(t, tn)
ct

(
f ḡt

1

∇CC
W0(t, tn)

)

=
1

2nn! ·W0(t, tn)
ct


f ḡt

1

∇CC



∑

w∈Wfin

w(κX
−1

w0
)






=
1

2nn! ·W0(t, tn)
ct



∑

w∈Wfin

w

(
f ḡt

1

∇CC
κX

−1

w0

)


=
1

2nn! ·W0(t, tn)
ct



∑

w∈Wfin

w

(
f ḡt

1

∆+
CC

)


=
1

W0(t, tn)
ct

(
f ḡt

1

∆+
CC

)
=

1

W0(t, tn)
(f, gt)+,

where the third equality uses Proposition 4.3.

The following corollary of Proposition 5.8 records the norm comparisons in terms of the symmetric
inner product 〈 , 〉+.

Corollary 5.10. Let λ ∈ (Zn
≥0)

+. Then

〈Pλ(q, t
±), Pλ(q, t

±)〉±
〈Pλ+ω(q, t+), Pλ+ω(q, t+)〉+

= tℓd(w0)
n evtλ+ω

(
κ±vλ+ω

κ+vλ+ω

)

〈Pλ(q, t
∓), Pλ(q, t

∓)〉∓
〈Pλ+π(q, t+), Pλ+π(q, t+)〉+

= tℓs(w0)evtλ+π

(
κ∓vλ+π

κ+vλ+π

)

〈Pλ(q, t
−), Pλ(q, t

−)〉−
〈Pλ+ρ(q, t+), Pλ+ρ(q, t+))+

= tℓs(w0)tℓd(w0)
n evtλ+ρ

(
κ−w0

κ+w0

)
.
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Remark 5.11. Using Remark 5.1 then

∇CC = ∇(1)∇(2), where ∇(2) =
∏

1≤i<j≤n

(txix
−1
j ; q)∞(txixj ; q)∞(tx−1

i xj ; q)∞(tx−1
i x−1

j ; q)∞

(xix
−1
j ; q)∞(xixj ; q)∞(x−1

i xj; q)∞(x−1
i x−1

j ; q)∞

and

∇(1) =

n∏

i=1

(cxi; q)∞(cx−1
i ; q)∞(dxi; q)∞(dx−1

i ; q)∞(axi; q)∞(ax−1
i ; q)∞(bxi; q)∞(bx−1

i ; q)∞

(x2i ; q)∞(x−2
i ; q)∞

.

This formula shows that ∇CC , and thus 〈 , 〉+ and Pλ(q, t
+), are completely symmetric in the Askey-

Wilson parameters a, b, c and d.

Remark 5.12. Using Remark 2.5,

κ±vλ+ω

κ+vλ+ω

=
κ±vω
κ+vω

=

n∏

i=1

κY
−1

εi

κYεi
=

κ±w0

κ+w0

and
κ∓vλ+π

κ+vλ+π

=
κ∓vπ
κ+vπ

=
∏

1≤i<j≤n

κY
−1

εi−εjκ
Y −1

εi+εj

κYεi−εj
κYεi+εj

=
κ∓w0

κ+w0

and

κ±vω
κ+vω

·
κ∓vω
κ+vω

=
κ−w0

κ+w0

=

(
n∏

i=1

κY
−1

εi

κYεi

)


∏

1≤i<j≤n

κY
−1

εi−εjκ
Y −1

εi+εj

κYεi−εjκ
Y
εi+εj




5.9 The norm formula

In this section we use the recursive relations of Corollary 5.10 to derive a c-function formula for
〈Pλ(q, t

+), Pλ(q, t
+)〉+.

Introduce Y -versions of the c-function products from Remark 5.1 as follows:

∆Y
s (t

+)∆Y
0,s(t

+) =
∏

1≤i<j≤n

(tYiY
−1
j ; q)∞(tYiYj; q)∞

(YiY
−1
j ; q)∞(YiYj; q)∞

∆Y
d (t

+)∆Y
0,d(t

+) =

n∏

i=1

(t
1
2
n t

1
2
0 Yi; q)∞(−t

1
2
n t

− 1
2

0 Yi; q)∞
(Y 2

i ; q
2)∞

∆Y
g (t

+) =
n∏

i=1

(u
1
2
nu

1
2
0 q

1
2Yi; q)∞(−u

1
2
nu

− 1
2

0 q
1
2Yi; q)∞

(qY 2
i ; q

2)∞

∆Y −1

s ((t+)−1) =
∏

1≤i<j≤n

(t−1qY −1
i Yj ; q)∞(t−1qY −1

i Y −1
j ; q)∞

(qY −1
i Yj ; q)∞(qY −1

i Y −1
j ; q)∞

∆Y −1

d ((t+)−1) =
n∏

i=1

(t
− 1

2
n t

− 1
2

0 qY −1
i ; q)∞(−t

− 1
2

n t
1
2
0 qY

−1
i ; q)∞

(q2Y −2
i ; q2)∞

∆Y −1

g ((t+)−1) =

n∏

i=1

(u
− 1

2
n u

− 1
2

0 q
1
2Y −1

i ; q)∞(−u
− 1

2
n u

1
2
0 q

1
2Y −1

i ; q)∞

(qY −2
i ; q2)∞

.

Define homomorphisms evqλtρ : K[Y ] → K and evq−λt−ρ : K[Y ] → K by

evqλtρ(Yi) = qλitn−it
1
2
0 t

1
2
n and evq−λt−ρ(Yi) = q−λit−(n−i)t

− 1
2

0 t
− 1

2
n = evqλtρ(Y

−1
i ).
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The correspondence between the parameters q, t, t
1
2
0 , u

1
2
0 , t

1
2
n , u

1
2
n and the Askey-Wilson parameters is

given by

q = q, a = q
1
2 t

1
2
0 u

1
2
0 , b = −q

1
2 t

1
2
0 u

− 1
2

0 , c = t
1
2
nu

1
2
n , d = −t

1
2
nu

− 1
2

n .

To control the spacing of the formulas introduce a notation

(z1, z2, . . . , zk; q)∞ = (z1; q)∞(z2; q)∞ · · · (zk; q)∞ (5.9)

Then evqλtρ(∆
Y
d (t

+)∆Y
0,d(t

+)∆Y
g (t

+)) is equal to

n∏

i=1

(t
1
2
n t

1
2
0 q

λitn−it
1
2
n t

1
2
0 ,−t

1
2
n t

− 1
2

0 qλitn−it
1
2
n t

1
2
0 , u

1
2
nu

1
2
0 q

1
2 qλitn−it

1
2
n t

1
2
0 ,−u

1
2
nu

− 1
2

0 q
1
2 qλitn−it

1
2
n t

1
2
0 ; q)∞

(q2λit2(n−i)tnt0, qq2λit2(n−i)tnt0; q2)∞

=

n∏

i=1

(tnt0q
λitn−i,−tnq

λitn−i, t
1
2
n t

1
2
0 u

1
2
nu

1
2
0 q

1
2 qλitn−i,−t

1
2
n t

1
2
0 u

1
2
nu

− 1
2

0 q
1
2 qλitn−i; q)∞

(q2λit2(n−i)tnt0; q)∞

=

n∏

i=1

(q−1abcdqλitn−i, cdqλitn−i, acqλitn−i, bcqλitn−i; q)∞

(q−1abcdq2λit2(n−i); q)∞
(5.10)

and evq−λt−ρ(∆Y −1

d ((t+)−1)∆Y −1

g ((t+)−1) is equal to

n∏

i=1

(t
− 1

2
n t

− 1
2

0 qqλitn−it
1
2
n t

1
2
0 ,−t

− 1
2

n t
1
2
0 qq

λitn−it
1
2
n t

1
2
0 , u

− 1
2

n u
− 1

2
0 q

1
2 qλitn−it

1
2
n t

1
2
0 ,−u

− 1
2

n u
1
2
0 q

1
2 qλitn−it

1
2
n t

1
2
0 ; q)∞

(q2q2λit2(n−i)tnt0, qq2λit2(n−i)tnt0; q2)∞

=
n∏

i=1

(qqλitn−i,−t0qq
λitn−i, t

1
2
n t

1
2
0 u

− 1
2

n u
− 1

2
0 q

1
2 qλitn−i,−t

1
2
n t

1
2
0 u

− 1
2

n u
1
2
0 q

1
2 qλitn−i; q)∞

(qq2λit2(n−i)tnt0; q)∞

=

n∏

i=1

(qqλitn−i, abqλitn−i, bdqλitn−i, adqλitn−i; q)∞

(abcdq2λit2(n−i); q)∞
. (5.11)

Theorem 5.13. Define Nλ(q, t
+) to be the product

Nλ(q, t
+) = evqλtρ

(
1

∆Y
g (t

+)∆Y
s (t

+)∆Y
d (t

+)∆Y
0,s(t

+)∆Y
0,d(t

+)

)

· evq−λt−ρ

(
1

∆Y −1

g ((t+)−1)∆Y −1

s ((t+)−1)∆Y −1

d ((t+)−1)

)
.

Then
〈Pλ(q, t

+), Pλ(q, t
+)〉+ = Nλ(q, t

+).

Proof. The proof is accomplished by verifying the following properties

(a) Nλ(q, 1, 1, 1, 1, 1) = 1,

(b) Nλ(q, t
+) is symmetric in the parameters a, b, c, d,

(c) Nλ(q, t
+) satisfies the recursions

Nλ(q, t
±)

Nλ+ω(q, t+)
= tnnev

t
λ+ω

(
κ±vλ+ω

κ+vλ+ω

)
and

Nλ(q, t
∓)

Nλ+π(q, t+)
= tn(n−1)evtλ+π

(
κ∓vλ+π

κ+vλ+π

)
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Property (a) follows from the fact that ∆Y
d (1, 1, 1, 1, 1), ∆

Y
0,d(1, 1, 1, 1, 1), ∆

Y
g (1, 1, 1, 1, 1), ∆

Y −1

d (1, 1, 1, 1, 1)

and ∆Y −1

g (1, 1, 1, 1, 1) are all equal to 1.

Property (b) follows from the fact that the product of the expressions in (5.10) and (5.11) is symmetric
in the parameters a, b, c, d.

Property (c) Changing from the parameters t+ = (t, t
1
2
0 , u

1
2
0 , t

1
2
n , u

1
2
n ) to the parameters t± = (t, t

1
2
0 , u

1
2
0 , qt

1
2
n , u

1
2
n )

replaces t
1
2
n by qt

1
2
n so that c gets replaced by qc and d gets replaced by qd and a and b and t stay fixed.

Write

Ngd
λ (q, t+) = evqλtρ

(
1

∆Y
g (t

+)∆Y
d (t

+)∆Y
0,d(t

+)

)
· evq−λt−ρ

(
1

∆Y −1

g ((t+)−1)∆Y −1

d ((t+)−1)

)
,

N s
λ(q, t

+) = evqλtρ

(
1

∆Y
s (t

+)∆Y
0,s(t

+)

)
· evq−λt−ρ

(
1

∆Y −1

s ((t+)−1)

)
,

so that Nλ(q, t
+) = Ngd

λ (q, t+)N s
λ(q, t

+). Using the notation of (5.9),

Ngd
λ (q, t±) =

n∏

i=1

(q2abcdq2λit2(n−i), q2q−1abcdq2λit2(n−i); q)∞(
qqλitn−i, q2q−1abcdqλitn−i, abqλitn−i, qacqλitn−i,
qadqλitn−i, qbcqλitn−i, qbdqλitn−i, q2cdqλitn−i ; q

)

∞

and

Ngd
λ+ω(q, t

+) =
n∏

i=1

(abcdq2(λi+1)t2(n−i), q−1abcdq2(λi+1)t2(n−i); q)∞(
qqλi+1tn−i, q−1abcdqλi+1tn−i, abqλi+1tn−i, acqλi+1tn−i,
adqλi+1tn−i, bcqλi+1tn−i, bdqλi+1tn−i, cdqλi+1tn−i ; q

)

∞

and

Ngd
λ (q, t±)

Ngd
λ+ω(q, t

+)
=

n∏

i=1

(1− abcdqλitn−i)(1− cdqλi+1tn−i)

(1− qqλitn−i)(1− abqλitn−i)
=

n∏

i=1

(1− abcdqλitn−i)(1− cdqλi+1tn−i)

(1− qλi+1tn−i)(1− abqλitn−i)
.

Since

evqλtρ(∆
Y
s (t

+)∆Y
0,s(t

+)) =
∏

1≤i<j≤n

(qλi−λj tj−i+1; q)∞(qλi+λj t2n−i−j+1t0tn; q)∞
(qλi−λj tj−i; q)∞(qλi+λj t2n−i−jt0tn; q)∞

and

evq−λt−ρ(∆Y −1

s (t+)−1) =
∏

1≤i<j≤n

(qλi−λj+1tj−i−1; q)∞(qλi+λj+1t2n−i−j−1t0tn; q)∞
(qλi−λj+1tj−i; q)∞(qλi+λj+1t2n−i−jt0tn; q)∞

then

N s
λ(q, t

±) =
∏

1≤i<j≤n

(
qλi−λj tj−i, qλi+λj t2n−i−jt0q

2tn,
qλi−λj+1tj−i, qλi+λj+1t2n−i−jt0q

2tn
; q

)

∞(
qλi−λj tj−i+1, qλi+λj t2n−i−j+1t0q

2tn,
qλi−λj+1tj−i−1, qλi+λj+1t2n−i−j−1t0q

2tn
; q

)

∞

and

N s
λ+ω(q, t

+) =
∏

1≤i<j≤n

(
qλi−λj tj−i, qλi+λj+2t2n−i−jt0tn,
qλi−λj+1tj−i, qλi+λj+3t2n−i−jt0tn

; q

)

∞(
qλi−λj tj−i+1, qλi+λj+2t2n−i−j+1t0tn,
qλi−λj+1tj−i−1, qλi+λj+3t2n−i−j−1t0tn

; q

)

∞

,
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since ωi = 1. So
N s

λ(q, t
±)

N s
λ+ω(q, t

+)
= 1.

Since

tnn · evtλ+ω

(
κ±vλ+ω

κ+vλ+ω

)
= evtλ+ω

(
n∏

i=1

κY
−1

εi

κYεi

)

=

n∏

i=1

evtλ+ω


tn

(1− t
1
2
n t

1
2
0 Y

−1
i )(1 + t

1
2
n t

− 1
2

0 Y −1
i )

(1− Y −2
i )

(1− Y 2
i )

(1− t
1
2
n t

1
2
0 Yi)(1 + t

1
2
n t

− 1
2

0 Yi)




=
n∏

i=1

evtλ+ω


 (1− t

1
2
n t

1
2
0 Y

−1
i )(1 + t

1
2
n t

− 1
2

0 Y −1
i )

(1− t
− 1

2
n t

− 1
2

0 Y −1
i )(1 + t

− 1
2

n t
1
2
0 Y

−1
i )




=

n∏

i=1


 (1− t

1
2
n t

1
2
0 q

λi+1tn−it
1
2
0 t

1
2
n )(1 + t

1
2
n t

− 1
2

0 qλi+1tn−it
1
2
0 t

1
2
n )

(1− t
− 1

2
n t

− 1
2

0 qλi+1tn−it
1
2
0 t

1
2
n )(1 + t

− 1
2

n t
1
2
0 q

λi+1tn−it
1
2
0 t

1
2
n )




=
n∏

i=1

(
(1− tnt0q

λi+1tn−i)(1 + tnq
λi+1tn−i)

(1 − qλi+1tn−i)(1 + t0qλi+1tn−i)

)

=

n∏

i=1

(
(1− q−1abcdqλi+1tn−i)(1− cdqλi+1tn−i)

(1− qλi+1tn−i)(1− q−1abqλi+1tn−i)

)

=

n∏

i=1

(
(1− abcdqλitn−i)(1− cdqλi+1tn−i)

(1− qλi+1tn−i)(1− abqλitn−i)

)

then

Nλ(q, t
±)

Nλ+ω(q, t+)
=

Ngd
λ (q, t±)

Ngd
λ+ω(q, t

+)
·

N s
λ(q, t

±)

N s
λ+ω(q, t

+)
=

Ngd
λ (q, t±)

Ngd
λ+ω(q, t

+)
· 1 = tnn · evtλ+ω

(
κ±vλ+ω

κ+vλ+ω

)
.

The proof of the second equality in (c) is similar as follows.

Ngd
λ (q, t∓) =

n∏

i=1

(q2abcdq2λi(qt)2(n−i), q2q−1abcdq2λi(qt)2(n−i); q)∞(
qqλi(qt)n−i, q2q−1abcdqλi(qt)n−i, abqλi(qt)n−i, qacqλi(qt)n−i,
qadqλi(qt)n−i, qbcqλi(qt)n−i, qbdqλi(qt)n−i, q2cdqλi(qt)n−i ; q

)

∞

and

Ngd
λ+π(q, t

+) =
n∏

i=1

(abcdq2(λi+n−i)t2(n−i), q−1abcdq2(λi+n−i)t2(n−i); q)∞(
qqλi+n−itn−i, q−1abcdqλi+n−itn−i, abqλi+n−itn−i, acqλi+n−itn−i,
adqλi+n−itn−i, bcqλi+n−itn−i, bdqλi+n−itn−i, cdqλi+n−itn−i ; q

)

∞

so that
Ngd

λ (q, t∓)

Ngd
λ (q, t+)

= 1.

Then

N s
λ(q, t

∓) =
∏

1≤i<j≤n

(
qλi−λj+j−itj−i, qλi+λj+2n−i−jt2n−i−jt0tn,
qλi−λj+j−i+1tj−i, qλi+λj+1+2n−i−jt2n−i−jt0tn

; q

)

∞(
qλi−λj+j−i+1tj−i+1, qλi+λj+2n−i−j+1t2n−i−j+1t0tn,
qλi−λj+j−itj−i−1, qλi+λj+2n−i−jt2n−i−j−1t0tn

; q

)

∞
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and

N s
λ+π(q, t

+) =
∏

1≤i<j≤n

(
qλi−λj+j−itj−i, qλi+λj+2n−i−jt2n−i−jt0tn,
qλi−λj+j−i+1tj−i, qλi+λj+1+2n−i−jt2n−i−jt0tn

; q

)

∞(
qλi−λj+j−itj−i+1, qλi+λj+2n−i−jt2n−i−j+1t0tn,
qλi−λj+j−i+1tj−i−1, qλi+λj+1+2n−i−jt2n−i−j−1t0tn

; q

)

∞

,

since πi = n− i. So

N s
λ(q, t

∓)

N s
λ+π(t

+)
=

∏

1≤i<j≤n

(1− qλi−λj+j−itj−i+1)(1− qλi+λj+2n−i−jt2n−i−j+1t0tn)

(1− qλi−λj+j−itj−i−1)(1− qλi+λj+2n−i−jt2n−i−j−1t0tn)

and
Nλ(q, t

∓)

Nλ+π(t+)
=

Ngd
λ (q, t∓)

Ngd
λ+π(t

+)
·
N s

λ(q, t
∓)

N s
λ+π(t

+)
= 1 ·

N s
λ(q, t

∓)

N s
λ+π(t

+)
= tn(n−1)evtλ+π

(
κ∓vλ+π

κ+vλ+π

)
,

since

tn(n−1)evtλ+π

(
κ∓vλ+π

κ+vλ+π

)
= evtλ+π




∏

1≤i<j≤n

t2
κY

−1

εi−εjκ
Y −1

εi+εj

κYεi−εjκ
Y
εi+εj




= evtλ+π




∏

1≤i<j≤n

t2
(1− tY −1

i Yj)(1− tY −1
i Y −1

j )

(1− Y −1
i Yj)(1− Y −1

i Y −1
j )

(1− YiY
−1
j )(1− YiYj)

(1− tYiY
−1
j )(1− tYiYj)




= evtλ+π




∏

1≤i<j≤n

(1− tY −1
i Yj)(1− tY −1

i Y −1
j )

(1− t−1Y −1
i Yj)(1− t−1Y −1

i Y −1
j )




=
∏

1≤i<j≤n

(1− tqλi+(n−i)−λj−(n−j)t−(n−j)+(n−i))(1− tqλi+(n−i)+λj+(n−j)t(n−i)+(n−j)t0tn)

(1− t−1qλi+(n−i)−λj−(n−j)t−(n−j)+(n−i))(1− t−1qλi+(n−i)+λj+(n−j)t(n−i)+(n−j)t0tn)

=
∏

1≤i<j≤n

(1− tqλi−λj+j−itj−i)(1− tqλi+λj+2n−i−j)t2n−i−jt0tn)

(1− t−1qλi−λj+j−itj−i)(1 − t−1qλi+λj+2n−i−jt2n−i−jt0tn)
.

5.10 The constant term

To get the constant term of
1

∆+
CC

specialize λ = 0. Then

Ngd
0 (t+) =

n∏

i=1

(abcdt2(n−i), q−1abcdt2(n−i); q)∞
(qtn−i, q−1abcdtn−i, abtn−i, actn−i, adtn−i, bctn−i, bdtn−i, cdtn−i; q)∞

and

N s
0 (t

+) =
∏

1≤i<j≤n

(tj−i, t2n−i−jt0tn, qt
j−i, qt2n−i−jt0tn; q)∞

(ttj−i, tt2n−i−jt0tn, qt−1tj−i, qt−1t2n−i−jt0tn; q)∞
,

so that

W0(t, tn)ct

(
1

∆+
CC

)
= W0(t, tn)(1, 1)+ = 〈1, 1〉+ = N0(t

+) = Ngd
0 (t+)N s

0 (t
+).
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6 Appendix: Examples for n = 2

6.1 The finite Weyl group and the roots in S+
0

The finite Weyl group is Wfin = {1, s1, s2, s1s2, s2s1, s1s2s1, s2s1s2, s1s2s1s2} where

s21 = s22 = 1, s1s2s1s2 = s2s1s2s1.

Then
S+
0,d = {ε1, ε2} and S+

0,s = {ε1 − ε2, ε1 + ε2}

with sε1 = s1s2s1, sε2 = s2, sε1−ε2 = s1, sε1+ε2 = s2s1s2.

6.2 Hecke symmetrizers

The Hecke symmetrizers are

ε+ = T1T2T1T2 + t−
1
2T2T1T2 + t

− 1
2

n T1T2T1

+ t−
1
2 t

− 1
2

n T1T2 + t−
1
2 t

− 1
2

n T2T1 + t−1t
− 1

2
n T2 + t−

1
2 t−1

n T1 + t−1t−1
n ,

ε± = T1T2T1T2 + t−
1
2T2T1T2 − t

1
2
nT1T2T1

− t−
1
2 t

1
2
nT1T2 − t−

1
2 t

1
2
nT2T1 − t−1t

1
2
nT2 + t−

1
2 tnT1 + t−1tn,

ε∓ = T1T2T1T2 − t
1
2T2T1T2 + t

− 1
2

n T1T2T1

− t
1
2 t

− 1
2

n T1T2 − t
1
2 t

− 1
2

n T2T1 + tt
− 1

2
n T2 − t

1
2 t−1

n T1 + tt−1
n ,

ε− = T1T2T1T2 − t
1
2T2T1T2 − t

1
2
nT1T2T1 + t

1
2 t

1
2
nT1T2 + t

1
2 t

1
2
nT2T1 − tt

1
2
nT2 − t

1
2 tnT1 + ttn.

Since

ε± = (T1 + t−
1
2 )(T2T1T2 − t

1
2
nT2T1 − t−

1
2 t

1
2
nT2 + t−

1
2 tn) = (T1 + t−

1
2 )(T2T1 − t−

1
2 t

1
2
n )(T2 − t

1
2
n )

and (T1 − t
1
2 )(T1 + t−

1
2 ) = 0 then T1ε± = t

1
2 ε±. Similarly, since

ε± = (T2 − t
1
2
n )(T1T2T1 + t−

1
2T1T2 − t−

1
2 t

1
2
nT1 − t−1t

1
2
n ) = (T2 − t

1
2
n )(T1T2 − t−

1
2 t

1
2
n )(T1 + t−

1
2 )

and (T2 + t
− 1

2
n )(T2 − t

1
2
n ) = 0 then T2ε± = −t

− 1
2

n ε±. Then

ε2± = (tt−1
n + t−1

n + t+ 1 + 1 + t−1 + tn + t−1tn)ε±

= t−1t2(t
2t−2

2 + tt−2
2 + t2t−1

2 + tt−1
2 + tt−1

2 + t−1
2 + t+ 1)ε±

= t−1t2W0(t, t
−1
2 )ε±.

since
W0(t, tn) = 1 + t2 + t+ tt2 + tt2 + tt22 + t2t2 + t2t22 = (1 + t2)(1 + t)(1 + tt2).
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6.3 c-functions

The c-functions in X for roots in S+
0,s and S+

0,d are

cXε1−ε2 =
t−

1
2 − t

1
2X1X

−1
2

1−X1X
−1
2

, cXε1+ε2 =
t−

1
2 − t

1
2X1X2

1−X1X2
,

cXε1 = t
− 1

2
2

(1− t
1
2
2 u

1
2
2X1)(1 + t

1
2
2 u

− 1
2

2 X1)

1−X2
1

, cXε2 = t
− 1

2
2

(1− t
1
2
2 u

1
2
2X2)(1 + t

1
2
2 u

− 1
2

2 X2)

1−X2
2

.

Then

cX
−1

dr = cX
−1

ε1 cX
−1

ε2 = t
− 2

2
2

(1− t
1
2
2 u

1
2
2X

−1
1 )(1 + t

1
2
2 u

− 1
2

2 X−1
1 )

(1−X−2
1 )

(1− t
1
2
2 u

1
2
2 X

−1
2 )(1 + t

1
2
2 u

− 1
2

2 X−1
2 )

(1−X−2
2 )

and

cX
−1

st = cX
−1

ε1−ε2c
X−1

ε1+ε2 =
(t−

1
2 − t

1
2X−1

1 X2)

(1−X−1
1 X2)

(t−
1
2 − t

1
2X−1

1 X−1
2 )

(1−X−1
1 X−1

2 )
.

6.4 Weyl denominators

Since ω = (1, 1), π = (1, 0) and ρ = (2, 1) then

xω = x1x2, xπ = x1, xρ = x21x2.

Since

e± = s1s2s1s2 − s1s2s1 + s2s1s2 − s1s2 − s2s1 + s1 − s2 + 1,

e∓ = s1s2s1s2 + s1s2s1 − s2s1s2 − s1s2 − s2s1 − s1 + s2 + 1,

e− = s1s2s1s2 − s1s2s1 − s2s1s2 + s1s2 + s2s1 − s1 − s2 + 1,

then the Weyl denominators for n = 2 are

a±ω = 1
2e±x

ω = e±x1x2 = x1x2 − x1x
−1
2 + x−1

1 x2 − x−1
1 x−1

2 = x−1
1 x−1

2 (1− x21)(1− x22),

a∓π = 1
2e∓x

δ = e∓x1 = x1 − x2 − x−1
2 + x−1

1 = x−1
1 (1− x1x2)(1− x1x

−1
2 ),

aρ = e+x
ρ = e+x

2
1x2 = x21x2 − x1x

2
2 − x21x

−1
2 + x1x

−2
2 + x−2

1 x2 − x−1
1 x22 − x−1

1 x−2
2 + x−2

1 x−1
2

= x−2
1 x−1

2 (1− x1x2)(1− x1x
−1
2 )(1− x21)(1 − x22) = a±ω a

∓
π ,

and

P0 = 1,

A±
ω = A±

−ε1−ε2 = x−1
1 x−1

2 (1− t
1
2
2 u

1
2
2 x1)(1 + t

1
2
2 u

− 1
2

2 x1)(1− t
1
2
2 u

1
2
2 x2)(1 + t

1
2
2 u

− 1
2

2 x2)

A∓
π = A∓

−ε1 = x−1
1 (1− tx1x

−1
2 )(1 − tx1x2) = x−1

1 − tx−1
2 − tx2 + t2x1,

Aρ = x−2
1 x−1

2 (1− tx1x
−1
2 )(1− tx1x2)(1− t

1
2
2 u

1
2
2 x1)(1 + t

1
2
2 u

− 1
2

2 x1)(1− t
1
2
2 u

1
2
2 x2)(1 + t

1
2
2 u

− 1
2

2 x2).
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6.5 Examples of Proposition 2.3, 2.4 and 4.4

Since χ+(Ts1s2s1s2) = tt2 then

ttnε+ = (ηs1s2s1s2 + ηs1s2s1 + ηs2s1s2 + ηs1s2 + ηs2s1 + ηs1 + ηs2 + 1)κYε1κ
Y
ε2κ

Y
ε1−ε2κ

Y
ε1+ε2

= (ηs2s1s2 + ηs2s1s2 + ηs1s2 + ηs2 + 1)κYε1κ
Y
ε2κ

Y
ε1+ε2(1 + ηs1)κ

Y
ε1−ε2

=

(
ηs2s1s2κ

Y
ε1κ

Y
ε2κ

Y
ε1+ε2 + κYε2ηs1s2κ

Y
ε2κ

Y
ε1+ε2

+κYε1κ
Y
ε1+ε2ηs2κ

Y −1

ε2 + κYε1κ
Y
ε2κ

Y
ε1+ε2

)
χ+(Ts1)ε

+
ω ,

ttnε± = κY
−1

ε1 κY
−1

ε2 (ηs1s2s1s2 − ηs1s2s1 + ηs2s1s2 − ηs1s2 − ηs2s1 + ηs1 − ηs2 + 1)κYε1−ε2κ
Y
ε1+ε2

= κY
−1

ε1 κY
−1

ε2 (ηs2s1s2 − ηs1s2 − ηs2 + 1)κYε1+ε2(1 + ηs1)κ
Y
ε1−ε2

=

(
ηs2s1s2κ

Y
ε1κ

Y
ε2κ

Y
ε1+ε2 − κY

−1

ε2 ηs1s2κ
Y
ε2κ

Y
ε1+ε2

−κY
−1

ε1 κYε1−ε2ηs2κ
Y
ε2 + κY

−1

ε1 κY
−1

ε2 κYε1+ε2

)
χ+(Ts1)ε

+
ω ,

ttnε∓ = κY
−1

ε∨1 −ε∨2
κY

−1

ε∨1 +ε∨2
(ηs1s2s1s2 + ηs1s2s1 − ηs2s1s2 − ηs1s2 − ηs2s1 − ηs1 + ηs2 + 1)κYε∨1

κYε∨2

= κY
−1

ε∨1 −ε∨2
κY

−1

ε∨1 +ε∨2
(ηs1s2s1 − ηs2s1 − ηs1 + 1)κYε∨1

(1 + ηs2)κ
Y
ε∨2

=

(
ηs1s2s1κ

Y
ε∨1
κYε∨1 −ε∨2

κYε∨1 +ε∨2
− κY

−1

ε∨1 −ε∨2
ηs2s1κ

Y
ε∨1
κYε∨1 −ε∨2

−κY
−1

ε∨1 +ε∨2
κYε∨2

ηs1κ
Y
ε∨1 −ε∨2

+ κY
−1

ε∨1 −ε∨2
κY

−1

ε∨1 +ε∨2
κYε∨1

)
· χ+(Ts2)ε

+
π ,

ttnε− = κY
−1

ε1 κY
−1

ε2 κY
−1

ε1−ε2κ
Y −1

ε1+ε2(ηs1s2s1s2 − ηs1s2s1 − ηs2s1s2 + ηs1s2 + ηs2s1 − ηs1 − ηs2 + 1)

= ηs1s2s1s2κ
Y
ε1κ

Y
ε2κ

Y
ε1−ε2κ

Y
ε1+ε2 − κY

−1

ε2 ηs1s2s1κ
Y
ε1κ

Y
ε1−ε2κ

Y
ε1+ε2 − κY

−1

ε1−ε2ηs2s1s2κ
Y
ε1κ

Y
ε2κ

Y
ε1+ε2

+ κY
−1

ε1 κY
−1

ε1−ε2ηs1s2κ
Y
ε2κ

Y
ε1+ε2 + κY

−1

ε2 κY
−1

ε1+ε2ηs2s1κ
Y
ε1κ

Y
ε1−ε2

− κY
−1

ε2 κY
−1

ε1−ε2κ
Y −1

ε1+ε2ηs1κ
Y
ε1−ε2 − κY

−1

ε1 κY
−1

ε1−ε2κ
Y −1

ε1+ε2ηs2κ
Y
ε2 + κY

−1

ε1 κY
−1

ε2 κY
−1

ε1−ε2κ
Y −1

ε1+ε2 .

Since

κYs1 = κYε∨1 −ε∨2
, κYs1s2 = κYε∨2

κYε∨1 +ε∨2
, κYs1s2s1 = κYε∨1 −ε∨2

κYε∨1
κYε∨1 +ε∨2

.

κYs2 = κYε∨2
, κYs2s1 = κYε∨1 −ε∨2

κYε∨1
, κYs2s1s2 = κYε∨2

κYε∨1 +ε∨2
κYε∨1

,

then

A±
ω = E−ε1−ε2 − evt−ε1+ε2(κ

Y −1

ε∨2
)E−ε1+ε2 − evtε1−ε2(κ

Y −1

ε∨2
κYε∨1 −ε∨2

)Eε1−ε2

+ evtε1+ε2(κ
Y −1

ε∨1
κY

−1

ε∨2
κYε∨1 +ε∨2

)Eε1+ε2 , and

A∓
π = E−ε1 − evt−ε2(κ

Y −1

ε∨1 −ε∨2
)E−ε2 − evtε2(κ

Y −1

ε∨1 +ε∨2
κYε∨2

)Eε2 + evtε1(κ
Y −1

ε∨1 −ε∨2
κY

−1

ε∨1 +ε∨2
κYε∨1

)Eε1 .
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