# Clebsch-Gordan coefficients for Macdonald polynomials 

Aritra Bhattacharya email: baritra@imsc.res.in

Arun Ram email: aram@unimelb.edu.au

October 18, 2023


#### Abstract

In this paper we use the double affine Hecke algebra to compute the Macdonald polynomial products $E_{\ell} P_{m}$ and $P_{\ell} P_{m}$ for type $S L_{2}$ and type $G L_{2}$ Macdonald polynomials. Our method follows the ideas of Martha Yip but executes a compression to reduce the sum from $2 \cdot 3^{\ell-1}$ signed terms to $2 \ell$ positive terms. We show that our rule for $P_{\ell} P_{m}$ is equivalent to a special case of the Pieri rule of Macdonald. Our method shows that computing $E_{\ell} \mathbf{1}_{0}$ and $\mathbf{1}_{0} E_{\ell} \mathbf{1}_{0}$ in terms of a special basis of the double affine Hecke algebra provides universal compressed formulas for multiplication by $E_{\ell}$ and $P_{\ell}$. The formulas for a specific products $E_{\ell} P_{m}$ and $P_{\ell} P_{m}$ are obtained by evaluating the universal formulas at $t^{-\frac{1}{2}} q^{-\frac{m}{2}}$.


Key words - Macdonald polynomials, symmetric functions, Hecke algebras』

## 1 Introduction

The type $S L_{2}$ Macdonald polynomals $P_{\ell}(x)$ are special cases of the Askey-Wilson polynomlals, sometimes called the $q$-ultraspherical polynomials (see [Mac03, p.156-7]). The $P_{\ell}(x)$ are two-parameter $q$-t-generalizations of the characters of finite dimensional representations of $S U_{2}$; i.e. the characters of $S U_{2}$ which play a pivotal role in the "standard model" in particle physics and in the analysis of Heisenberg spin chains in mathematical physics. The polynomial representation of the double affine Hecke algebra, which is the source of the type $S L_{2}$ Macdonald polynomials, is a generalization of the "Dirac sea", a representation of the Heisenberg algebra which controls the mathematics behind the quantum harmonic oscillator (see (3.20) and Proposition 3.3 and compare to the discussion, for example, in the neighborhood of Figure 10.2 in [SF14]).

As in [Mac03, §6.1 and 6.3], we denote the electronic (nonsymmetric) Macdonald polynomials for type $S L_{2}$ by $E_{m}$, for $m \in \mathbb{Z}$, and the bosonic (symmetric) Macdonald polynomials for type $S L_{2}$ are denoted $P_{m}$, for $m \in \mathbb{Z}_{\geq 0}$ (see CR22, §1] for the motivation for the terminology 'electronic' and 'bosonic'). The type $S L_{2}$ Macdonald polynomials are, by a coordinate transformation, "equivalent" to the type $G L_{2}$ Macdonald polynomials. We review this coordinate transformation in Section 2 and explain how a product rule for type $S L_{2}$ Macdonald polynomials translates to a product rule for type $G L_{2}$ Macdonald polynomials.

Following the development of [CR22, §3.4], we use the calculus of the bosonic symmetrizer $\mathbf{1}_{0}$ and the normalized intertwining operators $\eta_{s_{1}}, \eta_{\pi}$ to compute the elements $E_{\ell}(X) \mathbf{1}_{0}$ and $\mathbf{1}_{0} E_{\ell}(X) \mathbf{1}_{0}$ in terms of a special basis of the (localized) double affine Hecke algebra. Continuing the main conceptual idea of [HR22] the expansions of the elements $E_{\ell}(X) \mathbf{1}_{0}$ and $\mathbf{1}_{0} E_{\ell}(X) \mathbf{1}_{0}$ function as universal formulas for multiplying Macdonald polynomials, since they contain enough information to compute arbitrary

[^0]products $E_{\ell} P_{m}$ and $P_{\ell} P_{m}$. We review this calculus, in our $S L_{2}$ setting, in section 3. The use of this calculus enables to cast the product framework from Yi10 in a form which is tractable for executing the compression from $2 \cdot 3^{\ell-1}$ terms to $2 \ell$ terms.

The key computation for the proof of the product rules is done in sections 4 and 5 . In section 4 we use the basic structural calculus reviewed in section 3 to compute recursions satsfied by the coefficients of the operators $E_{\ell}(X) \mathbf{1}_{0}$ and $\mathbf{1}_{0} E_{\ell}(X) \mathbf{1}_{0}$ when expanded in terms of the $\left\{\eta^{\ell} \mathbf{1}_{0} \mid \ell \in \mathbb{Z}\right\}$ basis of the completed $\mathbf{1}_{0}$-projected double affine Hecke algebra. In section 5 we solve these recursions to provide product expressions for the coefficients similar to product expressions for binomial coefficients.

Yip [Yi10, Theorem 4.2 and Theorem 4.4] gives alcove walk expansions of the products $E_{\ell} P_{m}$ and $P_{\ell} P_{m}$. The illustrative [Yi10, Example 5.1] computes the alcove walk expansion of the product $E_{3} P_{m}$ for the $S L_{2}$ case. In this example there are 18 alcove walks which, after simpification, produce 6 terms. In general, for the product $E_{\ell} P_{m}$ for type $S L_{2}$, the alcove walk expansion of Yip will be a sum over $2 \cdot 3^{\ell-1}$ alcove walks which simplifies to $2 \ell$ terms.

The result of Theorem 6.2 of this paper provides an explicit closed formula for each of the $2 \ell$ terms which appear in the expansion of $E_{\ell} P_{m}$. To our knowledge, this formula for $E_{\ell} P_{m}$ is new, particularly the execution of the desired compression after executing the general double affine Hecke algebra method of deriving product rules given by Yip Yi10. The $q-t$-binomial coefficients are given by

$$
\left[\begin{array}{l}
\ell  \tag{1.1}\\
j
\end{array}\right]_{q, t}=\frac{\frac{(q ; q)_{\ell}}{(t ; q)_{\ell}}}{\frac{(q ; q)_{j}}{(t ; q)_{j}} \frac{\left.(q ; q)_{\ell-j}\right)}{(t ; q)_{\ell-j}}}, \quad \text { where } \quad(a ; q)_{j}=(1-a)(1-q a)\left(1-q^{2} a\right) \cdots\left(1-q^{j-1} a\right) .
$$

Then Theorem 6.2 proves that, for $\ell, m \in \mathbb{Z}_{>0}$,

$$
\begin{aligned}
P_{\ell} P_{m} & =\sum_{j=0}^{\ell} c_{j}^{(\ell)}\left(q^{m}\right) P_{m+\ell-2 j}, \\
E_{\ell} P_{m} & =\sum_{j=0}^{\ell-1} a_{j}^{(\ell)}\left(q^{m}\right) E_{m+\ell-2 j}+b_{j}^{(\ell)}\left(q^{m}\right) E_{-m+\ell-2 j}, \quad \text { and } \\
E_{-\ell} P_{m} & =\sum_{j=0}^{\ell} t \cdot b_{j}^{(\ell+1)}\left(q^{m}\right) E_{m-(\ell-2 j)}+a_{j}^{(\ell+1)}\left(q^{m}\right) E_{-m-(\ell-2 j)},
\end{aligned}
$$

where

$$
\begin{align*}
& c_{j}^{(\ell)}\left(q^{m}\right)=\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} \frac{\left(q^{m} q^{-(j-1)} ; q\right)_{j}}{\left(t q^{m} q^{-j} ; q\right)_{j}} \frac{\left(t^{2} q^{m} q^{\ell-2 j} ; q\right)_{j}}{\left(t q^{m} q^{\ell-2 j+1} ; q\right)_{j}},  \tag{1.2}\\
& a_{j}^{(\ell)}\left(q^{m}\right)=c_{j}^{(\ell)}\left(q^{m}\right) \cdot \frac{\left(1-q^{\ell-j}\right)}{\left(1-q^{\ell}\right)} \cdot \frac{\left(1-t q^{m} q^{\ell-j}\right)}{\left(1-t q^{m} q^{\ell-2 j}\right)} \quad \text { and } \\
& b_{j}^{(\ell)}\left(q^{m}\right)=c_{\ell-j}^{(\ell)}\left(q^{m}\right) \cdot q^{j} \cdot \frac{\left(1-q^{\ell-j}\right)}{\left(1-q^{\ell}\right)} \cdot \frac{\left(1-t q^{m} q^{-(\ell-j)}\right)}{\left(1-t^{2} q^{m} q^{-(\ell-2 j)}\right)}
\end{align*}
$$

The rule for the product $P_{\ell} P_{m}$ is equivalent to a special case of the Pieri formula given in [Mac, Ch. VI (6.24)]. The precise connection is derived in Proposition 2.1, reproducing work of Soojin Cho Cho19. Indeed, the rule for the product $P_{\ell} P_{m}$ is the "linearization formula" for $q$-ultraspherical polynomials and appears in [Is05, Theorem 13.3.2], where it is stated that it is an identity of Rogers from 1894.

We have taken some care to try to make our exposition so that it contains all necessary definitions and complete and thorough proofs of the results. Our goal, in hope that the powerful tools provided
by the double affine Hecke will become broadly accessible and utilized, has been to make this paper so that it can be read from scratch with no previous knowledge of Macdonald polynomials or the double affine Hecke algebra. Section 7 provides explicit examples.
Acknowledgements. We thank Beau Anasson, Yifan Guo and Haris Rao for conversations and Mathematica computations which made it possible to establish the product formula for $D_{j}^{(\ell)}(Y)$ which appears in (5.6). Thank you to Soojin Cho, Charles Dunkl, Dennis Stanton, and Ole Warnaar for helpful references on the orthogonal polynomial literature and to Jean-Émile Bourgine, Sasha Garbali and Jasper Stokman for very helpful comments to improve the exposition. We thank Institute of Mathematical Sciences Chennai for support which enabled A. Bhattacharya to visit University of Melbourne in February-March 2023.

## 2 Macdonald polynomials for $S L_{2}$ and for $G L_{2}$

In this section we introduce the electronic and bosonic Macdonald polynomials for types $S L_{2}$ and $G L_{2}$ and explain the relation between them. We show how product rules for type $S L_{2}$ Macdonald polynomials convert to product rules for type $G L_{2}$ Macdonald polynomials. In Section 2.4 we check that the Pieri rule for multiplying bosonic polynomials given in Mac, Ch. VI (6.24)] matches with the rule for the product $P_{\ell} P_{m}$ stated in the introduction (and proved in Theorem 6.2).

For working with Macdonald polynomials, fix $q, t \in \mathbb{C}^{\times}$such that the only pair of integers $(a, b)$ for which $q^{a} t^{b}=1$ is the pair $(a, b)=(0,0)$. Alternatively, one may think of $q$ and $t$ as parameters and to work with polynomials over the coefficient ring $\mathbb{C}(q, t)$ instead of over the coefficient ring $\mathbb{C}$.

### 2.1 Macdonald polynomials for type $S L_{2}$

The electronic Macdonald polynomials for type $S L_{2}$,

$$
E_{\ell}(x) \in \mathbb{C}\left[x, x^{-1}\right], \quad \text { are indexed by } \quad \ell \in \mathbb{Z}
$$

and the bosonic Macdonald polynomials for type $S L_{2}$,

$$
P_{\ell}(x) \in \mathbb{C}\left[x, x^{-1}\right], \quad \text { are indexed by } \quad \ell \in \mathbb{Z}_{\geq 0}
$$

Let $\ell \in \mathbb{Z}_{\geq 0}$. Using the notation of (1.1), the electronic Macdonald polynomials are given by

$$
E_{-\ell}(x)=\sum_{j=0}^{\ell}\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} \frac{\left(1-t q^{j}\right)}{\left(1-t q^{\ell}\right)} x^{\ell-2 j} \quad \text { and } \quad E_{\ell}(x)=\sum_{j=0}^{\ell-1}\left[\begin{array}{c}
\ell-1 \\
j
\end{array}\right]_{q, t} \frac{q^{\ell-1-j}\left(1-t q^{j}\right)}{\left(1-t q^{\ell-1}\right)} x^{-\ell+2 j+2}
$$

and the bosonic Macdonald polynomials are given by

$$
P_{\ell}(x)=\sum_{j=0}^{\ell}\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} x^{\ell-2 j}
$$

See $\$ 7.12$ for the connection between these formulas and the formulas in Mac03, (6.2.7), (6.2.8), (6.3.7)].

### 2.2 Macdonald polynomials for type $G L_{2}$

The electronic Macdonald polynomials for type $G L_{2}$,

$$
E_{\left(\mu_{1}, \mu_{2}\right)}\left(x_{1}, x_{2}\right) \in \mathbb{C}\left[x_{1}, x_{1}^{-1}, x_{2}, x_{2}^{-1}\right], \quad \text { are indexed by }\left(\mu_{1}, \mu_{2}\right) \in \mathbb{Z}^{2}
$$

and the bosonic Macdonald polynomials for type $G L_{2}$,

$$
P_{\left(\lambda_{1}, \lambda_{2}\right)}\left(x_{1}, x_{2}\right) \in \mathbb{C}\left[x_{1}, x_{1}^{-1}, x_{2}, x_{2}^{-1}\right], \quad \text { are indexed by } \lambda=\left(\lambda_{1}, \lambda_{2}\right) \text { with } \lambda_{1}, \lambda_{2} \in \mathbb{Z} \text { and } \lambda_{1} \geq \lambda_{2} .
$$

The $E_{\left(\mu_{1}, \mu_{2}\right)}\left(x_{1}, x_{2}\right)$ and $P_{\left(\lambda_{1}, \lambda_{2}\right)}\left(x_{1}, x_{2}\right)$ are given, in terms of the Macdonald polynomials for type $S L_{2}$, by

$$
\begin{align*}
& E_{\left(\mu_{1}, \mu_{2}\right)}\left(x_{1}, x_{2}\right)=\left(x_{1}^{\frac{1}{2}} x_{2}^{\frac{1}{2}}\right)^{\mu_{1}+\mu_{2}} E_{\mu_{1}-\mu_{2}}\left(x_{1}^{\frac{1}{2}} x_{2}^{-\frac{1}{2}}\right) \quad \text { and } \\
& P_{\left(\lambda_{1}, \lambda_{2}\right)}\left(x_{1}, x_{2}\right)=\left(x_{1}^{\frac{1}{2}} x_{2}^{\frac{1}{2}}\right)^{\lambda_{1}+\lambda_{2}} P_{\lambda_{1}-\lambda_{2}}\left(x_{1}^{\frac{1}{2}} x_{2}^{-\frac{1}{2}}\right) . \tag{2.1}
\end{align*}
$$

Equivalently, if $m_{1}, m_{2} \in \frac{1}{2} \mathbb{Z}$ then $\left(x_{1}^{\frac{1}{2}} x_{2}^{\frac{1}{2}}\right)^{2 m_{2}} E_{2 m_{1}}\left(x_{1}^{\frac{1}{2}} x_{2}^{-\frac{1}{2}}\right)=E_{\left(m_{1}+m_{2},-m_{1}+m_{2}\right)}\left(x_{1}, x_{2}\right)$. Another way to express this conversion is to let

$$
\begin{equation*}
y=x_{1}^{\frac{1}{2}} x_{2}^{\frac{1}{2}} \text { and } x=x_{1}^{\frac{1}{2}} x_{2}^{-\frac{1}{2}} \quad \text { so that } \quad x_{1}=y x \text { and } x_{2}=y x^{-1} . \tag{2.2}
\end{equation*}
$$

Then the Macdonald polynomials for type $S L_{2}$ are given in terms of the Macdonald polynomials for type $G L_{2}$ by

$$
\begin{equation*}
E_{2 m_{1}}(x)=y^{-2 m_{2}} E_{\left(m_{1}+m_{2},-m_{1}+m_{2}\right)}\left(y x, y x^{-1}\right)=E_{\left(m_{1}+m_{2},-m_{1}+m_{2}\right)}\left(x, x^{-1}\right), \tag{2.3}
\end{equation*}
$$

for $m_{1}, m_{2} \in \frac{1}{2} \mathbb{Z}$. The following picture illustrates the conversion between $E_{m}$ and $E_{\left(\mu_{1}, \mu_{2}\right)}$ given by the formulas (2.3) and (2.1).


### 2.3 Converting product rules for type $S L_{2}$ to product formulas for type $G L_{2}$

Assume that multiplication rules for multiplying type $S L_{2}$ Macdonald polynomials are given by

$$
E_{\ell}(x) P_{m}(x)=\sum_{j=0}^{\ell-1} a_{j}^{(\ell)}\left(q^{m}\right) E_{m+\ell-2 j}(x)+\sum_{j=0}^{\ell-1} b_{j}^{(\ell)}\left(q^{m}\right) E_{-m+\ell-2 j}(x),
$$

and

$$
P_{\ell}(x) P_{m}(x)=\sum_{j=0}^{\ell} c_{j}^{(\ell)}\left(q^{m}\right) E_{m+\ell-2 j}(x)
$$

Assume $\left(\nu_{1}, \nu_{2}\right) \in \mathbb{Z}^{2}$ and $\left(\mu_{1}, \mu_{2}\right) \in \mathbb{Z}^{2}$ with $\mu_{1} \geq \mu_{2}$. Let

$$
\ell=\nu_{1}-\nu_{2} \quad \text { and } \quad m=\mu_{1}-\mu_{2} \quad \text { and } \quad d=\mu_{1}+\mu_{2}+\nu_{1}+\nu_{2}
$$

Then

$$
\begin{gathered}
m+\ell-2 j+d=2\left(\mu_{1}+\nu_{1}-j\right), \\
-(m+\ell-2 j)+d=2\left(\mu_{2}+\nu_{2}+j\right),
\end{gathered} \quad \text { and } \quad \begin{gathered}
-m+\ell-2 j+d=2\left(\mu_{2}+\nu_{1}-j\right), \\
-(-m+\ell-2 j)+d=2\left(\mu_{1}+\nu_{2}+j\right) .
\end{gathered}
$$

Thus, with $y=x_{1}^{\frac{1}{2}} x_{2}^{\frac{1}{2}}$ and $x=x_{1}^{\frac{1}{2}} x_{2}^{-\frac{1}{2}}$ as in (2.2), the conversions in (2.1) and (2.3) give

$$
\begin{aligned}
& P_{\left(\nu_{1}, \nu_{2}\right)}\left(x_{1}, x_{2}\right) P_{\left(\mu_{1}, \mu_{2}\right)}\left(x_{1}, x_{2}\right)=y^{\nu_{1}+\nu_{2}} P_{\ell}(x) y^{\mu_{1}+\mu_{2}} P_{m}(x)=\sum_{j=0}^{\nu_{1}-\nu_{2}} c_{j}^{(\ell)}\left(q^{m}\right) y^{d} P_{m+\ell-2 j}(x) \\
& =\sum_{j=0}^{\nu_{1}-\nu_{2}} c_{j}^{\left(\nu_{1}-\nu_{2}\right)}\left(q^{\mu_{1}-\mu_{2}}\right) P_{\left(\mu_{1}+\nu_{1}-j, \mu_{2}+\nu_{2}+j\right)}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& E_{\left(\nu_{1}, \nu_{2}\right)}\left(x_{1}, x_{2}\right) P_{\left(\mu_{1}, \mu_{2}\right)}\left(x_{1}, x_{2}\right)=y^{\nu_{1}+\nu_{2}} E_{\nu_{1}-\nu_{2}}(x) y^{\mu_{1}+\mu_{2}} P_{\mu_{1}-\mu_{2}}(x)=y^{d} E_{\ell}(x) P_{m}(x) \\
& =\sum_{j=0}^{\nu_{1}-\nu_{2}-1} a_{j}^{(\ell)}\left(q^{m}\right) y^{d} E_{m+\ell-2 j}(x)+\sum_{j=0}^{\nu_{1}-\nu_{2}-1} b_{j}^{(\ell)}\left(q^{m}\right) y^{d} E_{-m+\ell-2 j}(x) \\
& =\sum_{j=0}^{\nu_{1}-\nu_{2}-1} a_{j}^{\left(\nu_{1}-\nu_{2}\right)}\left(q^{\mu_{1}-\mu_{2}}\right) E_{\left(\mu_{1}+\nu_{1}-j, \mu_{2}+\nu_{2}+j\right)}\left(x_{1}, x_{2}\right) \\
& \quad+\sum_{j=0}^{\nu_{1}-\nu_{2}-1} b_{j}^{\left(\nu_{1}-\nu_{2}\right)}\left(q^{\mu_{1}-\mu_{2}}\right) E_{\left(\mu_{2}+\nu_{1}-j, \mu_{1}+\nu_{2}+j\right)}\left(x_{1}, x_{2}\right),
\end{aligned}
$$

and these are the multiplication rules for type $G L_{2}$ Macdonald polynomials.

### 2.4 Comparison of the $G L_{2}$ case to Macdonald

A horizontal strip $\lambda / \mu$ of length $\ell$ is a pair $\lambda=\left(\lambda_{1}, \lambda_{2}\right)$ and $\mu=\left(\mu_{1}, \mu_{2}\right)$ of partitions such that

$$
\mu_{2} \leq \lambda_{2} \leq \mu_{1} \leq \lambda_{1} \quad \text { and } \quad \lambda_{1}-\mu_{1}+\lambda_{2}-\mu_{2}=\ell
$$



Following [Mac, VI §6 Ex. 2a], define

$$
\left.\varphi_{\lambda / \mu}=\prod_{1 \leq i \leq j \leq \ell(\lambda)} \frac{f\left(q^{\lambda_{i}-\lambda_{j}} t^{j-i}\right.}{f\left(q^{\lambda_{i}-\mu_{j}} t^{j-i}\right.}\right) \frac{f\left(q^{\mu_{i}-\mu_{j+1}} t^{j-i}\right)}{f\left(q^{\mu_{i}-\lambda_{j+1} t^{j-i}}\right)}, \quad \text { where } \quad f(u)=\frac{(t u ; q)_{\infty}}{(q u ; q)_{\infty}}
$$

and $(z, q)_{\infty}=(1-z)(1-z q)\left(1-z q^{2}\right) \cdots$. Then Mac, VI §6 Ex. 2a] gives that

$$
\text { if } \quad g_{\ell}=\frac{(t, q)_{\ell}}{(q ; q)_{\ell}} P_{(\ell, 0)}\left(x_{1}, x_{2}\right) \quad \text { then } \quad g_{\ell} P_{\left(\mu_{1}, \mu_{2}\right)}=\sum_{\lambda} \varphi_{\lambda / \mu} P_{\left(\lambda_{1}, \lambda_{2}\right)}
$$

where the sum is over $\lambda=\left(\lambda_{1}, \lambda_{2}\right)$ such that $\lambda / \mu$ is a horizontal strip of length $\ell$. Indeed this matches our results, in view of the following Proposition.
Proposition 2.1. Let $c_{j}^{(\ell)}\left(q^{m}\right)$ be as defined in (1.2). Let $\lambda=\left(\lambda_{1}, \lambda_{2}\right)$ and $\mu=\left(\mu_{1}, \mu_{2}\right)$ be such that $\lambda / \mu$ is a horizontal strip of length $\ell$ and let $m=\mu_{1}-\mu_{2}$ and $j=\lambda_{2}-\mu_{2}$. Then

$$
\frac{(q, q)_{\ell}}{(t ; q)_{\ell}} \varphi_{\lambda / \mu}=c_{j}^{(\ell)}\left(q^{m}\right)
$$

Proof. Letting $\lambda_{i}=\mu_{i}+a_{i}$ gives

$$
\begin{aligned}
\varphi_{\lambda / \mu}= & \prod_{1 \leq i \leq j \leq \ell(\lambda)} \frac{f\left(q^{a_{i}-a_{j}} q^{\mu_{i}-\mu_{j}} t^{j-i}\right)}{f\left(q^{a_{i}} q^{\mu_{i}-\mu_{j}} t^{j-i}\right)} \frac{f\left(t^{-1} q^{\mu_{i}-\mu_{j+1}} t^{j+1-i}\right)}{f\left(t^{-1} q^{-a_{j+1}} q^{\mu_{i}-\mu_{j+1}} t^{j+1-i}\right)} \\
= & \prod_{1 \leq i \leq j \leq \ell(\lambda)} \frac{\left(t q^{a_{i}-a_{j}} q^{\mu_{i}-\mu_{j}} t^{j-i} ; q\right)_{\infty}}{\left(q q^{a_{i}-a_{j}} q^{\mu_{i}-\mu_{j}} t^{j-i} ; q\right)_{\infty}} \frac{\left(q q^{a_{i}} q^{\mu_{i}-\mu_{j}} t^{j-i} ; q\right)_{\infty}}{\left(t q^{a_{i}} q^{\mu_{i}-\mu_{j}} t^{j-i} ; q{)_{\infty}}^{(1)}\right.} \\
& \cdot \frac{\left(q^{\mu_{i}-\mu_{j+1}} t^{j+1-i} ; q\right)_{\infty}}{\left(q t^{-1} q^{\mu_{i}-\mu_{j+1}} t^{j+1-i} ; q\right)_{\infty}} \frac{\left(q t^{-1} q^{-a_{j+1}} q^{\mu_{i}-\mu_{j+1}} t^{j+1-i} ; q\right)_{\infty}}{\left(q^{-a_{j+1}} q_{i}^{\mu_{i}-\mu_{j+1}} t^{j+1-i} ; q\right)_{\infty}} \\
= & \prod_{1 \leq i \leq j \leq \ell(\lambda)} \frac{\left(t q^{a_{i}-a_{j}} q^{\mu_{i}-\mu_{j}} t^{j-i} ; q\right)_{a_{j}}}{\left(q q^{a_{i}-a_{j}} q^{\mu_{i}-\mu_{j}} t^{j-i} ; q\right)_{a_{j}}} \frac{\left(q^{-a_{j+1}} q^{\mu_{i}-\mu_{j+1}} t^{j+1-i} ; q\right)_{a_{j+1}}}{\left(q^{-a_{j+1}} q^{\mu_{i}-\mu_{j+1}} t^{j+1-i} ; q\right)_{a_{j+1}}}
\end{aligned}
$$

When $i=j$ the first factor is

$$
\frac{\left(t q^{a_{i}-a_{j}} q^{\mu_{i}-\mu_{j} t^{j-i}} ; q\right)_{a_{j}}}{\left(q q^{a_{i}-a_{j}} q^{\mu_{i}-\mu_{j}} t^{j-i} ; q\right)_{a_{j}}}=\frac{(t ; q)_{a_{j}}}{(q ; q)_{a_{j}}},
$$

and when $j+1=n$ so that $a_{j+1}=0$ and $\mu_{j+1}=0$.

$$
\frac{\left(q t^{-1} q^{-a_{j+1}} q^{\mu_{i}-\mu_{j+1}} t^{j+1-i} ; q\right)_{a_{j+1}}}{\left(q^{-a_{j+1}} q^{\mu_{i}-\mu_{j+1}} t^{j+1-i} ; q\right)_{a_{j+1}}}=\frac{\left(q t^{-1} q^{\mu_{i}} t^{j+1-i} ; q\right)_{0}}{\left(q^{\mu_{i}} t^{j+1-i} ; q\right)_{0}}=1 .
$$

Thus, when $\ell(\lambda)=2$,

$$
\varphi_{\lambda / \mu}=\frac{(t ; q)_{a_{1}}}{(q ; q)_{a_{1}}} \frac{(t ; q)_{a_{2}}}{(q ; q)_{a_{2}}} \cdot \frac{\left(t q^{a_{1}-a_{2}} q^{\mu_{1}-\mu_{2}} t^{2-1} ; q\right)_{a_{2}}}{\left(q^{a_{1}-a_{2}+1} q^{\mu_{1}-\mu_{2}} t^{2-1} ; q\right)_{a_{2}}} \cdot \frac{\left(t^{-1} q^{-a_{2}+1} q^{\mu_{1}-\mu_{2}} t^{2-1} ; q\right)_{a_{2}}}{\left(q^{-a_{2}} q^{\mu_{1}-\mu_{2}} t^{2-1} ; q\right)_{a_{2}}} .
$$

Since $m=\mu_{1}-\mu_{2}$ and $j=\lambda_{2}-\mu_{2}=a_{2}$ then $a_{1}-a_{2}=\left(a_{1}+a_{2}\right)-2 a_{2}=\ell-2 j$ and

$$
\frac{(q ; q)_{\ell}}{(t q ; q)_{\ell}} \varphi_{\lambda / \mu}=\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} \cdot \frac{\left(t^{2} q^{m} q^{\ell-2 j} ; q\right)_{j}}{\left(t q^{m} q^{\ell-2 j+1} ; q\right)_{j}} \frac{\left(q^{m} q^{-(j-1)} ; q\right)_{j}}{\left(t q^{m} q^{-j} ; q\right)_{j}}=c_{j}^{(\ell)}\left(q^{m}\right) .
$$

## 3 DAHA for $S L_{2}$ and the polynomial representation

In this section we introduce the type $S L_{2}$ double affine Hecke algebra and its polynomial representation. The double affine Hecke algebra is a source for a myriad of operators acting on polynomials. In this section we carefully establish the identites between operators that will enable us to compute products of Macdonald polynomials.

### 3.1 The double affine Hecke algebra (DAHA) for type $S L_{2}$

Fix $q^{\frac{1}{2}}, t^{\frac{1}{2}} \in \mathbb{C}^{\times}$. Following Mac03, (6.1.2), (6.1.3)], the double affine Hecke algebra for $S L_{2}$ is the $\mathbb{C}$ algebra $\tilde{H}_{\text {int }}$ generated by $T_{1}^{ \pm 1}, X^{ \pm 1}, Y^{ \pm 1}, T_{\pi}^{ \pm 1}$ with relations $T_{1} T_{1}^{-1}=T_{1}^{-1} T_{1}=1, X X^{-1}=X^{-1} X=$ $1, Y Y^{-1}=Y^{-1} Y=1, T_{\pi} T_{\pi}^{-1}=T_{\pi}^{-1} T_{\pi}=1$ and

$$
\begin{gather*}
T_{\pi}=Y T_{1}^{-1}=T_{1} Y^{-1}, \quad T_{\pi} X T_{\pi}^{-1}=q^{\frac{1}{2}} X^{-1}, \\
T_{1} X T_{1}=X^{-1}, \quad T_{1} Y^{-1} T_{1}=Y, \quad\left(T_{1}-t^{\frac{1}{2}}\right)\left(T_{1}+t^{-\frac{1}{2}}\right)=0 . \tag{3.1}
\end{gather*}
$$

It follows from the relations $T_{1} X T_{1}=X^{-1}$ and $T_{1}-T_{1}^{-1}=t^{\frac{1}{2}}-t^{-\frac{1}{2}}$ that

$$
\begin{equation*}
T_{1} X^{r}=X^{-r} T_{1}+\left(t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right) \frac{X^{r}-X^{-r}}{1-X^{2}}, \quad \text { for } r \in \mathbb{Z} \tag{3.2}
\end{equation*}
$$

As a left module for the Laurent polynomial ring $\mathbb{C}\left[Y, Y^{-1}\right]$, the double affine Hecke algebra $\tilde{H}_{\text {int }}$ has basis $\left\{X^{k} \mid k \in \mathbb{Z}\right\} \sqcup\left\{X^{k} T_{1} \mid k \in \mathbb{Z}\right\}$. Letting $\mathbb{C}(Y)$ denote the field of fractions of $\mathbb{C}\left[Y, Y^{-1}\right]$, the localized double affine Hecke algebra,

$$
\tilde{H}=\mathbb{C}(Y) \otimes_{\mathbb{C}\left[Y, Y^{-1}\right]} \tilde{H}_{\mathrm{int}},
$$

is the algebra with $\mathbb{C}(Y)$-basis $\left\{X^{k} \mid k \in \mathbb{Z}\right\} \sqcup\left\{X^{k} T_{1} \mid k \in \mathbb{Z}\right\}$ (as a left $\mathbb{C}(Y)$-module) and the relations in (3.1). Although the polynomial representation of $\tilde{H}_{\text {int }}$ (which is where the Macdonald polynomials live, see 83.2$)$ is not a $\tilde{H}$-module, there are operators on the polynomial representation which we can source from the larger algebra $\tilde{H}$. The operators which we wish to access are the intertwiners $\tau_{\pi}^{\vee}$ and $\tau_{1}^{\vee}$ and the normalized interwiners $\eta_{s_{1}}, \eta_{\pi}, \eta$ and $\eta^{-1}$, which are defined below in (3.3), (3.9), (3.10) and (3.11).

### 3.1.1 Intertwiners and the bosonic symmetrizer

The intertwiners $\tau_{1}^{\vee}$ and $\tau_{\pi}^{\vee}$ and the bosonic symmetrizer $\mathbf{1}_{0}$ are defined by

$$
\begin{equation*}
\tau_{1}^{\vee}=T_{1}+t^{-\frac{1}{2}} \frac{(1-t)}{\left(1-Y^{-2}\right)}, \quad \tau_{\pi}^{\vee}=X T_{1}, \quad \text { and } \quad \mathbf{1}_{0}=T_{1}+t^{-\frac{1}{2}} \tag{3.3}
\end{equation*}
$$

In Mac03, (6.1.6) and (6.18)], $\tau_{1}^{\vee}$ is denoted $\alpha$ and $\tau_{\pi}^{\vee}$ is denoted $\beta$.
Proposition 3.1. Then

$$
\begin{array}{cc}
\tau_{1}^{\vee} Y=Y^{-1} \tau_{1}^{\vee}, & \tau_{\pi}^{\vee} Y=Y^{-1} q^{-\frac{1}{2}} \tau_{\pi}^{\vee} \\
\left(\tau_{1}^{\vee}\right)^{2}=t^{-1} \frac{\left(1-t Y^{2}\right)\left(1-t Y^{-2}\right)}{\left(1-Y^{2}\right)\left(1-Y^{-2}\right)}, & \left(\tau_{\pi}^{\vee}\right)^{2}=1, \\
T_{1} \mathbf{1}_{0}=\mathbf{1}_{0} T_{1}=t^{\frac{1}{2}} \mathbf{1}_{0}, \quad \mathbf{1}_{0} \tau_{1}^{\vee}=\mathbf{1}_{0} t^{-\frac{1}{2}} \frac{\left(1-t Y^{-2}\right)}{\left(1-Y^{-2}\right)}, & \tau_{1}^{\vee} \mathbf{1}_{0}=t^{-\frac{1}{2}} \frac{\left(1-t Y^{-2}\right)}{\left(1-Y^{-2}\right)} \mathbf{1}_{0}, \\
\mathbf{1}_{0}^{2}=\mathbf{1}_{0}\left(t^{\frac{1}{2}}+t^{-\frac{1}{2}}\right) \quad \text { and } \quad \mathbf{1}_{0}=\tau_{1}^{\vee}+t^{-\frac{1}{2}} \frac{\left(1-t Y^{2}\right)}{\left(1-Y^{2}\right)}=\tau_{1}^{\vee}+t^{\frac{1}{2}} \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} \tag{3.7}
\end{array}
$$

Proof. Using the relations in (3.1), $\left(\tau_{\pi}^{\vee}\right)^{2}=X T_{1} X T_{1}=X X^{-1}=1$ and

$$
\begin{aligned}
\tau_{\pi}^{\vee} Y & =X T_{1} Y=T_{1}^{-1} X^{-1} Y=T_{1}^{-1} q^{-\frac{1}{2}} T_{\pi} X T_{\pi}^{-1} Y \\
& =T_{1}^{-1} q^{-\frac{1}{2}} T_{\pi} X T_{\pi}^{-1} T_{\pi} T_{1}=q^{-\frac{1}{2}} T_{1}^{-1} T_{\pi} X T_{1}=q^{-\frac{1}{2}} T_{1}^{-1} T_{\pi} \tau_{\pi}^{\vee}=q^{-\frac{1}{2}} Y^{-1} \tau_{\pi}^{\vee}
\end{aligned}
$$

Using

$$
\begin{align*}
\tau_{1}^{\vee} & =T_{1}+t^{-\frac{1}{2}} \frac{(1-t)}{\left(1-Y^{-2}\right)}=T_{1}^{-1}+\left(t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right)+t^{-\frac{1}{2}} \frac{(1-t)}{\left(1-Y^{-2}\right)} \\
& =T_{1}^{-1}+(1-t) \frac{-t^{-\frac{1}{2}}\left(1-Y^{-2}\right)+t^{-\frac{1}{2}}}{\left(1-Y^{-2}\right)}=T_{1}^{-1}+t^{-\frac{1}{2}} \frac{(1-t) Y^{-2}}{\left(1-Y^{-2}\right)} \tag{3.8}
\end{align*}
$$

then

$$
\begin{aligned}
\tau_{1}^{\vee} Y & =\left(T_{1}^{-1}+t^{-\frac{1}{2}} \frac{(1-t) Y^{-2}}{\left(1-Y^{-2}\right)}\right) Y=T_{1}^{-1} Y+t^{-\frac{1}{2}} \frac{(1-t) Y^{-1}}{\left(1-Y^{-2}\right)} \\
& =Y^{-1} T_{1}+t^{-\frac{1}{2}} \frac{(1-t) Y^{-1}}{\left(1-Y^{-2}\right)}=Y^{-1}\left(T_{1}+t^{-\frac{1}{2}} \frac{(1-t)}{\left(1-Y^{-2}\right)}\right)=Y^{-1} \tau_{1}^{\vee}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\tau_{1}^{\vee}\right)^{2} & =\left(T_{1}+t^{-\frac{1}{2}} \frac{(1-t)}{\left(1-Y^{-2}\right)}\right) \tau_{1}^{\vee}=T_{1} \tau_{1}^{\vee}+\tau_{1}^{\vee} t^{-\frac{1}{2}} \frac{(1-t)}{\left(1-Y^{2}\right)} \\
& =T_{1}\left(T_{1}^{-1}+t^{-\frac{1}{2}} \frac{(1-t) Y^{-2}}{\left(1-Y^{-2}\right)}\right)+\left(T_{1}+t^{-\frac{1}{2}} \frac{(1-t)}{\left(1-Y^{-2}\right)}\right) t^{-\frac{1}{2}} \frac{(1-t)}{\left(1-Y^{2}\right)} \\
& =1+t^{-1} \frac{(1-t)}{\left(1-Y^{-2}\right)} \frac{(1-t)}{\left(1-Y^{2}\right)}=\frac{\left(1-Y^{-2}-Y^{2}+1+t^{-1}-2+t\right)}{\left(1-Y^{2}\right)\left(1-Y^{-2}\right)} \\
& =t^{-1} \frac{\left(1-t Y^{2}\right)\left(1-t Y^{-2}\right)}{\left(1-Y^{2}\right)\left(1-Y^{-2}\right)}
\end{aligned}
$$

Since $\mathbf{1}_{0}=T_{1}+t^{-\frac{1}{2}}=T_{1}-T_{1}^{-1}+T_{1}^{-1}+t^{-\frac{1}{2}}=\left(t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right)+T_{1}^{-1}+t^{-\frac{1}{2}}=T_{1}^{-1}+t^{\frac{1}{2}}$ then

$$
\mathbf{1}_{0} T_{1}=\left(T_{1}^{-1}+t^{\frac{1}{2}}\right) T_{1}=1+t^{\frac{1}{2}} T_{1}=t^{\frac{1}{2}}\left(T_{1}+t^{-\frac{1}{2}}\right)=t^{\frac{1}{2}} \mathbf{1}_{0} \quad \text { and } \quad \mathbf{1}_{0}^{2}=\mathbf{1}_{0}\left(T_{1}+t^{-\frac{1}{2}}\right)=\mathbf{1}_{0}\left(t^{\frac{1}{2}}+t^{-\frac{1}{2}}\right) .
$$

Similarly for the product $T_{1} \mathbf{1}_{0}$. Then

$$
\mathbf{1}_{0} \tau_{1}^{\vee}=\mathbf{1}_{0}\left(T_{1}+t^{-\frac{1}{2}} \frac{(1-t)}{\left(1-Y^{-2}\right)}\right)=\mathbf{1}_{0}\left(t^{\frac{1}{2}}+t^{-\frac{1}{2}} \frac{(1-t)}{\left(1-Y^{-2}\right)}\right)=\mathbf{1}_{0} t^{-\frac{1}{2}} \frac{\left(1-t Y^{-2}\right)}{\left(1-Y^{-2}\right)}
$$

and similarly for the product $\tau_{1}^{\vee} \mathbf{1}_{0}$. Finally

$$
\mathbf{1}_{0}=\tau_{1}^{\vee}-t^{-\frac{1}{2}} \frac{(1-t)}{\left(1-Y^{-2}\right)}+t^{-\frac{1}{2}}=\tau_{1}^{\vee}+t^{-\frac{1}{2}} \frac{\left(t-Y^{-2}\right)}{\left(1-Y^{-2}\right)}=\tau_{1}^{\vee}+t^{-\frac{1}{2}} \frac{\left(1-t Y^{2}\right)}{\left(1-Y^{2}\right)}
$$

### 3.1.2 Normalized intertwiners

Define normalized intertwiners

$$
\begin{equation*}
\eta_{\pi}=\tau_{\pi}^{\vee} \quad \text { and } \quad \eta_{s_{1}}=t^{\frac{1}{2}} \frac{\left(1-Y^{-2}\right)}{\left(1-t Y^{-2}\right)} \tau_{1}^{\vee} \tag{3.9}
\end{equation*}
$$

Then define

$$
\begin{align*}
\eta & =\eta_{\pi} \eta_{s_{1}} \tag{3.10}
\end{align*}=\tau_{\pi}^{\vee} t^{\frac{1}{2}} \frac{\left(1-Y^{-2}\right)}{\left(1-t Y^{-2}\right)} \tau_{1}^{\vee}=t^{\frac{1}{2}} \frac{\left(1-Y^{2} q\right)}{\left(1-t Y^{2} q\right)} \tau_{\pi}^{\vee} \tau_{1}^{\vee} .
$$

Warning: Although $\eta$ and $\eta^{-1}$ are inverses of each other as elements of $\tilde{H}$, and these are well defined operators on the polynomial representation (see Proposition 3.3), as operators on the polynomial representation $\eta$ and $\eta^{-1}$ are not invertible operators.
Proposition 3.2. The following relations hold in $\tilde{H}$ :

$$
\begin{gather*}
\eta_{\pi}^{2}=1, \quad \eta_{s_{1}}^{2}=1, \quad \eta \eta_{s_{1}}=\eta_{s_{1}} \eta^{-1}  \tag{3.12}\\
\eta_{\pi} Y=Y^{-1} q^{-\frac{1}{2}} \eta_{\pi},  \tag{3.13}\\
\eta_{s_{1}} Y=Y^{-1} \eta_{s_{1}}, \quad \eta Y=Y q^{\frac{1}{2}} \eta  \tag{3.14}\\
\mathbf{1}_{0}=\left(1+\eta_{s_{1}}\right) t^{-\frac{1}{2}} \frac{\left(1-t Y^{2}\right)}{\left(1-Y^{2}\right)}, \quad \eta_{s_{1}} \mathbf{1}_{0}=\mathbf{1}_{0}, \quad \mathbf{1}_{0} \eta_{s_{1}}=\mathbf{1}_{0} t^{-1} \frac{\left(1-t Y^{-2}\right)}{\left(1-t^{-1} Y^{-2}\right)} .
\end{gather*}
$$

Proof. From (3.5), $\eta_{\pi}^{2}=\left(\tau_{\pi}^{\vee}\right)^{2}=1$. Using $\tau_{1}^{\vee} Y=Y^{-1} \tau_{1}^{\vee}$ and the formula for $\left(\tau_{1}^{\vee}\right)^{2}$ in (3.5) gives

$$
\begin{aligned}
\eta_{s_{1}}^{2} & =t^{\frac{1}{2}} \frac{\left(1-Y^{-2}\right)}{\left(1-t Y^{-2}\right)} \tau_{1}^{\vee} \frac{1}{2} \frac{\left(1-Y^{-2}\right)}{\left(1-t Y^{-2}\right)} \tau_{1}^{\vee}=t \frac{\left(1-Y^{-2}\right)}{\left(1-t Y^{-2}\right)} \frac{\left(1-Y^{2}\right)}{\left(1-t Y^{2}\right)} \tau_{1}^{\vee} \tau_{1}^{\vee} \\
& =t \frac{\left(1-Y^{-2}\right)}{\left(1-t Y^{-2}\right)} \frac{\left(1-Y^{2}\right)}{\left(1-t Y^{2}\right)} \cdot t^{-1} \frac{\left(1-t Y^{2}\right)\left(1-t Y^{-2}\right)}{\left(1-Y^{2}\right)\left(1-Y^{-2}\right)}=1
\end{aligned}
$$

Then

$$
\eta \eta_{s_{1}}=\eta_{\pi} \eta_{s_{1}} \eta_{s_{1}}=\eta_{\pi}=\eta_{s_{1}} \eta_{s_{1}} \eta_{\pi}=\eta_{s_{1}} \eta^{-1} .
$$

The relations $\eta_{\pi} Y=Y^{-1} q^{-\frac{1}{2}} \eta_{\pi}$ and $\eta_{s_{1}} Y=Y^{-1} \eta_{s_{1}}$ follow from (3.4) and

$$
\eta Y=\eta_{\pi} \eta_{s_{1}} Y=\eta_{\pi} Y^{-1} \eta_{s_{1}}=Y q^{\frac{1}{2}} \eta_{\pi} \eta_{s_{1}}=Y q^{\frac{1}{2}} \eta
$$

Using (3.7),

$$
\mathbf{1}_{0}=\tau_{1}^{\vee}+t^{-\frac{1}{2}} \frac{\left(1-t Y^{2}\right)}{\left(1-Y^{2}\right)}=\left(t^{\frac{1}{2}} \tau_{1}^{\vee} \frac{\left(1-Y^{2}\right)}{\left(1-t Y^{2}\right)}+1\right) \cdot t^{-\frac{1}{2}} \frac{\left(1-t Y^{2}\right)}{\left(1-Y^{2}\right)}=\left(\eta_{s_{1}}+1\right) t^{-\frac{1}{2}} \frac{\left(1-t Y^{2}\right)}{\left(1-Y^{2}\right)}
$$

By the last identity in (3.6),

$$
\eta_{s_{1}} \mathbf{1}_{0}=t^{\frac{1}{2}} \frac{\left(1-Y^{-2}\right)}{\left(1-t Y^{-2}\right)} \tau_{1}^{\vee} \mathbf{1}_{0}=t^{\frac{1}{2}} \frac{\left(1-Y^{-2}\right)}{\left(1-t Y^{-2}\right)} \cdot t^{-\frac{1}{2}} \frac{\left(1-t Y^{-2}\right)}{\left(1-Y^{-2}\right)} \mathbf{1}_{0}=\mathbf{1}_{0}
$$

and, by the second identity in (3.6),

$$
\mathbf{1}_{0} \eta_{s_{1}}=\mathbf{1}_{0} t^{\frac{1}{2}} \frac{\left(1-Y^{-2}\right)}{\left(1-t Y^{-2}\right)} \tau_{1}^{\vee}=\mathbf{1}_{0} \tau_{1}^{\vee} t^{\frac{1}{2}} \frac{\left(1-Y^{2}\right)}{\left(1-t Y^{2}\right)}=\mathbf{1}_{0} t^{-\frac{1}{2}} \frac{\left(1-t Y^{-2}\right)}{\left(1-Y^{-2}\right)} t^{\frac{1}{2}} \frac{\left(1-Y^{2}\right)}{\left(1-t Y^{2}\right)}=\mathbf{1}_{0} t^{-1} \frac{\left(1-t Y^{-2}\right)}{\left(1-t^{-1} Y^{-2}\right)}
$$

### 3.2 The polynomial representation $\tilde{H}_{\text {int }} \mathbf{1}_{Y}$

Let $\tilde{H}_{\mathrm{int}} \mathbf{1}_{Y}$ be the $\tilde{H}_{\text {int }}$ module generated by a single generator $\mathbf{1}_{Y}$ with relations

$$
T_{1} \mathbf{1}_{Y}=t^{\frac{1}{2}} \mathbf{1}_{Y} \quad \text { and } \quad T_{\pi} \mathbf{1}_{Y}=\mathbf{1}_{Y}
$$

Then $Y \mathbf{1}_{Y}=T_{\pi} T_{1} \mathbf{1}_{Y}=t^{\frac{1}{2}} \mathbf{1}_{Y}$ and

$$
\tilde{H}_{\text {int }} \mathbf{1}_{Y} \quad \text { has } \mathbb{C} \text {-basis } \quad\left\{X^{k} \mathbf{1}_{Y} \mid k \in \mathbb{Z}\right\}
$$

Using the second relation in (3.1) and (3.2), the action of $\tilde{H}_{\mathrm{int}}$ in the basis $\left\{X^{k} \mathbf{1}_{Y} \mid k \in \mathbb{Z}\right\}$ is given explicitly by

$$
\begin{gathered}
X X^{r} \mathbf{1}_{Y}=X^{r+1} \mathbf{1}_{Y}, \quad T_{\pi} X^{r} \mathbf{1}_{Y}=q^{\frac{r}{2}} X^{-r} \mathbf{1}_{Y} \quad \text { and } \\
T_{1} X^{r} \mathbf{1}_{Y}=t^{\frac{1}{2}} X^{-r} \mathbf{1}_{Y}+\left(t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right) \frac{X^{r}-X^{-r}}{1-X^{2}} \mathbf{1}_{Y}, \quad \text { for } r \in \mathbb{Z} .
\end{gathered}
$$

The electronic Macdonald polynomials are the elements $E_{m}(X) \in \mathbb{C}\left[X, X^{-1}\right], m \in \mathbb{Z}$, determined by

$$
\begin{align*}
Y E_{m}(X) \mathbf{1}_{Y} & =t^{-\frac{1}{2}} q^{\frac{-m}{2}} E_{m}(X) \mathbf{1}_{Y}, \quad \text { if } m \in \mathbb{Z}_{>0}, \text { and } \\
Y E_{-m}(X) \mathbf{1}_{Y} & =t^{\frac{1}{2}} q^{\frac{m}{2}} E_{-m}(X) \mathbf{1}_{Y}, \quad \text { if } m \in \mathbb{Z}_{\geq 0}, \tag{3.15}
\end{align*}
$$

with normalization such that the coefficient of $X^{m}$ in $E_{m}(X)$ is 1 . The electronic Macdonald polynomials are given recursively (see [Mac03, (6.2.3)]) by $E_{0}(X)=1$ and $E_{1}(X)=X$ and

$$
\begin{array}{ll}
\tau_{1}^{\vee} E_{r}(X) \mathbf{1}_{Y}=t^{-\frac{1}{2}} E_{-r}(X) \mathbf{1}_{Y}, & \tau_{1}^{\vee} E_{-r}(X) \mathbf{1}_{Y}=t^{-\frac{1}{2}} \frac{\left(1-t Y^{2}\right)\left(1-t Y^{-2}\right)}{\left(1-Y^{2}\right)\left(1-Y^{-2}\right)} E_{r}(X) \mathbf{1}_{Y}, \\
\tau_{\pi}^{\vee} E_{r}(X) \mathbf{1}_{Y}=t^{-\frac{1}{2}} E_{-(r-1)}(X) \mathbf{1}_{Y} . & \tau_{\pi}^{\vee} E_{-r}(X) \mathbf{1}_{Y}=t^{\frac{1}{2}} E_{r+1}(X) \mathbf{1}_{Y},
\end{array}
$$

for $r \in \mathbb{Z}_{>0}$. Note that $\tau_{\pi}^{\vee} E_{0}(X) \mathbf{1}_{Y}=X T_{1} \mathbf{1}_{Y}=t^{\frac{1}{2}} X \mathbf{1}_{Y}=t^{\frac{1}{2}} E_{1}(X) \mathbf{1}_{Y}$ and

$$
\tau_{\pi}^{\vee} E_{1}(X) \mathbf{1}_{Y}=X T_{1} X \mathbf{1}_{Y}=t^{-\frac{1}{2}} X T_{1} X T_{1} \mathbf{1}_{Y}=t^{-\frac{1}{2}} X X^{-1} \mathbf{1}_{Y}=t^{-\frac{1}{2}} E_{0}(X) \mathbf{1}_{Y}
$$

and

$$
\begin{equation*}
\tau_{1}^{\vee} E_{0}(X) \mathbf{1}_{Y}=\left(T_{1}+t^{-\frac{1}{2}} \frac{(1-t)}{\left(1-Y^{-2}\right)}\right) \mathbf{1}_{Y}=\left(t^{\frac{1}{2}}+t^{-\frac{1}{2}} \frac{(1-t)}{\left(1-t^{-1}\right)}\right) \mathbf{1}_{Y}=\left(t^{\frac{1}{2}}-t^{\frac{1}{2}}\right) \mathbf{1}_{Y}=0 \tag{3.17}
\end{equation*}
$$

As pictured below, the elements $\tau_{1}^{\vee}$ and $\tau_{\pi}^{\vee}$ can be used to recursively construct the electronic Macdonald polynomials.


The bosonic Macdonald polynomials $P_{m}(X) \in \mathbb{C}\left[X, X^{-1}\right]$, for $m \in \mathbb{Z}_{\geq 0}$, can be given Mac03, (6.3.10)] by

$$
\begin{equation*}
P_{m}(X) \mathbf{1}_{Y}=E_{-m}(X) \mathbf{1}_{Y}+\frac{t\left(1-q^{m}\right)}{\left(1-t q^{m}\right)} E_{m}(X) \mathbf{1}_{Y} \tag{3.18}
\end{equation*}
$$

Applying (3.15) to (3.18) and using $\tau_{1}^{\vee} E_{r}(X) \mathbf{1}_{Y}=t^{-\frac{1}{2}} E_{-r}(X) \mathbf{1}_{Y}$ gives, for $m \in \mathbb{Z}_{>0}$,

$$
\begin{equation*}
P_{m}(X) \mathbf{1}_{Y}=t^{\frac{1}{2}} \tau_{1}^{\vee} E_{m}(X) \mathbf{1}_{Y}+t \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} E_{m}(X) \mathbf{1}_{Y}=t^{\frac{1}{2}} \mathbf{1}_{0} E_{m}(X) \mathbf{1}_{Y}, \tag{3.19}
\end{equation*}
$$

where the last equality follows from (3.7).
The following Proposition analyzes the action of $\eta$ and $\eta^{-1}$ as operators on the polynomial representation. It shows that $\eta$ acts as a raising operator with $\eta E_{0}(X) \mathbf{1}_{Y}=0$ and that $\eta^{-1}$ acts as a lowering operator with $\eta^{-1} E_{1}(X) \mathbf{1}_{Y}=0$. The operator $\eta$ is pictured in blue and the operator $\eta^{-1}$ is pictured in red. The coefficients below and above the arrows provide the constants which appear in the formulas for $\eta E_{m}, \eta_{E_{m}}, \eta^{-1} E_{m}$ and $\eta^{-1} E_{m}$ which are derived in (3.25), (3.26), (3.27) and (3.28).


It is important to note that $\eta$ and $\eta^{-1}$ are not invertible as operators on the polynomial representation (even though they are inverses of each other as elements of $\tilde{H}$ ). This phenomenon is of the same nature as the fact that $\left(1-t^{-1} Y\right)$ is a well defined element of $\tilde{H}$ with inverse $\frac{1}{\left(1-t^{-1} Y\right)}$ in $\tilde{H}$, and $\left(1-t^{-1} Y\right)$ is a well defined operator on $\mathbb{C}\left[X, X^{-1}\right]$ that is not invertible as an operator on the polynomial representation $\mathbb{C}\left[X, X^{-1}\right]$.

The identities

$$
\begin{gather*}
\eta^{-(\ell-j)} \eta^{j} E_{m}(X) \mathbf{1}_{Y}=t^{\frac{1}{2}(\ell-2 j)} \cdot \operatorname{ev}_{m}\left(\frac{\left(t^{-1} Y^{-2} q^{-(\ell-2 j)} ; q\right)_{\ell-j}}{\left(Y^{-2} q^{-(\ell-2 j)} ; q\right)_{\ell-j}} \cdot \frac{\left(Y^{-2} ; q\right)_{j}}{\left(t^{-1} Y^{-2} ; q\right)_{j}}\right) E_{m-(\ell-2 j)}(X) \mathbf{1}_{Y}  \tag{3.21}\\
\eta^{j} \eta^{-(\ell-j)} E_{-m}(X) \mathbf{1}_{Y}=t^{-\frac{1}{2}(\ell-2 j)} \cdot \operatorname{ev}_{m}\left(\frac{\left(t^{-1} Y^{-2} q^{\ell-2 j+1} ; q\right)_{j}}{\left(Y^{-2} q^{\ell-2 j+1} ; q\right)_{j}} \frac{\left(Y^{-2} q ; q\right)_{\ell-j}}{\left(t^{-1} Y^{-2} q ; q\right)_{\ell-j}}\right) E_{-m-(\ell-2 j)}(X) \mathbf{1}_{Y} . \tag{3.22}
\end{gather*}
$$

follow from (3.24) and (3.23) of the following Proposition by replacing $j$ with $\ell-j$ (we keep the same conditions on $j$ and $\ell$ as in Proposition (3.3). They will be used in the proof of Theorem 6.2,

Proposition 3.3. As in (3.10) and (3.11), let

$$
\eta=t^{\frac{1}{2}} \frac{\left(1-Y^{2} q\right)}{\left(1-t Y^{2} q\right)} \tau_{\pi}^{\vee} \tau_{1}^{\vee} \quad \text { and } \quad \eta^{-1}=t^{\frac{1}{2}} \frac{\left(1-Y^{-2}\right)}{\left(1-t Y^{-2}\right)} \tau_{1}^{\vee} \tau_{\pi}^{\vee}
$$

Let $\mathrm{ev}_{m}: \mathbb{C}\left[Y, Y^{-1}\right] \rightarrow \mathbb{C}$ be the homomorphism given by $\mathrm{ev}_{m}(Y)=t^{-\frac{1}{2}} q^{-\frac{1}{2} m}$ and extend $\mathrm{ev}_{m}$ to elements of $\mathbb{C}(Y)$ such that the denominator does not evaluate to 0 .
If $\ell \in \mathbb{Z}_{\geq 0}$ and $m \in \mathbb{Z}_{>0}$ and $j \in\{0, \ldots, \ell\}$ then

$$
\begin{align*}
\eta^{-j} \eta^{\ell-j} E_{m}(X) \mathbf{1}_{Y} & =t^{-\frac{1}{2}(\ell-2 j)} \cdot \operatorname{ev}_{m}\left(\frac{\left(t^{-1} Y^{-2} q^{\ell-2 j} ; q\right)_{j}}{\left(Y^{-2} q^{\ell-2 j} ; q\right)_{j}} \cdot \frac{\left(Y^{-2} ; q\right)_{\ell-j}}{\left(t^{-1} Y^{-2} ; q\right)_{\ell-j}}\right) E_{m+\ell-2 j}(X) \mathbf{1}_{Y},  \tag{3.23}\\
\eta^{\ell-j} \eta^{-j} E_{-m}(X) \mathbf{1}_{Y} & =t^{\frac{1}{2}(\ell-2 j)} \cdot \operatorname{ev}_{m}\left(\frac{\left(t^{-1} Y^{-2} q^{-(\ell-2 j)+1} ; q\right)_{\ell-j}}{\left(Y^{-2} q^{-(\ell-2 j)+1} ; q\right)_{\ell-j}} \frac{\left(Y^{-2} q ; q\right)_{j}}{\left(t^{-1} Y^{-2} q ; q\right)_{j}}\right) E_{-m+\ell-2 j}(X) \mathbf{1}_{Y} \tag{3.24}
\end{align*}
$$

Proof. Assume $m \in \mathbb{Z}_{>0}$. By (3.16) and (3.15),

$$
\begin{align*}
\eta E_{m}(X) \mathbf{1}_{Y} & =t^{\frac{1}{2}} \frac{\left(1-Y^{2} q\right)}{\left(1-t Y^{2} q\right)} \tau_{\pi}^{\vee} \tau_{1}^{\vee} E_{m}(X) \mathbf{1}_{Y}=t^{\frac{1}{2}} \frac{\left(1-Y^{2} q\right)}{\left(1-t Y^{2} q\right)} \tau_{\pi}^{\vee} t^{-\frac{1}{2}} E_{-m}(X) \mathbf{1}_{Y} \\
& =t^{\frac{1}{2}} t^{-\frac{1}{2}} \frac{\left(1-Y^{2} q\right)}{\left(1-t Y^{2} q\right)} t^{\frac{1}{2}} E_{m+1}(X) \mathbf{1}_{Y}=t^{\frac{1}{2}} \frac{\left(1-t^{-1} q^{-(m+1)} q\right)}{\left(1-t t^{-1} q^{-(m+1)} q\right)} E_{m+1}(X) \mathbf{1}_{Y} \\
& =t^{\frac{1}{2}} \frac{\left(1-t^{-1} q^{-m}\right)}{\left(1-q^{-m}\right)} E_{m+1}(X) \mathbf{1}_{Y}=t^{-\frac{1}{2}} \frac{\left(1-t q^{m}\right)}{\left(1-q^{m}\right)} E_{m+1}(X) \mathbf{1}_{Y} \tag{3.25}
\end{align*}
$$

Thus, for $\ell \in \mathbb{Z}_{\geq 0}$ and $m \in \mathbb{Z}_{>0}$,

$$
\begin{aligned}
\eta^{\ell} E_{m}(X) \mathbf{1}_{Y} & =t^{-\frac{1}{2} \ell} \frac{\left(1-t q^{m}\right)\left(1-t q^{m+1}\right) \cdots\left(1-t q^{m+\ell-1}\right)}{\left(1-q^{m}\right)\left(1-q^{m+1}\right) \cdots\left(1-q^{m+\ell-1}\right)} E_{m+\ell}(X) \mathbf{1}_{Y} \\
& =t^{-\frac{1}{2} \ell} \operatorname{ev}_{m}\left(\frac{\left(Y^{-2} ; q\right)_{\ell}}{\left(t^{-1} Y^{-2} ; q\right)_{\ell}}\right) E_{m+\ell}(X) \mathbf{1}_{Y}
\end{aligned}
$$

Assume $m \in \mathbb{Z}_{>0}$. Using (3.16), (3.4) and (3.15),

$$
\begin{align*}
\eta E_{-m}(X) \mathbf{1}_{Y} & =t^{\frac{1}{2}} \frac{\left(1-Y^{2} q\right)}{\left(1-t Y^{2} q\right)} \tau_{\pi}^{\vee} \tau_{1}^{\vee} E_{-m}(X) \mathbf{1}_{Y}=t^{\frac{1}{2}} \frac{\left(1-Y^{2} q\right)}{\left(1-t Y^{2} q\right)} \tau_{\pi}^{\vee} t^{-\frac{1}{2}} \frac{\left(1-t Y^{2}\right)\left(1-t Y^{-2}\right)}{\left(1-Y^{2}\right)\left(1-Y^{-2}\right)} E_{m}(X) \mathbf{1}_{Y} \\
& =\frac{\left(1-q^{-m}\right)\left(1-t^{2} q^{m}\right)}{\left(1-t^{-1} q^{-m}\right)\left(1-t q^{m}\right)} \frac{\left(1-Y^{2} q\right)}{\left(1-t Y^{2} q\right)} \tau_{\pi}^{\vee} E_{m}(X) \mathbf{1}_{Y} \\
& =\frac{\left(1-q^{-m}\right)\left(1-t^{2} q^{m}\right)}{\left(1-t^{-1} q^{-m}\right)\left(1-t q^{m}\right)} \frac{\left(1-Y^{2} q\right)}{\left(1-t Y^{2} q\right)} t^{-\frac{1}{2}} E_{-(m-1)} \mathbf{1}_{Y} \\
& =\frac{\left(1-q^{-m}\right)\left(1-t^{2} q^{m}\right)}{\left(1-t^{-1} q^{-m}\right)\left(1-t q^{m}\right)} \frac{\left(1-t q^{m}\right)}{\left(1-t^{2} q^{m}\right)} t^{-\frac{1}{2}} E_{-(m-1)} \mathbf{1}_{Y}=t^{\frac{1}{2}} \frac{\left(1-q^{m}\right)}{\left(1-t q^{m}\right)} E_{-m+1}(X) \mathbf{1}_{Y} . \tag{3.26}
\end{align*}
$$

By (3.17),

$$
\eta E_{0}(X) \mathbf{1}_{Y}=t^{\frac{1}{2}} \frac{\left(1-Y^{2} q\right)}{\left(1-t Y^{2} q\right)} \tau_{\pi}^{\vee} \tau_{1}^{\vee} E_{0}(X) \mathbf{1}_{Y}=0=t^{\frac{1}{2}} \frac{\left(1-q^{0}\right)}{\left(1-t q^{0}\right)} E_{-0+1}(X) \mathbf{1}_{Y}
$$

Thus, for $\ell \in \mathbb{Z}_{\geq 0}$ and $m \in \mathbb{Z}_{\geq 0}$,

$$
\begin{aligned}
\eta^{\ell} E_{-m}(X) \mathbf{1}_{Y} & =t^{\frac{1}{2} \ell} \frac{\left(1-q^{m-\ell+1 . . m}\right)}{\left(1-t q^{m-\ell+1 . . m}\right)} E_{-m+\ell}(X) \mathbf{1}_{Y} \\
& =t^{\frac{1}{2} \ell} \operatorname{ev}_{m}\left(\frac{\left.\left(1-q^{m-\ell+1}\right) \cdots\left(1-q^{m-1}\right)\left(1-q^{m}\right)\right)}{\left(1-t q^{m-\ell+1}\right) \cdots\left(1-t q^{m-1}\right)\left(1-t q^{m}\right)}\right) E_{-m+\ell}(X) \mathbf{1}_{Y} \\
& =t^{\frac{1}{2} \ell} \operatorname{ev}_{m}\left(\frac{\left(t^{-1} Y^{-2} q^{-(\ell-1)} ; q\right) \ell}{\left(Y^{-2} q^{-(\ell-1)} ; q\right)_{\ell}}\right) E_{-m+\ell}(X) \mathbf{1}_{Y}
\end{aligned}
$$

where the right hand side evaluates to 0 if $\ell>m$ (because the denominator factors are all nonzero and the numerator contains a factor of $\left.\left(1-q^{0}\right)=1-1=0\right)$.

Assume $m \in \mathbb{Z}_{>0}$. By (3.16) and (3.15),

$$
\begin{align*}
\eta^{-1} E_{m}(X) \mathbf{1}_{Y} & =t^{\frac{1}{2}} \frac{\left(1-Y^{-2}\right)}{\left(1-t Y^{-2}\right)} \tau_{1}^{\vee} \tau_{\pi}^{\vee} E_{m}(X) \mathbf{1}_{Y}=t^{\frac{1}{2}} \frac{\left(1-Y^{-2}\right)}{\left(1-t Y^{-2}\right)} \tau_{1}^{\vee} t^{-\frac{1}{2}} E_{-(m-1)}(X) \mathbf{1}_{Y} \\
& =\frac{\left(1-Y^{-2}\right)}{\left(1-t Y^{-2}\right)} t^{-\frac{1}{2}} \frac{\left(1-t Y^{2}\right)\left(1-t Y^{-2}\right)}{\left(1-Y^{2}\right)\left(1-Y^{-2}\right)} E_{m-1}(X) \mathbf{1}_{Y} \\
& =\frac{\left(1-t q^{m-1}\right)}{\left(1-t^{2} q^{m-1}\right)} t^{-\frac{1}{2}} \frac{\left(1-q^{-(m-1)}\right)\left(1-t^{2} q^{m-1}\right)}{\left(1-t^{-1} q^{-(m-1)}\right)\left(1-t q^{m-1}\right)} E_{m-1}(X) \mathbf{1}_{Y} \\
& =t^{\frac{1}{2}} \frac{\left(1-q^{m-1}\right)}{\left(1-t q^{m-1}\right)} E_{m-1}(X) \mathbf{1}_{Y} . \tag{3.27}
\end{align*}
$$

In particular, $\eta^{-1} E_{1}(X) \mathbf{1}_{Y}=0$. Thus, for $\ell \in \mathbb{Z}_{\geq 0}$ and $m \in \mathbb{Z}_{>0}$,

$$
\begin{aligned}
\eta^{-\ell} E_{m}(X) \mathbf{1}_{Y} & =t^{\frac{1}{2} \ell} \frac{\left(1-q^{m-\ell}\right) \cdots\left(1-q^{m-2}\right)\left(1-q^{m-1}\right)}{\left(1-t q^{m-\ell}\right) \cdots\left(1-t q^{m-2}\right)\left(1-t q^{m-1}\right)} E_{m-\ell}(X) \mathbf{1}_{Y} \\
& =t^{\frac{1}{2}} \mathrm{ev}_{m}\left(\frac{\left(t^{-1} Y^{-2} q^{-\ell} ; q\right) \ell}{\left(Y^{-2} q^{-\ell} ; q\right)_{\ell}}\right) E_{m-\ell}(X) \mathbf{1}_{Y},
\end{aligned}
$$

where the right hand side evaluates to 0 if $\ell \geq m$.
Assume $m \in \mathbb{Z}_{\geq 0}$. By (3.16) and (3.15),

$$
\begin{align*}
\eta^{-1} E_{-m}(X) \mathbf{1}_{Y} & =t^{\frac{1}{2}} \frac{\left(1-Y^{-2}\right)}{\left(1-t Y^{-2}\right)} \tau_{1}^{\vee} \tau_{\pi}^{\vee} E_{-m}(X) \mathbf{1}_{Y}=t^{\frac{1}{2}} \frac{\left(1-Y^{-2}\right)}{\left(1-t Y^{-2}\right)} \tau_{1}^{\vee} t^{\frac{1}{2}} E_{m+1}(X) \mathbf{1}_{Y} \\
& =t \frac{\left(1-Y^{-2}\right)}{\left(1-t Y^{-2}\right)} t^{-\frac{1}{2}} E_{-(m+1)}(X) \mathbf{1}_{Y}=t^{\frac{1}{2}} \frac{\left(1-t^{-1} q^{-(m+1)}\right)}{\left(1-t t^{-1} q^{-(m+1)}\right)} E_{-(m+1)}(X) \mathbf{1}_{Y} \\
& =t^{\frac{1}{2}} \frac{\left(1-t^{-1} q^{-m-1}\right)}{\left(1-q^{-m-1}\right)} E_{-m-1}(X) \mathbf{1}_{Y}=t^{-\frac{1}{2}} \frac{\left(1-t q^{m+1}\right)}{\left(1-q^{m+1}\right)} E_{-m-1}(X) \mathbf{1}_{Y} \tag{3.28}
\end{align*}
$$

Thus, for $\ell \in \mathbb{Z}_{\geq 0}$ and $m \in \mathbb{Z}_{\geq 0}$,

$$
\begin{aligned}
\eta^{-\ell} E_{-m}(X) \mathbf{1}_{Y} & =t^{-\frac{1}{2} \ell} \cdot \frac{\left(1-t q^{m+1}\right)\left(1-q^{m+2}\right) \cdots\left(1-q^{m+\ell}\right)}{\left(1-q^{m+1}\right)\left(1-q^{m+2}\right) \cdots\left(1-q^{m+\ell}\right)} E_{-m-\ell}(X) \mathbf{1}_{Y} \\
& =t^{-\frac{1}{2} \ell} \operatorname{ev}_{m}\left(\frac{\left(Y^{-2} q ; q\right) \ell}{\left(t^{-1} Y^{-2} q ; q\right)_{\ell}}\right) E_{-m-\ell}(X) \mathbf{1}_{Y}
\end{aligned}
$$

### 3.3 Some identities in $\tilde{H}$

Proposition 3.4. Let $\ell \in \mathbb{Z}_{>0}$. As elements of $\tilde{H}_{\mathrm{int}}$,

$$
\begin{equation*}
E_{-\ell}(X) \mathbf{1}_{0}=t^{\frac{1}{2}}\left(T_{1}^{-1}+t^{-\frac{1}{2}} \frac{(1-t) q^{\ell} t}{\left(1-q^{\ell} t\right)}\right) E_{\ell}(X) \mathbf{1}_{0}, \quad E_{\ell+1}(X) \mathbf{1}_{0}=t^{-\frac{1}{2}} \tau_{\pi}^{\vee} E_{-\ell}(X) \mathbf{1}_{0} \tag{3.29}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{\ell}(X) \mathbf{1}_{0}=t^{\frac{1}{2}} \mathbf{1}_{\mathbf{0}} E_{\ell}(X) \mathbf{1}_{0} \tag{3.30}
\end{equation*}
$$

Additionally, $E_{1}(X) \mathbf{1}_{0}=t^{-\frac{1}{2}} \tau_{\pi}^{\vee} E_{0}(X) \mathbf{1}_{0}$.

Proof. (a) Let $Q_{1}(X), Q_{2}(X) \in \mathbb{C}\left[X, X^{-1}\right]$ be such that

$$
t^{\frac{1}{2}}\left(T_{1}^{-1}+t^{-\frac{1}{2}} \frac{(1-t) q^{\ell} t}{\left(1-q^{\ell} t\right)}\right) E_{\ell}(X)=Q_{1}(X) T_{1}+Q_{2}(X)
$$

Then, by (3.16),

$$
\begin{aligned}
E_{-\ell}(X) \mathbf{1}_{Y} & =t^{\frac{1}{2}} \tau_{1}^{\vee} E_{\ell}(X) \mathbf{1}_{Y}=t^{\frac{1}{2}}\left(T_{1}^{-1}+t^{-\frac{1}{2}} \frac{(1-t) Y^{-2}}{\left(1-Y^{-2}\right)}\right) E_{\ell}(X) \mathbf{1}_{Y} \\
& =t^{\frac{1}{2}}\left(T_{1}^{-1}+t^{-\frac{1}{2}} \frac{(1-t) q^{\ell} t}{\left(1-q^{\ell} t\right)}\right) E_{\ell}(X) \mathbf{1}_{Y}=\left(Q_{1}(X) t^{\frac{1}{2}}+Q_{2}(X)\right) \mathbf{1}_{Y}
\end{aligned}
$$

Since $\left\{X^{k} \mathbf{1}_{Y} \mid k \in \mathbb{Z}\right\}$ is a basis of $\tilde{H} \mathbf{1}_{Y}$ then $E_{-\ell}(X)=Q_{1}(X) t^{\frac{1}{2}}+Q_{2}(X)$. So

$$
\begin{aligned}
E_{-\ell}(X) \mathbf{1}_{0} & =\left(Q_{1}(X) t^{\frac{1}{2}}+Q_{2}(X)\right) \mathbf{1}_{0} \\
& =\left(Q_{1}(X) T_{1}+Q_{2}(X)\right) \mathbf{1}_{0}=t^{\frac{1}{2}}\left(T_{1}^{-1}+t^{-\frac{1}{2}} \frac{(1-t) q^{\ell} t}{\left(1-q^{\ell} t\right)}\right) E_{\ell}(X) \mathbf{1}_{0}
\end{aligned}
$$

(b) Let $Q_{1}(X), Q_{2}(X) \in \mathbb{C}\left[X, X^{-1}\right]$ such that $t^{-\frac{1}{2}} \tau_{\pi}^{\vee} E_{-\ell}(X)=X T_{1} E_{-\ell}(X)=Q_{1}(X) T_{1}+Q_{2}(X)$. Then, by (3.16),

$$
E_{\ell+1}(X) \mathbf{1}_{Y}=t^{-\frac{1}{2}} \tau_{\pi}^{\vee} E_{-\ell}(X) \mathbf{1}_{Y}=\left(Q_{1}(X) T_{1}+Q_{2}(X)\right) \mathbf{1}_{Y}=\left(Q_{1}(X) t^{\frac{1}{2}}+Q_{2}(X)\right) \mathbf{1}_{Y}
$$

Since $\left\{X^{k} \mathbf{1}_{Y} \mid k \in \mathbb{Z}\right\}$ is a basis of $\tilde{H} \mathbf{1}_{Y}$ then $E_{\ell+1}(X)=\left(Q_{1}(X) t^{\frac{1}{2}}+Q_{2}(X)\right)$. So

$$
E_{\ell+1}(X) \mathbf{1}_{0}=\left(Q_{1}(X) t^{\frac{1}{2}}+Q_{2}(X)\right) \mathbf{1}_{0}=\left(Q_{1}(X) T_{1}+Q_{2}(X)\right) \mathbf{1}_{0}=t^{-\frac{1}{2}} \tau_{\pi}^{\vee} E_{-\ell}(X) \mathbf{1}_{0}
$$

(c) Let $Q_{1}(X), Q_{2}(X)$ be such that $t^{\frac{1}{2}} \mathbf{1}_{0} E_{\ell}(X)=Q_{1}(X) T_{1}+Q_{2}(X)$. Then

$$
P_{\ell}(X) \mathbf{1}_{Y}=t^{\frac{1}{2}} \mathbf{1}_{0} E_{\ell}(X) \mathbf{1}_{Y}=\left(Q_{1}(X) T_{1}+Q_{2}(X)\right) \mathbf{1}_{Y}=\left(Q_{1}(X) t^{\frac{1}{2}}+Q_{2}(X)\right) \mathbf{1}_{Y}
$$

So $P_{\ell}(X)=\left(Q_{1}(X) t^{\frac{1}{2}}+Q_{2}(X)\right)$ and

$$
P_{\ell}(X) \mathbf{1}_{0}=\left(Q_{1}(X) t^{\frac{1}{2}}+Q_{2}(X)\right) \mathbf{1}_{0}=\left(Q_{1}(X) T_{1}+Q_{2}(X)\right) \mathbf{1}_{0}=t^{\frac{1}{2}} \mathbf{1}_{0} E_{\ell}(X) \mathbf{1}_{0}
$$

Proposition 3.5. Let

$$
c(Y)=\frac{\left(1-t Y^{2}\right)}{\left(1-Y^{2}\right)} \quad \text { and } \quad F_{\ell}(Y)=\frac{(1-t)}{\left(1-t q^{\ell}\right)} \frac{\left(1-t Y^{2} q^{\ell}\right)}{\left(1-Y^{2}\right)}, \quad \text { for } \ell \in \mathbb{Z}_{>0}
$$

Then, as elements of $\tilde{H}$,

$$
\begin{equation*}
E_{-\ell}(X) \mathbf{1}_{0}=\left(\eta_{s_{1}} c(Y)+F_{\ell}(Y)\right) E_{\ell}(X) \mathbf{1}_{0} \quad \text { and } \quad E_{\ell+1}(X) \mathbf{1}_{0}=t^{-\frac{1}{2}} \eta_{\pi} E_{-\ell}(X) \mathbf{1}_{0} \tag{3.31}
\end{equation*}
$$

Proof. Using the first identity in (3.29), (3.8) and (3.9),

$$
\begin{aligned}
E_{-\ell}(X) \mathbf{1}_{0} & =t^{\frac{1}{2}}\left(T_{1}^{-1}+t^{-\frac{1}{2}} \frac{(1-t) q^{\ell} t}{\left(1-q^{\ell} t\right)}\right) E_{\ell}(X) \mathbf{1}_{0} \\
& =t^{\frac{1}{2}}\left(\tau_{1}^{\vee}-t^{-\frac{1}{2}} \frac{(1-t) Y^{-2}}{\left(1-Y^{-2}\right)}+t^{-\frac{1}{2}} \frac{(1-t) q^{\ell} t}{\left(1-q^{\ell} t\right)}\right) E_{\ell}(X) \mathbf{1}_{0} \\
& =t^{\frac{1}{2}}\left(t^{-\frac{1}{2}} \frac{\left(1-t Y^{-2}\right)}{\left(1-Y^{-2}\right)} \eta_{s_{1}}+t^{-\frac{1}{2}} \frac{(1-t)\left(-Y^{-2}+q^{\ell} t Y^{-2}+q^{\ell} t-q^{\ell} t Y^{-2}\right)}{\left(1-Y^{-2}\right)\left(1-q^{\ell} t\right)}\right) E_{\ell}(X) \mathbf{1}_{0} \\
& =t^{\frac{1}{2}}\left(t^{-\frac{1}{2}} \eta_{s_{1}} \frac{\left(1-t Y^{2}\right)}{\left(1-Y^{2}\right)}+t^{-\frac{1}{2}} \frac{(1-t)\left(-1+q^{\ell} t Y^{2}\right)}{\left(Y^{2}-1\right)\left(1-q^{\ell} t\right)}\right) E_{\ell}(X) \mathbf{1}_{0} \\
& =\left(\eta_{s_{1}} \frac{\left(1-t Y^{2}\right)}{\left(1-Y^{2}\right)}+\frac{(1-t)\left(1-t Y^{2} q^{\ell}\right)}{\left(1-t q^{\ell}\right)\left(1-Y^{2}\right)}\right) E_{\ell}(X) \mathbf{1}_{0},
\end{aligned}
$$

where the next to last equality follows from the second identity in (3.13). Then, by (3.9), the second identity in (3.29) and (3.10),

$$
E_{\ell+1}(X) \mathbf{1}_{0}=t^{-\frac{1}{2}} \eta_{\pi} E_{-\ell}(X) \mathbf{1}_{0}=t^{-\frac{1}{2}}\left(\eta \frac{\left(1-t Y^{2}\right)}{\left(1-Y^{2}\right)}+\eta_{\pi} \frac{(1-t)\left(1-t Y^{2} q^{\ell}\right)}{\left(1-t q^{\ell}\right)\left(1-Y^{2}\right)}\right) E_{\ell}(X) \mathbf{1}_{0}
$$

## 4 Operator expansions

Let $\mathbb{C}(Y)$ be the field of fractions of $\mathbb{C}\left[Y, Y^{-1}\right]$. As indicated in Section 3.1, as a left $\mathbb{C}(Y)$-module, the localised double affine Hecke algebra

$$
\tilde{H} \quad \text { has } \mathbb{C}(Y) \text {-basis } \quad\left\{X^{k} \mid k \in \mathbb{Z}\right\} \cup\left\{X^{k} T_{1} \mid k \in \mathbb{Z}\right\} .
$$

Then $\tilde{H} \mathbf{1}_{0}$ is a $\mathbb{C}(Y)$-subspace of $\tilde{H}$ and

$$
\tilde{H} \mathbf{1}_{0} \quad \text { has } \mathbb{C}(Y) \text {-basis } \quad\left\{X^{k} \mathbf{1}_{0} \mid k \in \mathbb{Z}\right\}
$$

since, by the first relation in (3.6), $T_{1} \mathbf{1}_{0}=t^{\frac{1}{2}} \mathbf{1}_{0}$. The sets

$$
\left\{E_{k}(X) \mathbf{1}_{0} \mid k \in \mathbb{Z}\right\} \quad \text { and } \quad\left\{\eta^{k}(X) \mathbf{1}_{0} \mid k \in \mathbb{Z}\right\} \quad \text { are also } \mathbb{C}(Y) \text {-bases of } \tilde{H} \mathbf{1}_{0}
$$

and the results of this section and the next provide explicit product formulas for the transition coefficients between these bases.

### 4.1 Definition of $D_{j}^{(\ell)}(Y)$ and $K_{j}^{(\ell)}(Y)$

Define functions $D_{j}^{(\ell-1)}(Y)$ for $\ell \in \mathbb{Z}_{>0}$ and $D_{j}^{(-\ell)}(Y)$ for $\ell \in \mathbb{Z}_{\geq 0}$ by the expansions

$$
\begin{equation*}
E_{\ell}(X) \mathbf{1}_{0}=\sum_{j=0}^{\ell-1} \eta^{\ell-2 j} D_{j}^{(\ell-1)}(Y) \mathbf{1}_{0} \quad \text { and } \quad E_{-\ell}(X) \mathbf{1}_{0}=\sum_{j=0}^{\ell} \eta^{-\ell+2 j} D_{j}^{(-\ell)}(Y) \mathbf{1}_{0} \tag{4.1}
\end{equation*}
$$

Define $K_{j}^{(\ell)}(Y)$ for $\ell \in \mathbb{Z}_{\geq 0}$ and $j \in\{0,1, \ldots, \ell\}$ by

$$
\begin{equation*}
\mathbf{1}_{0} E_{\ell}(X) \mathbf{1}_{0}=\sum_{j=0}^{\ell} \mathbf{1}_{0} \eta^{\ell-2 j} K_{j}^{(\ell)}(Y) \tag{4.2}
\end{equation*}
$$

For example,

$$
\begin{aligned}
& E_{3}(X) \mathbf{1}_{0}=\quad \eta^{3} D_{0}^{(2)}(Y) \mathbf{1}_{0} \quad+\eta D_{1}^{(2)}(Y) \mathbf{1}_{0} \quad+\eta^{-1} D_{2}^{(2)}(Y) \mathbf{1}_{0}, \\
& E_{-3}(X) \mathbf{1}_{0}=\eta^{3} D_{3}^{(-3)}(Y) \mathbf{1}_{0} \quad+\eta D_{2}^{(-3)}(Y) \mathbf{1}_{0} \quad+\eta^{-1} D_{1}^{(-3)}(Y) \mathbf{1}_{0} \quad+\eta^{-3} D_{0}^{(-3)}(Y) \mathbf{1}_{0},
\end{aligned}
$$

and

$$
\mathbf{1}_{0} E_{3}(X) \mathbf{1}_{0}=\mathbf{1}_{0} \eta^{3} K_{0}^{(3)}(Y)+\mathbf{1}_{0} \eta K_{1}^{(3)}(Y)+\mathbf{1}_{0} \eta^{-1} K_{2}^{(3)}(Y)+\mathbf{1}_{0} \eta^{-3} K_{3}^{(3)}(Y)
$$

See Section 7.4 for examples of the first few of the functions $D_{j}^{(\ell)}(Y)$ and $K_{j}^{(\ell)}(Y)$. Proposition 4.2 below provides a formula for the $K_{j}^{(\ell)}(Y)$ in terms of the $D_{j}^{(\ell)}(Y)$.

### 4.2 A recursion for the $D_{j}^{(\ell)}(Y)$

The following Proposition provides recursions determining the $D_{j}^{(\ell)}(Y)$, showing that the $D_{j}^{(\ell)}$ for $\ell \in \mathbb{Z}_{\geq 0}$ and $j \in\{0, \ldots, \ell-1\}$ form something like a Pascal triangle,

\[

\]

Proposition 4.1. Let $D_{j}^{(\ell)}(Y)$ and $D_{j}^{(-\ell)}(Y)$ be as defined in (4.1).
(a) If $\ell \in \mathbb{Z}_{>0}$ and $j \in\{0, \ldots, \ell\}$ then $D_{j}^{(-\ell)}(Y)=t^{\frac{1}{2}} D_{j}^{(\ell)}\left(Y^{-1}\right)$.
(b) The $D_{j}^{(\ell)}(Y)$ satisfy, and are determined by, $D_{0}^{(0)}(Y)=t^{-\frac{1}{2}}$ and the recursion

$$
\begin{gather*}
D_{0}^{(\ell)}=t^{\frac{1}{2}} \frac{\left(1-t^{-1} Y^{-2} q^{\ell}\right)}{\left(1-Y^{-2} q^{\ell}\right)} D_{0}^{(\ell-1)}(Y), \quad D_{\ell}^{(\ell)}=t^{-\frac{1}{2}} \frac{(1-t)\left(1-t Y^{-2}\right)}{\left(1-t q^{\ell}\right)\left(1-Y^{-2} q^{-\ell}\right)} D_{0}^{(\ell-1)}\left(Y^{-1}\right), \\
D_{j}^{(\ell)}(Y) \tag{4.3}
\end{gather*}=t^{\frac{1}{2}} \frac{\left(1-t^{-1} Y^{-2} q^{\ell-2 j}\right)}{\left(1-Y^{-2} q^{\ell-2 j}\right)} D_{j}^{(\ell-1)}(Y)+t^{-\frac{1}{2}} \frac{(1-t)\left(1-q^{\ell} t Y^{-2} q^{\ell-2 j}\right)}{\left(1-t q^{\ell}\right)\left(1-Y^{-2} q^{\ell-2 j}\right)} D_{\ell-j}^{(\ell-1)}\left(Y^{-1}\right) ., ~ l
$$

Proof. (a) Using the first relation in (4.1), the second relation in (3.29), the second relation in (4.1),

$$
\sum_{j=0}^{\ell} \eta^{\ell+1-2 j} D_{j}^{(\ell)}(Y) \mathbf{1}_{0}=E_{\ell+1}(X) \mathbf{1}_{0}=t^{-\frac{1}{2}} \tau_{\pi}^{\vee} E_{-\ell}(X) \mathbf{1}_{0}=t^{-\frac{1}{2}} \eta_{\pi} \sum_{j=0}^{\ell} \eta^{-\ell+2 j} D_{j}^{(-\ell)}(Y) \mathbf{1}_{0}
$$

By (3.12), (3.13), and the second relation in (3.14),

$$
\begin{aligned}
\eta_{\pi} \eta^{-\ell+2 j} D_{j}^{(-\ell)}(Y) \mathbf{1}_{0} & =\eta_{\pi} \eta_{s_{1}} \eta_{s_{1}} \eta^{-\ell+2 j} D_{j}^{(-\ell)}(Y) \mathbf{1}_{0}=\eta \eta_{s_{1}} \eta^{-\ell+2 j} D_{j}^{(-\ell)}(Y) \mathbf{1}_{0} \\
& =\eta \eta^{\ell-2 j} D_{j}^{(-\ell)}\left(Y^{-1}\right) \eta_{s_{1}} \mathbf{1}_{0}=\eta^{\ell-2 j+1} D_{j}^{(-\ell)}\left(Y^{-1}\right) \mathbf{1}_{0}
\end{aligned}
$$

So $\sum_{j=0}^{\ell} \eta^{\ell+1-2 j} D_{j}^{(\ell)}(Y) \mathbf{1}_{0}=t^{-\frac{1}{2}} \sum_{j=0}^{\ell} \eta^{\ell-2 j+1} D_{j}^{(-\ell)}\left(Y^{-1}\right) \mathbf{1}_{0}$, giving $D_{j}^{(\ell)}(Y)=t^{-\frac{1}{2}} D_{j}^{(-\ell)}\left(Y^{-1}\right)$.
(b) Let

$$
c(Y)=\frac{\left(1-t Y^{2}\right)}{\left(1-Y^{2}\right)} \quad \text { and } \quad F_{\ell}(Y)=\frac{(1-t)}{\left(1-t q^{\ell}\right)} \frac{\left(1-q^{\ell} t Y^{2}\right)}{\left(1-Y^{2}\right)}, \quad \text { for } \ell \in \mathbb{Z}_{>0}
$$

By (4.1) and the first relation in (3.31),

$$
\begin{aligned}
\sum_{j=0}^{\ell} \eta^{-\ell+2 j} D_{j}^{(-\ell)}(Y) \mathbf{1}_{0} & =E_{-\ell}(X) \mathbf{1}_{0}=\left(\eta_{s_{1}} c(Y)+F_{\ell}(Y)\right) E_{\ell}(X) \mathbf{1}_{0} \\
& =\left(\eta_{s_{1}} c(Y)+F_{\ell}(Y)\right) \sum_{j=0}^{\ell-1} \eta^{\ell-2 j} D_{j}^{(\ell-1)}(Y) \mathbf{1}_{0}
\end{aligned}
$$

By (3.13) and the last relation in (3.12),

$$
\begin{aligned}
\eta_{s_{1}} c(Y) \eta^{\ell-2 j} D_{j}^{(\ell-1)}(Y) & =\eta_{s_{1}} \eta^{\ell-2 j} c\left(q^{-\frac{1}{2}(\ell-2 j)} Y\right) D_{j}^{(\ell-1)}(Y)=\eta^{-(\ell-2 j)} \eta_{s_{1}} c\left(q^{-\frac{1}{2}(\ell-2 j)} Y\right) D_{j}^{(\ell-1)}(Y) \\
& =\eta^{-(\ell-2 j)} c\left(q^{-\frac{1}{2}(\ell-2 j)} Y^{-1}\right) D_{j}^{(\ell-1)}\left(Y^{-1}\right) \eta_{s_{1}}
\end{aligned}
$$

and $F_{\ell}(Y) \eta^{\ell-2 j} D_{j}^{(\ell-1)}(Y)=\eta^{\ell-2 j} F_{\ell}\left(q^{-\frac{1}{2}(\ell-2 j)} Y\right) D_{j}^{(\ell-1)}(Y)$. So

$$
\begin{aligned}
& \sum_{j=0}^{\ell} \eta^{-(\ell-2 j)} D_{j}^{(-\ell)}(Y) \mathbf{1}_{0}=\left(\eta_{s_{1}} c(Y)+F_{\ell}(Y)\right) \sum_{j=0}^{\ell-1} \eta^{\ell-2 j} D_{j}^{(\ell-1)}(Y) \mathbf{1}_{0} \\
& \quad=\sum_{j=0}^{\ell-1} \eta^{-(\ell-2 j)} c\left(q^{-\frac{1}{2}(\ell-2 j)} Y^{-1}\right) D_{j}^{(\ell-1)}\left(Y^{-1}\right) \mathbf{1}_{0}+\sum_{j=0}^{\ell-1} \eta^{\ell-2 j} F_{\ell}\left(q^{-\frac{1}{2}(\ell-2 j)} Y\right) D_{j}^{(\ell-1)}(Y) \mathbf{1}_{0}
\end{aligned}
$$

where the last equality uses the relation $\eta_{s_{1}} \mathbf{1}_{0}=\mathbf{1}_{0}$ from (3.14). Putting $k=\ell-j$ in the second sum makes $j=\ell-k$ and

$$
\sum_{j=0}^{\ell-1} \eta^{\ell-2(\ell-k)} F_{\ell}\left(q^{-\frac{1}{2}(\ell-2(\ell-k))} Y\right) D_{j}^{(\ell-1)}(Y) \mathbf{1}_{0}=\sum_{k=1}^{\ell} \eta^{-(\ell-2 k)} F_{\ell}\left(q^{\frac{1}{2}(\ell-2 k)} Y\right) D_{\ell-k}^{(\ell-1)}(Y) \mathbf{1}_{0}
$$

Thus $\sum_{j=0}^{\ell} \eta^{-\ell+2 j} D_{j}^{(-\ell)}(Y) \mathbf{1}_{0}$ is equal to

$$
\begin{aligned}
& \eta^{-\ell} c\left(q^{-\frac{1}{2} \ell} Y^{-1}\right) D_{0}^{(\ell-1)}\left(Y^{-1}\right) \mathbf{1}_{0}+\eta^{\ell} F_{\ell}\left(q^{-\frac{1}{2} \ell} Y\right) D_{0}^{(\ell-1)}(Y) \mathbf{1}_{0} \\
& \quad+\sum_{j=1}^{\ell-1} \eta^{-(\ell-2 j)}\left(c\left(q^{-\frac{1}{2}(\ell-2 j)} Y^{-1}\right) D_{j}^{(\ell-1)}\left(Y^{-1}\right)+F_{\ell}\left(q^{\frac{1}{2}(\ell-2 j)} Y\right) D_{\ell-j}^{(\ell-1)}(Y)\right) \mathbf{1}_{0},
\end{aligned}
$$

which implies

$$
\begin{gathered}
D_{0}^{(-\ell)}(Y)=c\left(q^{-\frac{1}{2} \ell} Y^{-1}\right) D_{0}^{(\ell-1)}\left(Y^{-1}\right), \quad D_{\ell}^{(-\ell)}(Y)=F_{\ell}\left(q^{-\frac{1}{2} \ell} Y\right) D_{0}^{(\ell-1)}(Y), \quad \text { and } \\
D_{j}^{(-\ell)}(Y)=c\left(q^{-\frac{1}{2}(\ell-2 j)} Y^{-1}\right) D_{j}^{(\ell-1)}\left(Y^{-1}\right)+F_{\ell}\left(q^{\frac{1}{2}(\ell-2 j)} Y\right) D_{\ell-j}^{(\ell-1)}(Y),
\end{gathered}
$$

for $j \in\{1, \ldots, \ell-1\}$. Combining this with the identity $D_{j}^{(\ell)}(Y)=t^{-\frac{1}{2}} D_{j}^{(-\ell)}\left(Y^{-1}\right)$ from (a) gives

$$
\begin{gathered}
D_{0}^{(\ell)}(Y)=t^{-\frac{1}{2}} c\left(q^{-\frac{1}{2} \ell} Y\right) D_{0}^{(\ell)}(Y), \quad D_{\ell}^{(\ell)}(Y)=t^{-\frac{1}{2}} F_{\ell}\left(q^{-\frac{1}{2} \ell} Y^{-1}\right) D_{0}^{(\ell-1)}\left(Y^{-1}\right), \quad \text { and } \\
D_{j}^{(\ell)}(Y)=t^{-\frac{1}{2}} c\left(q^{-\frac{1}{2}(\ell-2 j)} Y\right) D_{j}^{(\ell-1)}(Y)+t^{-\frac{1}{2}} F_{\ell}\left(q^{\frac{1}{2}(\ell-2 j)} Y^{-1}\right) D_{\ell-j}^{(\ell-1)}\left(Y^{-1}\right) .
\end{gathered}
$$

### 4.3 A formula for $K_{j}^{(\ell)}(Y)$ in terms of the $D_{j}^{(\ell)}(Y)$

Since $E_{0}(X)=1$, equation (4.2) and the first relation in (3.7) give $\mathbf{1}_{0} E_{0}(X) \mathbf{1}_{0}=\mathbf{1}_{0}^{2}=\mathbf{1}_{0}\left(t^{\frac{1}{2}}+t^{-\frac{1}{2}}\right)$ so that

$$
K_{0}^{(0)}=t^{\frac{1}{2}}+t^{-\frac{1}{2}}
$$

Proposition 4.2. Let $\ell \in \mathbb{Z}_{>0}$ and let $K_{j}^{(\ell)}(Y)$ and $D_{j}^{(\ell-1)}(Y)$ be as defined in (4.2) and (4.1). Then

$$
K_{0}^{(\ell)}(Y)=t^{-\frac{1}{2}} D_{0}^{(\ell-1)}(Y) \frac{\left(1-t Y^{2}\right)}{\left(1-Y^{2}\right)}, \quad K_{\ell}^{(\ell)}(Y)=t^{\frac{1}{2}} D_{0}^{(\ell-1)}\left(Y^{-1}\right) \frac{\left(1-t^{-1} Y^{2} q^{\ell}\right)\left(1-t Y^{2}\right)}{\left(1-t Y^{2} q^{\ell}\right)\left(1-Y^{2}\right)}
$$

and, for $j \in\{1, \ldots, \ell-1\}$,

$$
\begin{equation*}
K_{j}^{(\ell)}(Y)=t^{\frac{1}{2}} D_{j}^{(\ell-1)}(Y) \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)}+t^{-\frac{1}{2}} D_{\ell-j}^{(\ell-1)}\left(Y^{-1}\right) \frac{\left(1-t Y^{-2} q^{\ell-2 j}\right)}{\left(1-t^{-1} Y^{-2} q^{\ell-2 j}\right)} \frac{\left(1-t^{-1} Y^{2}\right)}{\left(1-Y^{-2}\right)} . \tag{4.4}
\end{equation*}
$$

Proof. Let

$$
c(Y)=\frac{\left(1-t Y^{2}\right)}{\left(1-Y^{2}\right)}=t \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} .
$$

Then, by (4.1), the first relation in (3.14), the second relation in (3.13) and the relation $\eta \eta_{s_{1}}=\eta_{s_{1}} \eta^{-1}$ from (3.12),

$$
\begin{aligned}
\mathbf{1}_{0} E_{\ell}(X) \mathbf{1}_{0} & =\mathbf{1}_{0} \sum_{j=0}^{\ell-1} \eta^{\ell-2 j} D_{j}^{(\ell-1)}(Y) \mathbf{1}_{0}=\mathbf{1}_{0} \sum_{j=0}^{\ell-1} \eta^{\ell-2 j} D_{j}^{(\ell-1)}(Y)\left(1+\eta_{s_{1}}\right) t^{-\frac{1}{2}} c(Y) \\
& =\sum_{j=0}^{\ell-1} \mathbf{1}_{0} \eta^{\ell-2 j} D_{j}^{(\ell-1)}(Y) t^{-\frac{1}{2}} c(Y)+\sum_{j=0}^{\ell-1} \mathbf{1}_{0} \eta_{s_{1}} \eta^{-(\ell-2 j)} D_{j}^{(\ell-1)}\left(Y^{-1}\right) t^{-\frac{1}{2}} c(Y) .
\end{aligned}
$$

By the last relation in (3.14) and the last relation in (3.13),

$$
\mathbf{1}_{0} \eta_{s_{1}} \eta^{-(\ell-2 j)}=\mathbf{1}_{0} t^{-1} \frac{\left(1-t Y^{-2}\right)}{\left(1-t^{-1} Y^{-2}\right)} \eta^{-(\ell-2 j)}=\mathbf{1}_{0} \eta^{-(\ell-2 j)} t^{-1} \frac{\left(1-t Y^{-2} q^{-(\ell-2 j)}\right)}{\left(1-t^{-1} Y^{-2} q^{-(\ell-2 j)}\right)}
$$

and thus, by reindexing with $k=\ell-j$ and using $-(\ell-2 j)=\ell-2 k$, the second sum is

$$
\sum_{j=0}^{\ell-1} \mathbf{1}_{0} \eta_{s_{1}} \eta^{-(\ell-2 j)} D_{j}^{(\ell-1)}\left(Y^{-1}\right) t^{-\frac{1}{2}} c(Y)=\sum_{k=1}^{\ell} \mathbf{1}_{0} \eta^{\ell-2 k} t^{-1} \frac{\left(1-t Y^{-2} q^{\ell-2 k}\right)}{\left(1-t^{-1} Y^{-2} q^{\ell-2 k}\right)} D_{\ell-k}^{(\ell-1)}\left(Y^{-1}\right) t^{-\frac{1}{2}} c(Y)
$$

Hence, by (4.2),

$$
\begin{aligned}
& \sum_{j=0}^{\ell} \mathbf{1}_{0} \eta^{\ell-2 j} K_{j}^{(\ell)}(Y)=\mathbf{1}_{0} E_{\ell}(X) \mathbf{1}_{0} \\
& \quad=\sum_{j=0}^{\ell-1} \mathbf{1}_{0} t^{-\frac{1}{2}} \eta^{\ell-2 j} D_{j}^{(\ell-1)}(Y) c(Y)+\sum_{k=1}^{\ell} \mathbf{1}_{0} t^{-\frac{3}{2}} \eta^{\ell-2 k} \frac{\left(1-t Y^{-2} q^{\ell-2 k}\right)}{\left(1-t^{-1} Y^{-2} q^{\ell-2 k}\right)} D_{\ell-k}^{(\ell-1)}\left(Y^{-1}\right) c(Y) .
\end{aligned}
$$

## 5 Product expressions for $D_{j}^{(\ell)}(Y)$ and $K_{j}^{(\ell)}(Y)$

In this section we establish product formulas for the coefficients in the operators

$$
\begin{gathered}
E_{\ell}(X) \mathbf{1}_{0}=\sum_{j=0}^{\ell-1} \eta^{\ell-2 j} D_{j}^{(\ell-1)}(Y) \mathbf{1}_{0}, \quad E_{-\ell}(X) \mathbf{1}_{0}=\sum_{j=0}^{\ell} \eta^{-\ell+2 j} D_{j}^{(-\ell)}(Y) \mathbf{1}_{0} \quad \text { and } \\
\mathbf{1}_{0} E_{\ell}(X) \mathbf{1}_{0}=\sum_{j=0}^{\ell} \mathbf{1}_{0} \eta^{\ell-2 j} K_{j}^{(\ell)}(Y)
\end{gathered}
$$

These coefficients turn out to be something like generalized binomial coefficients, determined by the recursions that were established in Proposition 4.1 and 4.2. These product formulas provide a kind of binomial theorem for operators $E_{\ell}(X) \mathbf{1}_{0}$ and $\mathbf{1}_{0} E_{\ell}(X) \mathbf{1}_{0}$, as elements of the double affine Hecke algebra $\tilde{H}$. The final result is Theorem 5.4.

## $5.1 \quad q$-t-binomial coefficients

For $\ell \in \mathbb{Z}_{\geq 0}$ and $j \in\{0, \ldots, \ell\}$ define

$$
(z ; q)_{j}=(1-z)(1-z q)\left(1-z q^{2}\right) \cdots\left(1-z q^{j-1}\right) \quad \text { and } \quad\left[\begin{array}{l}
\ell  \tag{5.1}\\
j
\end{array}\right]_{q, t}=\frac{\frac{(q ; q)_{\ell}}{(t ; q)_{\ell}}}{\frac{(q ; q)_{j}}{(t ; q)_{j}} \frac{(q ; q)_{\ell-j}}{(t ; q)_{\ell-j}}}
$$

For $a, b \in \mathbb{Z}$ with $a \leq b$ let

$$
\left(1-z q^{a . . b}\right)=\left(1-z q^{a}\right)\left(1-z q^{a+1}\right) \cdots\left(1-z q^{b-1}\right)\left(1-z q^{b}\right)
$$

With this notation,

$$
\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t}=\frac{\left(1-q^{1 . . \ell}\right)}{\left(1-q^{1 . . j}\right)\left(1-q^{1 . . \ell-j}\right)} \frac{\left(1-t q^{0 . . j-1}\right)\left(1-t q^{0 . . \ell-j-1}\right)}{\left(1-t q^{0 . . \ell-1}\right)}=\frac{\left(1-q^{j+1 . . \ell}\right)}{\left(1-q^{1 . . \ell-j}\right)} \frac{\left(1-t q^{0 . . \ell-j-1}\right)}{\left(1-t q^{j . . \ell-1}\right)} .
$$

Then

$$
\left[\begin{array}{c}
\ell  \tag{5.2}\\
\ell-j
\end{array}\right]_{q, t}=\left[\begin{array}{c}
\ell \\
j
\end{array}\right]_{q, t} \quad \text { and } \quad\left[\begin{array}{c}
\ell+1 \\
j
\end{array}\right]_{q, t}=\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} \cdot \frac{\left(1-q^{\ell+1}\right)\left(1-t q^{\ell-j}\right)}{\left(1-q^{\ell+1-j}\right)\left(1-t q^{\ell}\right)}
$$

## $5.2 \quad Y$-binomial coefficients

For $\ell \in \mathbb{Z}_{\geq 0}$ and $j \in\{0,1, \ldots, \ell\}$ define a rational function in $Y$ by

$$
\begin{equation*}
\binom{\ell}{j}_{Y}=\frac{\left(t^{-1} Y^{-2} q^{-(j-1)} ; q\right)_{\ell-j}\left(t Y^{-2} q^{\ell-2 j} ; q\right)_{j}}{\left(Y^{-2} q ; q\right)_{\ell-j}\left(Y^{-2} q^{-j} ; q\right)_{j}} \tag{5.3}
\end{equation*}
$$

An alternative expression is

$$
\binom{\ell}{j}_{Y}=\frac{\left(1-t^{-1} Y^{-2} q^{-(j-1) . . \ell-2 j}\right)\left(1-t Y^{-2} q^{\ell-2 j . . \ell-j-1}\right)}{\left(1-Y^{-2} q^{1 . . \ell-j}\right)\left(1-Y^{-2} q^{-j . .-1}\right)}
$$

which, in the alcove walk point of view of Yi10, might be thought of as a weighted alcove walk of total length $\ell$ with $j$ left moving crossings and $\ell-j$ right moving crossings.


Then (see the examples in Section 7.3)

$$
\begin{align*}
\binom{\ell}{\ell-j}_{Y^{-1}}= & \frac{\left(1-t^{-1} Y^{2} q^{-(\ell-j-1) . . \ell-2(\ell-j)}\right)\left(1-t Y^{2} q^{\ell-2(\ell-j) . . \ell-(\ell-j)-1}\right)}{\left(1-Y^{2} q^{1 . . \ell-(\ell-j)}\right)\left(1-Y^{2} q^{-(\ell-j) . .-1}\right)} \\
= & \frac{\left(1-t^{-1} Y^{2} q^{-(\ell-j-1) . .-(\ell-2 j)}\right)\left(1-t Y^{2} q^{-(\ell-2 j) . . j-1}\right)}{\left(1-Y^{2} q^{1 . . j}\right)\left(1-Y^{2} q^{-(\ell-j) . .-1}\right)} \\
= & \frac{\left(1-t Y^{-2} q^{\ell-2 j . . \ell-j-1}\right)\left(1-t^{-1} Y^{-2} q^{-(j-1) . . \ell-2 j}\right)}{\left(1-Y^{-2} q^{-j . .-1}\right)\left(1-Y^{-2} q^{1 . . \ell-j}\right)} \\
& \cdot \frac{\left(t^{-1} Y^{2}\right)^{j}\left(q^{-(\ell-j)}\right)^{j} q^{\frac{1}{2} j(j-1)}\left(t Y^{2}\right)^{\ell-j}\left(q^{-(\ell-2 j)-1}\right)^{\ell-j} q^{\frac{1}{2}(\ell-j)(\ell-j-1)}}{Y^{2 j} q^{\frac{1}{2} j(j-1)} Y^{2(\ell-j)}\left(q^{-(\ell-j+1)}\right)^{\ell-j} q^{\frac{1}{2}(\ell-j)(\ell-j-1)}} \\
= & t^{\ell-2 j} q^{0} \cdot\binom{\ell}{j}_{Y} . \tag{5.4}
\end{align*}
$$

Also

$$
\begin{align*}
\binom{\ell+1}{j}_{Y} & =\frac{\left(1-t^{-1} Y^{-2} q^{-(j-1) . . \ell+1-2 j}\right)\left(1-t Y^{-2} q^{\ell+1-2 j . . \ell+1-j-1}\right)}{\left(1-Y^{-2} q^{1 . . \ell+1-j}\right)\left(1-Y^{-2} q^{-j . .-1}\right)} \\
& =\binom{\ell}{j}_{Y} \cdot \frac{\left(1-t^{-1} Y^{-2} q^{\ell+1-2 j}\right)\left(1-t Y^{-2} q^{\ell-j}\right)}{\left(1-t Y^{-2} q^{\ell-2 j}\right)\left(1-Y^{-2} q^{\ell+1-j}\right)} \tag{5.5}
\end{align*}
$$

### 5.3 Definition of the products $\tilde{K}_{j}^{(\ell)}(Y)$ and $\tilde{D}_{j}^{(\ell-1)}(Y)$

For $\ell \in \mathbb{Z}_{>0}$ and $j \in\{0, \ldots, \ell\}$ define

$$
\begin{gather*}
\tilde{D}_{j}^{(\ell)}(Y)=t^{-\frac{1}{2}(\ell+1)} \cdot t^{\ell-j} \cdot\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} \cdot\binom{\ell}{j}_{Y} \cdot \frac{\left(1-t q^{\ell-j}\right)}{\left(1-t q^{\ell}\right)} \cdot \frac{\left(1-t Y^{-2} q^{\ell-j}\right)}{\left(1-t Y^{-2} q^{\ell-2 j}\right)}  \tag{5.6}\\
\tilde{D}_{j}^{(-\ell)}(Y)=t^{-\frac{1}{2} \ell} \cdot(q t)^{j} \cdot\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} \cdot\binom{\ell}{\ell-j}_{Y} \cdot \frac{\left(1-t q^{\ell-j}\right)}{\left(1-t q^{\ell}\right)} \cdot \frac{\left(1-t^{-1} Y^{-2} q^{-(\ell-j)}\right)}{\left(1-t^{-1} Y^{-2} q^{-(\ell-2 j)}\right)}  \tag{5.7}\\
\tilde{K}_{j}^{(\ell)}(Y)=t^{-\frac{1}{2}(\ell-1)} \cdot t^{\ell-1-j} \cdot\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} \cdot\binom{\ell}{j}_{Y} \cdot \frac{\left(1-Y^{-2} q^{\ell-2 j}\right)}{\left(1-t^{-1} Y^{-2} q^{\ell-2 j}\right)} \cdot \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} \tag{5.8}
\end{gather*}
$$

The following Proposition provides useful relationships between these expressions which follow from (5.2), (5.3) and (5.4).

## Proposition 5.1.

$$
\begin{gather*}
\frac{\tilde{D}_{j}^{(\ell-1)}(Y)}{\tilde{K}_{j}^{(\ell)}(Y)}=t^{-\frac{1}{2}} \cdot \frac{\left(1-q^{\ell-j}\right)}{\left(1-q^{\ell}\right)} \cdot \frac{\left(1-Y^{-2} q^{\ell-j}\right)}{\left(1-Y^{-2} q^{\ell-2 j}\right)} \cdot \frac{\left(1-Y^{-2}\right)}{\left(1-t^{-1} Y^{-2}\right)}  \tag{5.9}\\
\frac{\tilde{D}_{\ell-j}^{(\ell-1)}\left(Y^{-1}\right)}{\tilde{K}_{j}^{(\ell)}(Y)}=t^{\frac{1}{2}} q^{\ell-j} \cdot \frac{\left(1-q^{j}\right)}{\left(1-q^{\ell}\right)} \cdot \frac{\left(1-Y^{-2}\right)}{\left(1-t^{-1} Y^{-2}\right)} \cdot \frac{\left(1-t^{-1} Y^{-2} q^{\ell-2 j}\right)}{\left(1-t Y^{-2} q^{\ell-2 j}\right)} \cdot \frac{\left(1-Y^{-2} q^{-j}\right)}{\left(1-Y^{-2} q^{\ell-2 j}\right)}  \tag{5.10}\\
\frac{\tilde{D}_{j}^{(\ell)}(Y)}{\tilde{D}_{j}^{(\ell+1)}(Y)}=t^{-\frac{1}{2}} \cdot \frac{\left(1-t q^{\ell+1}\right)}{\left(1-t q^{\ell+1-j)}\right.} \cdot \frac{\left(1-q^{\ell+1-j}\right)}{\left(1-q^{\ell+1}\right)} \cdot \frac{\left(1-t Y^{-2} q^{\ell+1-2 j}\right)}{\left(1-t Y^{-2} q^{\ell+1-j}\right)} \cdot \frac{\left(1-Y^{-2} q^{\ell+1-j}\right)}{\left(1-t^{-1} Y^{-2} q^{\ell+1-2 j}\right)} .  \tag{5.11}\\
\frac{\tilde{D}_{\ell+1-j}^{(\ell)}\left(Y^{-1}\right)}{\tilde{D}_{j}^{(\ell+1)}(Y)}=t^{\frac{1}{2}} q^{\ell+1-j} \cdot \frac{\left(1-t q^{\ell+1}\right)}{\left(1-t q^{\ell+1-j}\right)} \cdot \frac{\left(1-q^{j}\right)}{\left(1-q^{\ell+1}\right)} \cdot \frac{\left(1-Y^{-2} q^{-j}\right)}{\left(1-t Y^{-2} q^{\ell+1-j}\right)}  \tag{5.12}\\
\frac{\tilde{D}_{\ell+1-j}^{(\ell)}\left(Y^{-1}\right)}{\tilde{D}_{j}^{(\ell)}(Y)}=t q^{\ell+1-j} \cdot \frac{\left(1-q^{j}\right)}{\left(1-q^{\ell+1-j}\right)} \cdot \frac{\left(1-Y^{-2} q^{-j}\right)\left(1-t^{-1} Y^{-2} q^{\ell+1-2 j}\right)}{\left(1-t Y^{-2} q^{\ell+1-2 j}\right)\left(1-Y^{-2} q^{\ell+1-j}\right)}, \tag{5.13}
\end{gather*}
$$

Proof. All of these are proved by using the relations (5.2), (5.3) and (5.4) and cancelling all common factors from the numerator and denominators. The proof of (5.9) is similar to the proofs of (5.11), (5.12) and (5.13) and (5.10), which are as follows.

Using (5.6), (5.5) and the second relation in (5.2) gives (5.11):

$$
\begin{aligned}
& \tilde{D}_{j}^{(\ell)}(Y)=t^{-\frac{1}{2}(\ell+1)} \cdot t^{\ell-j} \cdot\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} \cdot \frac{\left(1-t q^{\ell-j}\right)}{\left(1-t q^{\ell}\right)} \cdot\binom{\ell}{j}_{Y} \cdot \frac{\left(1-t Y^{-2} q^{\ell-j}\right)}{\left(1-t Y^{-2} q^{\ell-2 j}\right)} \\
& =t^{\frac{1}{2}} t^{-\frac{1}{2}(\ell+2)} \cdot t^{-1} t^{\ell+1-j} \cdot\left[\begin{array}{c}
\ell+1 \\
j
\end{array}\right]_{q, t} \cdot \frac{\left(1-q^{\ell+1-j}\right)\left(1-t q^{\ell}\right)}{\left(1-q^{\ell+1}\right)\left(1-t q^{\ell-\tau}\right)} \cdot \frac{\left(1-t q^{\ell-1}\right)}{\left(1-t q^{\ell}\right)} \\
& \quad \cdot\binom{\ell+1}{j}_{Y} \cdot \frac{\left(1-t Y^{-2} q^{\ell-2 j}\right)\left(1-Y^{-2} q^{\ell+1-j}\right)}{\left(1-t^{-1} Y^{-2} q^{\ell+1-2 j}\right)\left(1-t Y^{-2} q^{\ell-j}\right)} \cdot \frac{\left(1-t Y^{-2} q^{\ell-3}\right)}{\frac{\left(1-t Y^{-2} q^{\ell-2 j}\right)}{(1-2}} \\
& =t^{-\frac{1}{2}} \tilde{D}_{j}^{(\ell+1)}(Y) \cdot \frac{\left(1-t q^{\ell+1}\right)}{\left(1-t q^{\ell+1-j}\right)} \cdot \frac{\left(1-q^{\ell+1-j}\right)}{\left(1-q^{\ell+1}\right)} \cdot \frac{\left(1-t Y^{-2} q^{\ell+1-2 j}\right)}{\left(1-t Y^{-2} q^{\ell+1-j}\right)} \cdot \frac{\left(1-Y^{-2} q^{\ell+1-j}\right)}{\left(1-t^{-1} Y^{-2} q^{\ell+1-2 j}\right)} .
\end{aligned}
$$

Using (5.6), (5.4) and the first relation in (5.2) gives (5.12):

$$
\begin{aligned}
& t^{\frac{1}{2}(\ell+1)} \tilde{D}_{\ell+1-j}^{(\ell)}\left(Y^{-1}\right)=t^{\ell-(\ell+1-j)} \cdot\left[\begin{array}{c}
\ell \\
\ell+1-j
\end{array}\right]_{q, t} \cdot \frac{\left(1-t q^{\ell-(\ell+1-j)}\right)}{\left(1-t q^{\ell}\right)} \cdot\binom{\ell}{\ell+1-j}_{Y^{-1}} \cdot \frac{\left(1-t Y^{2} q^{\ell-(\ell+1-j)}\right)}{\left(1-t Y^{2} q^{\ell-2(\ell+1-j)}\right)} \\
& =t^{j-1} \cdot\left[\begin{array}{c}
\ell+1 \\
\ell+1-j
\end{array}\right]_{q, t} \cdot \frac{\left(1-q^{\ell+1-(\ell+1-j)}\right)\left(1-t q^{\ell}\right)}{\left(1-q^{\ell+1}\right)\left(1-t q^{\ell-(\ell+1-j)}\right)} \cdot \frac{\left(1-t q^{j-1}\right)}{\left(1-t q^{\ell}\right)} \\
& \cdot\binom{\ell+1}{\ell+1-j}_{Y^{-1}} \cdot \frac{\left(1-t Y^{2} q^{\ell-2(\ell+1-j)}\right)\left(1-Y^{2} q^{\ell+1-(\ell+1-j)}\right)}{\left(1-t^{-1} Y^{2} q^{\ell+1-2(\ell+1-j)}\right)\left(1-t Y^{2} q^{\ell-(\ell+1-j)}\right)} \cdot \frac{\left(1-t Y^{2} q^{\ell-(\ell+1-j)}\right)}{\left(1-t Y^{2} q^{\ell-2(\ell+1-j)}\right)} \\
& =t^{j-1} \cdot\left[\begin{array}{c}
\ell+1 \\
j
\end{array}\right]_{q, t} \cdot \frac{\left(1-q^{j}\right)}{\left(1-q^{\ell+1}\right)} \cdot t^{\ell+1-2 j} \cdot\binom{\ell+1}{j}_{Y} \cdot \frac{\left(1-Y^{2} q^{j}\right)}{\left(1-t^{-1} Y^{2} q^{-(\ell+1-2 j)}\right)} \\
& =t^{\ell-j} \cdot\left[\begin{array}{c}
\ell+1 \\
j
\end{array}\right]_{q, t} \cdot \frac{\left(1-q^{j}\right)}{\left(1-q^{\ell+1}\right)} \cdot\binom{\ell+1}{j}_{Y} \cdot \frac{\left(1-Y^{-2} q^{-j}\right)}{\left(1-t Y^{-2} q^{\ell+1-2 j}\right) \cdot t q^{j+\ell+1-2 j}} \\
& =q^{\ell+1-j} \cdot t^{\frac{1}{2}(\ell+2)} \tilde{D}_{j}^{(\ell+1)}(Y) \cdot \frac{\left(1-t q^{\ell+1}\right)}{\left(1-t q^{\ell+1-j)}\right.} \cdot \frac{\left(1-q^{j}\right)}{\left(1-q^{\ell+1}\right)} \cdot \frac{\left(1-t Y^{-2} q^{\ell+1-2 j}\right)}{\left(1-t Y^{-2} q^{\ell+1-j}\right)} \cdot \frac{\left(1-Y^{-2} q^{-j}\right)}{\left(1-t Y^{-2} q^{\ell+1-2 j}\right)} \\
& =q^{\ell+1-j} \cdot t^{\frac{1}{2}(\ell+2)} \tilde{D}_{j}^{(\ell+1)}(Y) \cdot \frac{\left(1-t q^{\ell+1}\right)}{\left(1-t q^{\ell+1-j)}\right.} \cdot \frac{\left(1-q^{j}\right)}{\left(1-q^{\ell+1)}\right.} \cdot \frac{\left(1-Y^{-2} q^{-j}\right)}{\left(1-t Y^{-2} q^{\ell+1-j)}\right.} \cdot
\end{aligned}
$$

Equation (5.13) follows from (5.12) and (5.11). Using (5.13) and (5.9)

$$
\begin{aligned}
D_{\ell-j}^{(\ell-1)}\left(Y^{-1}\right)= & t q^{\ell-j} D_{j}^{(\ell-1)}(Y) \cdot \frac{\left(1-q^{j}\right)}{\left(1-q^{\ell-j}\right)} \frac{\left(1-t^{-1} Y^{-2} q^{\ell-2 j}\right)}{\left(1-t Y^{-2} q^{\ell-2 j}\right)} \cdot \frac{\left(1-Y^{-2} q^{-j}\right)}{\left(1-Y^{-2} q^{\ell-j}\right)} \\
= & t^{\frac{1}{2}} q^{\ell-j} \cdot K_{j}^{(\ell)}(Y) \cdot \frac{\left(1-q^{\ell-j}\right)}{\left(1-q^{\ell}\right)} \cdot \frac{\left(1-Y^{-2} q^{\ell-1}\right)}{\left(1-Y^{-2} q^{\ell-2 j}\right)} \cdot \frac{\left(1-Y^{-2}\right)}{\left(1-t^{-1} Y^{-2}\right)} \\
& \cdot \frac{\left(1-q^{j}\right)}{\left(1-q^{\ell-5}\right)} \frac{\left(1-t^{-1} Y^{-2} q^{\ell-2 j}\right)}{\left(1-t Y^{-2} q^{\ell-2 j}\right)} \cdot \frac{\left(1-Y^{-2} q^{-j}\right)}{\left(1-Y^{-2} q^{\ell-j}\right)}
\end{aligned}
$$

which gives equation (5.10).

### 5.4 A recursion for the $\tilde{D}_{j}^{(\ell)}(Y)$

Proposition 5.2. Let $\ell \in \mathbb{Z}_{\geq 0}$ and let $\tilde{D}_{j}^{(\ell)}(Y)$ and $\tilde{D}_{j}^{(-\ell)}(Y)$ be as defined in (4.1).
(a) If $\ell \in \mathbb{Z}_{>0}$ and $j \in\{0, \ldots, \ell\}$ then $\tilde{D}_{j}^{(-\ell)}(Y)=t^{\frac{1}{2}} \tilde{D}_{j}^{(\ell)}\left(Y^{-1}\right)$.
(b) The $\tilde{D}_{j}^{(\ell)}(Y)$ satisfy, and are determined by, $\tilde{D}_{0}^{(0)}(Y)=t^{-\frac{1}{2}}$ and the recursions

$$
\tilde{D}_{0}^{(\ell)}(Y)=t^{\frac{1}{2}} \frac{\left(1-t^{-1} Y^{-2} q^{\ell}\right)}{\left(1-Y^{-2} q^{\ell}\right)} \tilde{D}_{0}^{(\ell-1)}(Y), \quad \tilde{D}_{\ell}^{(\ell)}(Y)=t^{-\frac{1}{2}} \frac{(1-t)\left(1-t Y^{-2}\right)}{\left(1-t q^{\ell}\right)\left(1-Y^{-2} q^{-\ell}\right)} \tilde{D}_{0}^{(\ell-1)}\left(Y^{-1}\right)
$$

and
for $j \in\{1, \ldots, \ell-1\}$.

Proof. (a) Using (5.4),

$$
\begin{aligned}
t^{\ell-j} & \binom{\ell}{j}_{Y-1} \cdot \frac{\left(1-t Y^{2} q^{\ell-j}\right)}{\left(1-t Y^{2} q^{\ell-2 j}\right)}=t^{\ell-j} \cdot t^{-(\ell-2 j)}\binom{\ell}{\ell-j}_{Y} \cdot \frac{\left(1-t^{-1} Y^{-2} q^{-(\ell-j)}\right)}{\left(1-t^{-1} Y^{-2} q^{-(\ell-2 j)}\right)} \cdot q^{j} \\
& =(q t)^{j}\binom{\ell}{\ell-j}_{Y} \cdot \frac{\left(1-t^{-1} Y^{-2} q^{-(\ell-j)}\right)}{\left(1-t^{-1} Y^{-2} q^{-(\ell-2 j)}\right)}
\end{aligned}
$$

Thus, by (5.6),

$$
t^{\frac{1}{2}} D_{j}^{(\ell)}\left(Y^{-1}\right)=t^{-\frac{1}{2} \ell} \cdot(q t)^{j} \cdot\left[\begin{array}{l}
\ell  \tag{5.15}\\
j
\end{array}\right]_{q, t} \cdot \frac{\left(1-t q^{\ell-j}\right)}{\left(1-t q^{\ell}\right)} \cdot\binom{\ell}{\ell-j}_{Y} \cdot \frac{\left(1-t^{-1} Y^{-2} q^{-(\ell-j)}\right)}{\left(1-t^{-1} Y^{-2} q^{-(\ell-2 j)}\right)},
$$

which is equal to $\tilde{D}_{j}^{(-\ell)}(Y)$ as defined in (5.7).
(b) The first two identities are special cases of (5.11) and (5.12).

Assume $j \in\{1, \ldots, \ell-1\}$. From (5.6), (5.11) and (5.12),

$$
\begin{aligned}
& \quad t^{\frac{1}{2}} \frac{\tilde{D}_{j}^{(\ell)}(Y)}{\tilde{D}_{j}^{(\ell+1)}(Y)}=\frac{\left(1-t q^{\ell+1}\right)}{\left(1-t q^{\ell+1-j}\right)} \cdot \frac{\left(1-q^{\ell+1-j}\right)}{\left(1-q^{\ell+1}\right)} \cdot \frac{\left(1-t Y^{-2} q^{\ell+1-2 j}\right)}{\left(1-t Y^{-2} q^{\ell+1-j}\right)} \cdot \frac{\left(1-Y^{-2} q^{\ell+1-j}\right)}{\left(1-t^{-1} Y^{-2} q^{\ell+1-2 j}\right)} \\
& \text { and } \quad t^{-\frac{1}{2}} \frac{\tilde{D}_{\ell+1-j}^{(\ell)}\left(Y^{-1}\right)}{\tilde{D}_{j}^{(\ell+1)}(Y)}=q^{\ell+1-j} \cdot \frac{\left(1-t q^{\ell+1}\right)}{\left(1-t q^{\ell+1-j}\right)} \cdot \frac{\left(1-q^{j}\right)}{\left(1-q^{\ell+1}\right)} \cdot \frac{\left(1-Y^{-2} q^{-j}\right)}{\left(1-t Y^{-2} q^{\ell+1-j}\right)} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& t^{\frac{1}{2}} \frac{\left(1-t^{-1} Y^{-2} q^{\ell+1-2 j}\right)}{\left(1-Y^{-2} q^{\ell+1-2 j}\right)} \frac{\tilde{D}_{j}^{(\ell)}(Y)}{\tilde{D}_{j}^{(\ell+1)}(Y)}+t^{-\frac{1}{2}} \frac{(1-t)\left(1-q^{\ell+1} t Y^{-2} q^{\ell+1-2 j}\right)}{\left(1-t q^{\ell+1}\right)\left(1-Y^{-2} q^{\ell+1-2 j}\right)} \frac{\tilde{D}_{\ell+1-j}^{(\ell)}\left(Y^{-1}\right)}{\tilde{D}_{j}^{(\ell+1)}(Y)} \\
& \quad=\frac{\left(1-t^{-1} Y^{-2} q^{\ell+1-2 j}\right)}{\left(1-Y^{-2} q^{\ell+1-2 j}\right)} \frac{\left(1-t q^{\ell+1}\right)\left(1-q^{\ell+1-j}\right)}{\left(1-t q^{\ell+1-j}\right)\left(1-q^{\ell+1}\right)} \frac{\left(1-t Y^{-2} q^{\ell+1-2 j}\right)}{\left(1-t Y^{-2} q^{\ell+1-j}\right)} \frac{\left(1-Y^{-2} q^{\ell+1-j}\right)}{\left(1-t^{-1} Y^{-2} q^{\ell+1-2 j}\right)} \\
& \quad \quad+\frac{(1-t)\left(1-q^{\ell+1} t Y^{-2} q^{\ell+1-2 j}\right)}{\left(1-t q^{\ell+1}\right)\left(1-Y^{-2} q^{\ell+1-2 j}\right)} q^{\ell+1-2 j} \frac{\left(1-t q^{\ell+1}\right)\left(1-q^{j}\right)}{\left(1-t q^{\ell+1-j}\right)\left(1-q^{\ell+1}\right)} \frac{\left(1-Y^{-2} q^{-j}\right)}{\left(1-t Y^{-2} q^{\ell+1-j}\right)},
\end{aligned}
$$

which is equal to

$$
\frac{\binom{\left(1-q^{\ell+1-j}\right)\left(1-t q^{\ell+1}\right)\left(1-Y^{-2} q^{\ell+1-j}\right)\left(1-t Y^{-2} q^{\ell+1-2 j}\right)}{+q^{\ell+1-j}(1-t)\left(1-q^{j}\right)\left(1-t Y^{-2} q^{2 \ell+1-j)}\right)\left(1-Y^{-2} q^{-j}\right)}}{\left(1-t q^{\ell+1-j}\right)\left(1-q^{\ell+1}\right)\left(1-Y^{-2} q^{\ell+1-2 j}\right)\left(1-t Y^{-2} q^{\ell+1-j}\right)}=1,
$$

since the numerator has roots at $t q^{\ell+1-j}=1, q^{\ell+1}=1, Y^{-2} q^{\ell+1-2 j}=1$ and $t Y^{-2} q^{\ell+1-j}=1$.

### 5.5 The $\tilde{K}_{j}^{(\ell)}(Y)$ in terms of the $\tilde{D}_{j}^{(\ell)}(Y)$

Proposition 5.3. Let $\tilde{K}_{j}^{(\ell)}(Y)$ and $\tilde{D}_{j}^{(\ell-1)}(Y)$ be as defined in (5.8) and (5.6). Then $\tilde{K}_{0}^{(\ell)}(Y)=t^{\frac{1}{2}} \tilde{D}_{0}^{(\ell-1)}(Y) \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)}, \quad \tilde{K}_{\ell}^{(\ell)}(Y)=t^{-\frac{1}{2}} \tilde{D}_{0}^{(\ell-1)}\left(Y^{-1}\right) \frac{\left(1-t Y^{-2} q^{-\ell}\right)}{\left(1-t^{-1} Y^{-2} q^{-\ell}\right)} \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)}$, and, for $j \in\{1, \ldots, \ell-1\}$,

$$
\begin{equation*}
\tilde{K}_{j}^{(\ell)}(Y)=t^{\frac{1}{2}} \tilde{D}_{j}^{(\ell-1)}(Y) \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)}+t^{-\frac{1}{2}} \tilde{D}_{\ell-j}^{(\ell-1)}\left(Y^{-1}\right) \frac{\left(1-t Y^{-2} q^{\ell-2 j}\right)}{\left(1-t^{-1} Y^{-2} q^{\ell-2 j}\right)} \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} . \tag{5.16}
\end{equation*}
$$

Proof. The first two identities are special cases of (5.9) and (5.10).
Let $j \in\{1, \ldots, \ell-1\}$. Using (5.13) gives

$$
\begin{aligned}
1 & +t^{-1} \frac{\tilde{D}_{\ell+1-j}^{(\ell)}\left(Y^{-1}\right)}{\tilde{D}_{j}^{(\ell)}(Y)} \cdot \frac{\left(1-t Y^{-2} q^{\ell+1-2 j}\right)}{\left(1-t^{-1} Y^{-2} q^{\ell+1-2 j}\right)}=1+q^{\ell+1-j} \frac{\left(1-q^{j}\right)}{\left(1-q^{\ell+1-j}\right)} \frac{\left(1-Y^{-2} q^{-j}\right)}{\left(1-Y^{-2} q^{\ell+1-j}\right)} \\
& =\frac{\left(1-Y^{-2} q^{\ell+1-j}-q^{\ell+1-j}+Y^{-2} q^{2(\ell+1-j)}+q^{\ell+1-j}-q^{\ell+1}-Y^{-2} q^{\ell+1-2 j}+Y^{-2} q^{\ell+1-j}\right)}{\left(1-q^{\ell+1-j}\right)\left(1-Y^{-2} q^{\ell+1-j}\right)} \\
& =\frac{\left(1-q^{\ell+1}\right)\left(1-Y^{-2} q^{\ell+1-2 j}\right)}{\left(1-q^{\ell+1-j}\right)\left(1-Y^{-2} q^{\ell+1-j}\right)} .
\end{aligned}
$$

Multiplying both sides by $t^{\frac{1}{2}} \tilde{D}_{j}^{(\ell)}(Y) \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)}$ gives

$$
\begin{gathered}
t^{\frac{1}{2}} \tilde{D}_{j}^{(\ell)}(Y) \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)}+t^{-\frac{1}{2}} \tilde{D}_{\ell+1-j}^{(\ell)}\left(Y^{-1}\right) \frac{\left(1-t Y^{-2} q^{\ell+1-2 j}\right)}{\left(1-t^{-1} Y^{-2} q^{\ell+1-2 j}\right)} \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} \\
\quad=t^{\frac{1}{2}} \tilde{D}_{j}^{(\ell)}(Y) \cdot \frac{\left(1-q^{\ell+1}\right)\left(1-Y^{-2} q^{\ell+1-2 j}\right)}{\left(1-q^{\ell+1-j}\right)\left(1-Y^{-2} q^{\ell+1-j}\right)} \cdot \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)}=\tilde{K}_{j}^{(\ell+1)},
\end{gathered}
$$

where the last equality is (5.9).
Theorem 5.4. As in (4.1) and (4.2), let $D_{j}^{(\ell)}(Y)$ and $K_{j}^{(\ell)}(Y)$ be defined by the expansions

$$
\begin{gathered}
E_{\ell}(X) \mathbf{1}_{0}=\sum_{j=0}^{\ell-1} \eta^{\ell-2 j} D_{j}^{(\ell-1)}(Y) \mathbf{1}_{0} \quad \text { and } \quad E_{-\ell}(X) \mathbf{1}_{0}=\sum_{j=0}^{\ell} \eta^{-\ell+2 j} D_{j}^{(-\ell)}(Y) \mathbf{1}_{0} \\
\text { and } \quad \mathbf{1}_{0} E_{\ell}(X) \mathbf{1}_{0}=\sum_{j=0}^{\ell} \mathbf{1}_{0} \eta^{\ell-2 j} K_{j}^{(\ell)}(Y)
\end{gathered}
$$

in the localized double affine Hecke algebra $\tilde{H}$. Then

$$
\begin{aligned}
D_{j}^{(\ell)}(Y) & =t^{-\frac{1}{2}(\ell+1)} \cdot t^{\ell-j} \cdot\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} \cdot\binom{\ell}{j}_{Y} \cdot \frac{\left(1-t q^{\ell-j}\right)}{\left(1-t q^{\ell}\right)} \cdot \frac{\left(1-t Y^{-2} q^{\ell-j}\right)}{\left(1-t Y^{-2} q^{\ell-2 j}\right)}, \\
D_{j}^{(-\ell)}(Y) & =t^{-\frac{1}{2} \ell} \cdot(q t)^{j} \cdot\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} \cdot\binom{\ell}{\ell-j}_{Y} \cdot \frac{\left(1-t q^{\ell-j}\right)}{\left(1-t q^{\ell}\right)} \cdot \frac{\left(1-t^{-1} Y^{-2} q^{-(\ell-j)}\right)}{\left(1-t^{-1} Y^{-2} q^{-(\ell-2 j)}\right)} \text { and } \\
K_{j}^{(\ell)}(Y) & =t^{-\frac{1}{2}(\ell-1)} \cdot t^{\ell-1-j} \cdot\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} \cdot\binom{\ell}{j}_{Y} \cdot \frac{\left(1-Y^{-2} q^{\ell-2 j}\right)}{\left(1-t^{-1} Y^{-2} q^{\ell-2 j}\right)} \cdot \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} .
\end{aligned}
$$

## 6 Products for type $S L_{2}$ Macdonald polynomials

The formulas for $E_{\ell}(X) \mathbf{1}_{0}$ and $E_{-\ell}(X) \mathbf{1}_{0}$ in Theorem 5.4 serve as universal formulas for products, containing, for all $m$ at once, the information of the products $E_{\ell} P_{m}$ and $E_{-\ell} P_{m}$ expanded in terms of electronic Macdonald polynomials. In the same way the expansion of $\mathbf{1}_{0} E_{\ell}(X) \mathbf{1}_{0}$ in $\tilde{H}$ which is given in Theorem 5.4 is a universal formula for the products $P_{\ell} P_{m}$ expanded in terms of the bosonic Macdonald polynomials $P_{r}(x)$. In this section we use the results of Theorem 5.4 to derive these products, thus accomplishing our goal, in the $S L_{2}$ case, of using double affine Hecke algebra tools to compute compact formulas for products of Macdonald polynomials.

### 6.1 The universal coefficients $A_{j}^{(\ell)}(Y), B_{j}^{(\ell)}(Y)$ and $C_{j}^{(\ell)}(Y)$

Define

$$
\begin{aligned}
C_{j}^{(\ell)}(Y) & =\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} \cdot \frac{\left(t^{-1} Y^{-2} q^{-(j-1)} ; q\right)_{j}\left(t Y^{-2} q^{\ell-2 j} ; q\right)_{j}}{\left(Y^{-2} q^{\ell-2 j+1} ; q\right)_{j}\left(Y^{-2} q^{-j} ; q\right)_{j}} \\
A_{j}^{(\ell)}(Y) & =\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} \cdot \frac{\left(1-q^{\ell-j}\right)}{\left(1-q^{\ell}\right)} \cdot \frac{\left(t^{-1} Y^{-2} q^{-(j-1)} ; q\right)_{j}\left(t Y^{-2} q^{\ell-2 j} ; q\right)_{j}}{\left(Y^{-2} q^{-j} ; q\right)_{j}\left(Y^{-2} q^{\ell-2 j} ; q\right)_{j}} \\
B_{j}^{(\ell)}(Y) & =q^{j} \cdot\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} \cdot \frac{\left(1-q^{\ell-j}\right)}{\left(1-q^{\ell}\right)} \cdot \frac{\left(t^{-1} Y^{-2} q^{-(\ell-j-1)} ; q\right)_{\ell-j}\left(t Y^{-2} q^{-(\ell-2 j-1)} ; q\right)_{\ell-j-1}}{\left(Y^{-2} q^{-(\ell-2 j-1)} ; q\right)_{\ell-j}\left(Y^{-2} q^{-(\ell-j-1)} ; q\right)_{\ell-j-1}}
\end{aligned}
$$

Then

$$
\begin{align*}
A_{j}^{(\ell)}(Y) & =C_{j}^{(\ell)}(Y) \cdot \frac{\left(1-q^{\ell-j}\right)}{\left(1-q^{\ell}\right)} \cdot \frac{\left(1-Y^{-2} q^{\ell-j}\right)}{\left(1-Y^{-2} q^{\ell-2 j}\right)} \quad \text { and }  \tag{6.1}\\
B_{\ell-j}^{(\ell)}(Y) & =q^{\ell-j} \cdot\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} \cdot \frac{\left(1-q^{j}\right)}{\left(1-q^{\ell}\right)} \cdot \frac{\left(t^{-1} Y^{-2} q^{-(j-1)} ; q\right)_{j}\left(t Y^{-2} q^{\ell-2 j+1} ; q\right)_{j-1}}{\left(Y^{-2} q^{\ell-2 j+1} ; q\right)_{j}\left(Y^{-2} q^{-(j-1)} ; q\right)_{j-1}} \\
& =C_{j}^{(\ell)}(Y) \cdot q^{\ell-j} \cdot \frac{\left(1-q^{j}\right)}{\left(1-q^{\ell}\right)} \cdot \frac{\left(1-Y^{-2} q^{-j}\right)}{\left(1-t Y^{-2} q^{\ell-2 j}\right)} \tag{6.2}
\end{align*}
$$

The following proposition gives formulas for $A_{j}^{(\ell)}, B_{j}^{(\ell)}$ and $C_{j}^{(\ell)}$ in terms of $D_{j}^{(\ell)}$ and $K_{j}^{(\ell)}$.
Proposition 6.1.

$$
\begin{gather*}
t^{-\frac{1}{2}} C_{j}^{(\ell)}(Y)=K_{j}^{(\ell)}(Y) \cdot t^{-\frac{1}{2}(\ell-2 j)} \cdot \frac{\left(t^{-1} Y^{-2} q^{\ell-2 j} ; q\right)_{j}}{\left(Y^{-2} q^{\ell-2 j} ; q\right)_{j}} \cdot \frac{\left(Y^{-2} ; q\right)_{\ell-j}}{\left(t^{-1} Y^{-2} ; q\right)_{\ell-j}}  \tag{6.3}\\
A_{j}^{(\ell)}(Y)=D_{j}^{(\ell-1)}(Y) \cdot t^{-\frac{1}{2}(\ell-2 j)} \cdot \frac{\left(t^{-1} Y^{-2} q^{\ell-2 j} ; q\right)_{j}}{\left(Y^{-2} q^{\ell-2 j} ; q\right)_{j}} \cdot \frac{\left(Y^{-2} ; q\right)_{\ell-j}}{\left(t^{-1} Y^{-2} ; q\right)_{\ell-j}} \cdot t \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)}  \tag{6.4}\\
B_{j}^{(\ell)}(Y)=D_{j}^{(\ell-1)}\left(Y^{-1}\right) t^{\frac{1}{2}(\ell-2 j)} \cdot \frac{\left(t^{-1} Y^{-2} q^{-(\ell-2 j)+1} ; q\right)_{\ell-j}}{\left(Y^{-2} q^{-(\ell-2 j)+1} ; q\right)_{\ell-j}} \cdot \frac{\left(Y^{-2} q ; q\right)_{j}}{\left(t^{-1} Y^{-2} q ; q\right)_{j}} \tag{6.5}
\end{gather*}
$$

Proof. (a) Using (5.8) gives

$$
\begin{aligned}
& K_{j}^{(\ell)}(Y) \cdot t^{-\frac{1}{2}(\ell-2 j)} \cdot \frac{\left(t^{-1} Y^{-2} q^{\ell-2 j} ; q\right)_{j}}{\left(Y^{-2} q^{\ell-2 j} ; q\right)_{j}} \cdot \frac{\left(Y^{-2} ; q\right)_{\ell-j}}{\left(t^{-1} Y^{-2} ; q\right)_{\ell-j}} \\
& =t^{-\frac{1}{2}(\ell-1)} \cdot t^{\ell-1-j} \cdot\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} \cdot\binom{\ell}{j}_{Y} \cdot \frac{\left(1-Y^{-2} q^{\ell-2 j}\right)}{\left(1-t^{-1} Y^{-2} q^{\ell-2 j}\right)} \cdot \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} \\
& \cdot t^{-\frac{1}{2}(\ell-2 j)} \cdot \frac{\left(t^{-1} Y^{-2} q^{\ell-2 j} ; q\right)_{j}}{\left(Y^{-2} q^{\ell-2 j} ; q\right)_{j}} \cdot \frac{\left(Y^{-2} ; q\right)_{\ell-j}}{\left(t^{-1} Y^{-2} ; q\right)_{\ell-j}} \\
& =t^{-\frac{1}{2}}\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} \cdot \frac{\left(t^{-1} Y^{-2} q^{-(j-1)} ; q\right)_{\ell-j}\left(t Y^{-2} q^{\ell-2 j} ; q\right)_{j}}{\left(Y^{-2} q ; q\right)_{\ell-j}\left(Y^{-2} q^{-j} ; q\right)_{j}} \cdot \frac{\left(t^{-1} Y^{-2} q^{\ell-2 j} ; q\right)_{j}}{\left(Y^{-2} q^{\ell-2 j} ; q\right)_{j}} \cdot \frac{\left(Y^{-2} ; q\right)_{\ell-j}}{\left(t^{-1} Y^{-2} ; q\right)_{\ell-j}} \\
& \cdot \frac{\left(1-Y^{-2} q^{\ell-2 j}\right)}{\left(1-t^{-1} Y^{-2} q^{\ell-2 j}\right)} \cdot \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} \\
& =t^{-\frac{1}{2}}\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} \cdot \frac{\left(t^{-1} Y^{-2} q^{-(j-1)} ; q\right)_{\ell-j}\left(1-t^{-1} Y^{-2}\right)\left(t^{-1} Y^{-2} q^{\ell-2 j} ; q\right)_{j}}{\left(t^{-1} Y^{-2} ; q\right)_{\ell-j}\left(1-t^{-1} Y^{-2} q^{\ell-2 j}\right)} \\
& \cdot \frac{\left(Y^{-2} ; q\right)_{\ell-j}}{\left(1-Y^{-2}\right)\left(Y^{-2} q ; q\right)_{\ell-j}} \cdot \frac{\left(1-Y^{-2} q^{\ell-2 j}\right)}{\left(Y^{-2} q^{\ell-2 j} ; q\right)_{j}} \cdot \frac{1}{\left(Y^{-2} q^{-j} ; q\right)_{j}} \cdot\left(t Y^{-2} q^{\ell-2 j} ; q\right)_{j} \\
& =t^{-\frac{1}{2}}\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} \cdot \frac{\left(t^{-1} Y^{-2} q^{-(j-1)} ; q\right)_{\ell-j-1}\left(t^{-1} Y^{-2} q^{\ell-2 j} ; q\right)_{j}}{\left(t^{-1} Y^{-2} q ; q\right)_{\ell-j-1}} \\
& \cdot \frac{1}{\left(1-Y^{-2} q^{\ell-j}\right)} \cdot \frac{1}{\left(Y^{-2} q^{\ell-2 j+1} ; q\right)_{j-1}} \cdot \frac{1}{\left(Y^{-2} q^{-j} ; q\right)_{j}} \cdot\left(t Y^{-2} q^{\ell-2 j} ; q\right)_{j} \\
& =t^{-\frac{1}{2}}\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} \cdot \frac{\left(t^{-1} Y^{-2} q^{-(j-1)} ; q\right)_{j}\left(t Y^{-2} q^{\ell-2 j} ; q\right)_{j}}{\left(Y^{-2} q^{\ell-2 j+1} ; q\right)_{j}\left(Y^{-2} q^{-j} ; q\right)_{j}}=t^{-\frac{1}{2}} C_{j}^{(\ell)} .
\end{aligned}
$$

(b) Using (5.9) and (6.3) and (6.1), gives

$$
\begin{aligned}
& D_{j}^{(\ell-1)}(Y) \cdot t^{-\frac{1}{2}(\ell-2 j)} \cdot \frac{\left(t^{-1} Y^{-2} q^{\ell-2 j} ; q\right)_{j}}{\left(Y^{-2} q^{\ell-2 j} ; q\right)_{j}} \cdot \frac{\left(Y^{-2} ; q\right)_{\ell-j}}{\left(t^{-1} Y^{-2} ; q\right)_{\ell-j}} \cdot t \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} \\
&= t^{-\frac{1}{2}} K_{j}^{(\ell)}(Y) \cdot t^{-\frac{1}{2}(\ell-2 j)} \cdot \frac{\left(1-q^{\ell-j}\right)}{\left(1-q^{\ell}\right)} \cdot \frac{\left(1-Y^{-2} q^{\ell-j}\right)}{\left(1-Y^{-2} q^{\ell-2 j}\right)} \cdot \frac{\left(1-Y^{-2}\right)}{\left(1-t^{-1} Y^{-2}\right)} \\
& \cdot \frac{\left(t^{-1} Y^{-2} q^{\ell-2 j} ; q\right)_{j}}{\left(Y^{-2} q^{\ell-2 j} ; q\right)_{j}} \cdot \frac{\left(Y^{-2} ; q\right)_{\ell-j}}{\left(t^{-1} Y^{-2} ; q\right)_{\ell-j}} \cdot t \cdot \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} \\
&= t^{\frac{1}{2}} \cdot t^{-\frac{1}{2}} C_{j}^{(\ell)}(Y) \cdot \frac{\left(1-q^{\ell-j}\right)}{\left(1-q^{\ell}\right)} \cdot \frac{\left(1-Y^{-2} q^{\ell-j}\right)}{\left(1-Y^{-2} q^{\ell-2 j}\right)}=A_{j}^{(\ell)}(Y)
\end{aligned}
$$

(c) Using (5.10) and (6.3) and (6.2) gives

$$
\begin{aligned}
& D_{\ell-j}^{(\ell-1)}\left(Y^{-1}\right) \cdot t^{-\frac{1}{2}(\ell-2 j)} \cdot \frac{\left(t^{-1} Y^{-2} q^{(\ell-2 j)+1} ; q\right)_{j}}{\left(Y^{-2} q^{(\ell-2 j)+1} ; q\right)_{j}} \cdot \frac{\left(Y^{-2} q ; q\right)_{\ell-j}}{\left(t^{-1} Y^{-2} q ; q\right)_{\ell-j}} \\
& =K_{j}^{(\ell)}(Y) \cdot t^{-\frac{1}{2}(\ell-2 j)} \cdot \frac{\left(t^{-1} Y^{-2} q^{(\ell-2 j)+1} ; q\right)_{j}}{\left(Y^{-2} q^{(\ell-2 j)+1} ; q\right)_{j}} \cdot \frac{\left(Y^{-2} q ; q\right)_{\ell-j}}{\left(t^{-1} Y^{-2} q ; q\right)_{\ell-j}} \cdot \frac{\left(1-t^{-1} Y^{-2} q^{\ell-2 j}\right)}{\left(1-t^{-1} Y^{-2}\right)} \cdot \frac{\left(1-Y^{-2}\right)}{\left(1-Y^{-2} q^{\ell-2 j}\right)} \\
& \quad \cdot t^{\frac{1}{2}} q^{\ell-j} \cdot \frac{\left(1-q^{j}\right)}{\left(1-q^{\ell}\right)} \cdot \frac{\left(1-Y^{-2} q^{-j}\right)}{\left(1-t Y^{-2} q^{\ell-2 j}\right)} \\
& =K_{j}^{(\ell)}(Y) \cdot t^{-\frac{1}{2}(\ell-2 j)} \cdot \frac{\left(t^{-1} Y^{-2} q^{(\ell-2 j)} ; q\right)_{j}}{\left(Y^{-2} q^{(\ell-2 j)} ; q\right)_{j}} \cdot \frac{\left(Y^{-2} ; q\right)_{\ell-j}}{\left(t^{-1} Y^{-2} ; q\right)_{\ell-j}} \cdot \frac{\left(1-t^{-1} Y^{-2} q^{\ell-j}\right)}{\left(1-t^{-1} Y^{-2} q^{\ell-j}\right)} \cdot \frac{\left(1-Y^{-2} q^{\ell-j}\right)}{\left(1-Y^{-2} q^{\ell-j}\right)} \\
& \quad \cdot t^{\frac{1}{2}} q^{\ell-j} \cdot \frac{\left(1-q^{j}\right)}{\left(1-q^{\ell}\right)} \cdot \frac{\left(1-Y^{-2} q^{-j}\right)}{\left(1-t Y^{-2} q^{\ell-2 j}\right)} \\
& =t^{-\frac{1}{2}} C_{j}^{(\ell)}(Y) \cdot t^{\frac{1}{2}} q^{\ell-j} \cdot \frac{\left(1-q^{j}\right)}{\left(1-q^{\ell}\right)} \cdot \frac{\left(1-Y^{-2} q^{-j}\right)}{\left(1-t Y^{-2} q^{\ell-2 j}\right)}=B_{\ell-j}^{(\ell)}(Y) .
\end{aligned}
$$

Then, replacing $j$ with $\ell-j$ gives

$$
B_{j}^{(\ell)}(Y)=D_{j}^{(\ell-1)}\left(Y^{-1}\right) \cdot t^{\frac{1}{2}(\ell-2 j)} \cdot \frac{\left(t^{-1} Y^{-2} q^{-(\ell-2 j)+1} ; q\right)_{\ell-j}}{\left(Y^{-2} q^{-(\ell-2 j)+1} ; q\right)_{\ell-j}} \cdot \frac{\left(Y^{-2} q ; q\right)_{j}}{\left(t^{-1} Y^{-2} q ; q\right)_{j}} .
$$

### 6.2 Product formulas for type $S L_{2}$ Macdonald polynomials

The following theorem provides formulas for the products $E_{\ell}(x) E_{m}(x), E_{-\ell}(x) P_{m}(x)$ and $P_{\ell}(x) P_{m}(x)$ expanded in terms of Macdonald polynomials. It is useful to note that, in Theorem 6.2,

$$
\begin{array}{ll}
\operatorname{ev}_{m}\left(A_{j}^{(\ell)}(Y)\right)=0 \text { if } m+\ell-2 j<0, & \operatorname{ev}_{m}\left(t B_{j}^{(\ell+1)}(Y)\right)=0 \text { if } m-(\ell-2 j)<0, \\
\operatorname{ev}_{m}\left(B_{j}^{(\ell)}(Y)\right)=0 \text { if }-m+\ell-2 j>0, & \operatorname{ev}_{m}\left(A_{j}^{(\ell+1)}(Y)\right)=0 \text { if }-m-(\ell-2 j)>0,
\end{array}
$$

and

$$
\operatorname{ev}_{m}\left(C_{j}^{(\ell)}(Y)\right)=0 \text { if } m+\ell-2 j<0,
$$

since a factor in the numerator of each of these expressions evaluates to $(1-1)=0$.
Theorem 6.2. Let $\ell, m \in \mathbb{Z}_{>0}$. Let $\mathrm{ev}_{m}: \mathbb{C}\left[Y, Y^{-1}\right] \rightarrow \mathbb{C}$ be the homomorphism given by $\mathrm{ev}_{m}(Y)=$ $t^{-\frac{1}{2}} q^{-\frac{1}{2} m}$ and extend $\mathrm{ev}_{m}$ to elements of $\mathbb{C}(Y)$ such that the denominator does not evaluate to 0 . Then

$$
\begin{gathered}
P_{\ell}(x) P_{m}(x)=\sum_{j=0}^{\ell} \operatorname{ev}_{m}\left(C_{j}^{(\ell)}(Y)\right) P_{m+\ell-2 j}(x), \\
E_{\ell}(x) P_{m}(x)=\sum_{j=0}^{\ell-1} \operatorname{ev}_{m}\left(A_{j}^{(\ell)}(Y)\right) E_{m+\ell-2 j}(x)+\sum_{j=0}^{\ell-1} \operatorname{ev}_{m}\left(B_{j}^{(\ell)}(Y)\right) E_{-m+\ell-2 j}(x) \quad \text { and } \\
E_{-\ell}(x) P_{m}(x)=\sum_{j=0}^{\ell} \operatorname{ev}_{m}\left(t B_{j}^{(\ell+1)}(Y)\right) E_{m-(\ell-2 j)}(x)+\sum_{j=0}^{\ell} \operatorname{ev}_{m}\left(A_{j}^{(\ell+1)}(Y)\right) E_{-m-(\ell-2 j)}(x) .
\end{gathered}
$$

Proof. By (3.15), if $f \in \mathbb{C}(Y)$ such that $\operatorname{ev}_{m}(f(Y))$ is defined then $f(Y) E_{m}(X) \mathbf{1}_{Y}=\operatorname{ev}_{m}\left(f(Y) E_{m}(X) \mathbf{1}_{Y}\right.$. (a) By (3.19), (3.30), (4.2) and (3.15),

$$
\begin{aligned}
P_{\ell}(X) P_{m}(X) \mathbf{1}_{Y} & =P_{\ell}(X) t^{\frac{1}{2}} \mathbf{1}_{0} E_{m}(X) \mathbf{1}_{Y}=t \mathbf{1}_{0} E_{\ell}(X) \mathbf{1}_{0} E_{m}(X) \mathbf{1}_{Y} \\
& =t\left(\sum_{j=0}^{\ell} \mathbf{1}_{0} \eta^{\ell-2 j} K_{j}^{(\ell)}(Y)\right) E_{m}(X) \mathbf{1}_{Y}
\end{aligned}
$$

and, using (3.23),

$$
\begin{aligned}
& \mathbf{1}_{0} \eta^{\ell-2 j} t K_{j}^{(\ell)}(Y) E_{m}(X) \mathbf{1}_{Y}=t \cdot \operatorname{ev}_{m}\left(K_{j}^{(\ell)}(Y)\right) \mathbf{1}_{0} \eta^{-j} \eta^{\ell-j} E_{m}(X) \mathbf{1}_{Y} \\
&=t \cdot \operatorname{ev}_{m}\left(K_{j}^{(\ell)}(Y) t^{-\frac{1}{2}(\ell-2 j)} \frac{\left(t^{-1} Y^{-2} q^{\ell-2 j} ; q\right)_{j}}{\left(Y^{-2} q^{\ell-2 j} ; q\right)_{j}} \cdot \frac{\left(Y^{-2} ; q\right)_{\ell-j}}{\left(t^{-1} Y^{-2} ; q\right)_{\ell-j}}\right) \mathbf{1}_{0} E_{m+\ell-2 j}(X) \mathbf{1}_{Y} \\
& \quad=t \cdot \operatorname{ev}_{m}\left(K_{j}^{(\ell)}(Y) t^{-\frac{1}{2}(\ell-2 j)} \frac{\left(t^{-1} Y^{-2} q^{\ell-2 j} ; q\right)_{j}}{\left(Y^{-2} q^{\ell-2 j} ; q\right)_{j}} \cdot \frac{\left(Y^{-2} ; q\right)_{\ell-j}}{\left(t^{-1} Y^{-2} ; q\right)_{\ell-j}}\right) t^{-\frac{1}{2}} P_{m+\ell-2 j}(X) \mathbf{1}_{Y} \\
&=t^{\frac{1}{2}} \operatorname{ev}_{m}\left(t^{-\frac{1}{2}} C_{j}^{(\ell)}(Y)\right) P_{m+\ell-2 j}(X) \mathbf{1}_{Y},
\end{aligned}
$$

where the last equality is (6.3).
(b) By (3.19), (4.1) and (3.18),

$$
\begin{aligned}
E_{\ell}(X) P_{m}(X) \mathbf{1}_{Y} & =E_{\ell}(X) t^{\frac{1}{2}} \mathbf{1}_{0} E_{m}(X) \mathbf{1}_{Y}=t^{\frac{1}{2}}\left(\sum_{j=0}^{\ell-1} \eta^{\ell-2 j} D_{j}^{(\ell-1)}(Y)\right) \mathbf{1}_{0} E_{m}(X) \mathbf{1}_{Y} \\
& =t^{\frac{1}{2}}\left(\sum_{j=0}^{\ell-1} \eta^{\ell-2 j} D_{j}^{(\ell-1)}(Y)\right) t^{-\frac{1}{2}} P_{m}(X) \mathbf{1}_{Y} \\
& =\left(\sum_{j=0}^{\ell-1} \eta^{\ell-2 j} D_{j}^{(\ell-1)}(Y)\right)\left(\frac{t\left(1-q^{m}\right)}{\left(1-t q^{m}\right)} E_{m}(X)+E_{-m}(X)\right) \mathbf{1}_{Y}
\end{aligned}
$$

Using (3.23),

$$
\begin{aligned}
& \eta^{\ell-2 j} D_{j}^{(\ell-1)}(Y) t \frac{\left(1-q^{m}\right)}{\left(1-t q^{m}\right)} E_{m}(X) \mathbf{1}_{Y}=\operatorname{ev}_{m}\left(D_{j}^{(\ell-1)}(Y)\right) t \frac{\left(1-q^{m}\right)}{\left(1-t q^{m}\right)} \eta^{-j} \eta^{\ell-j} E_{m}(X) \mathbf{1}_{Y} \\
& \quad=\operatorname{ev}_{m}\left(D_{j}^{(\ell-1)}(Y) t \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} t^{-\frac{1}{2}(\ell-2 j)} \frac{\left(t^{-1} Y^{-2} q^{\ell-2 j} ; q\right)_{j}}{\left(Y^{-2} q^{\ell-2 j} ; q\right)_{j}} \cdot \frac{\left(Y^{-2} ; q\right)_{\ell-j}}{\left(t^{-1} Y^{-2} ; q\right)_{\ell-j}}\right) E_{m+\ell-2 j}(X) \mathbf{1}_{Y} \\
& \quad=\operatorname{ev}_{m}\left(A_{j}^{(\ell)}(Y)\right) E_{m+\ell-2 j}(X) \mathbf{1}_{Y},
\end{aligned}
$$

where the last equality follows from (6.4). Using (3.15) and (3.24),

$$
\begin{aligned}
& \eta^{\ell-2 j} D_{j}^{(\ell-1)}(Y) E_{-m}(X) \mathbf{1}_{Y}=\operatorname{ev}_{m}\left(D_{j}^{(\ell-1)}\left(Y^{-1}\right)\right) \eta^{\ell-j} \eta^{-j} E_{-m}(X) \mathbf{1}_{Y} \\
& \quad=\operatorname{ev}_{m}\left(D_{j}^{(\ell-1)}\left(Y^{-1}\right) t^{\frac{1}{2}(\ell-2 j)} \frac{\left(t^{-1} Y^{-2} q^{-(\ell-2 j)+1} ; q\right)_{\ell-j}}{\left(Y^{-2} q^{-(\ell-2 j)+1} ; q\right) \ell-j} \frac{\left(Y^{-2} q ; q\right)_{j}}{\left(t^{-1} Y^{-2} q ; q\right)_{j}}\right) E_{-m+\ell-2 j}(X) \mathbf{1}_{Y} \\
& \quad=\operatorname{ev}_{m}\left(B_{j}^{(\ell)}(Y)\right) E_{-m+\ell-2 j}(X) \mathbf{1}_{Y},
\end{aligned}
$$

where the last equality is (6.5).
(c) By (3.19), (4.1), (3.18) and Proposition 4.1(a),

$$
\begin{aligned}
E_{-\ell}(X) P_{m}(X) \mathbf{1}_{Y} & =E_{-\ell}(X) t^{\frac{1}{2}} \mathbf{1}_{0} E_{m}(X) \mathbf{1}_{Y}=t^{\frac{1}{2}}\left(\sum_{j=0}^{\ell} \eta^{-(\ell-2 j)} D_{j}^{(-\ell)}(Y)\right) \mathbf{1}_{0} E_{m}(X) \mathbf{1}_{Y} \\
& =t^{\frac{1}{2}}\left(\sum_{j=0}^{\ell} \eta^{-(\ell-2 j)} D_{j}^{(-\ell)}(Y)\right) t^{-\frac{1}{2}} P_{m}(X) \mathbf{1}_{Y} \\
& =\left(\sum_{j=0}^{\ell} \eta^{-(\ell-2 j)} D_{j}^{(-\ell)}(Y)\right)\left(\frac{t\left(1-q^{m}\right)}{\left(1-t q^{m}\right)} E_{m}(X)+E_{-m}(X)\right) \mathbf{1}_{Y} \\
& =\left(\sum_{j=0}^{\ell} \eta^{-(\ell-2 j)} t^{\frac{1}{2}} D_{j}^{(\ell)}\left(Y^{-1}\right)\right)\left(\frac{t\left(1-q^{m}\right)}{\left(1-t q^{m}\right)} E_{m}(X)+E_{-m}(X)\right) \mathbf{1}_{Y}
\end{aligned}
$$

Using

$$
\begin{aligned}
\frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} & \frac{\left(t^{-1} Y^{-2} q^{-(\ell-2 j)} ; q\right)_{\ell-j}}{\left(Y^{-2} q^{-(\ell-2 j)} ; q\right)_{\ell-j}} \cdot \frac{\left(Y^{-2} ; q\right)_{j}}{\left(t^{-1} Y^{-2} ; q\right)_{j}} \\
& =\frac{\left(t^{-1} Y^{-2} q^{-(\ell-2 j)} ; q\right)_{\ell+1-j}}{\left(Y^{-2} q^{-(\ell-2 j)} ; q\right)_{\ell+1-j}} \cdot \frac{\left(1-Y^{-2} q^{j}\right)}{\left(1-t^{-1} Y^{-2} q^{j}\right)} \cdot \frac{\left(Y^{-2} q ; q\right)_{j-1}}{\left(t^{-1} Y^{-2} q ; q\right)_{j-1}} \\
& =\frac{\left(t^{-1} Y^{-2} q^{-(\ell-2 j)} ; q\right)_{\ell+1-j}}{\left(Y^{-2} q^{-(\ell-2 j)} ; q\right)_{\ell+1-j}} \cdot \frac{\left(Y^{-2} q ; q\right)_{j}}{\left(t^{-1} Y^{-2} q ; q\right)_{j}}
\end{aligned}
$$

and (3.21) gives

$$
\begin{aligned}
& \eta^{-(\ell-2 j)} t^{\frac{1}{2}} D_{j}^{(\ell)}\left(Y^{-1}\right) t \frac{\left(1-q^{m}\right)}{\left(1-t q^{m}\right)} E_{m}(X) \mathbf{1}_{Y}=\operatorname{ev}_{m}\left(t^{\frac{1}{2}} D_{j}^{(\ell)}\left(Y^{-1}\right) t \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)}\right) \eta^{-(\ell-j)} \eta^{j} E_{m}(X) \mathbf{1}_{Y} \\
& =\operatorname{ev}_{m}\left(t^{\frac{1}{2}} D_{j}^{(\ell)}\left(Y^{-1}\right) t \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} t^{\frac{1}{2}(\ell-2 j)} \frac{\left(t^{-1} Y^{-2} q^{-(\ell-2 j)} ; q\right)_{\ell-j}}{\left(Y^{-2} q^{-(\ell-2 j)} ; q\right)_{\ell-j}} \cdot \frac{\left(Y^{-2} ; q\right)_{j}}{\left(t^{-1} Y^{-2} ; q\right)_{j}}\right) E_{m-(\ell-2 j)}(X) \mathbf{1}_{Y} \\
& =\operatorname{ev}_{m}\left(t D_{j}^{(\ell)}\left(Y^{-1}\right) \cdot t^{\frac{1}{2}(\ell+1-2 j)} \cdot \frac{\left(t^{-1} Y^{-2} q^{-(\ell-2 j)} ; q\right)_{\ell+1-j}}{\left(Y^{-2} q^{-(\ell-2 j)} ; q\right)_{\ell+1-j}} \cdot \frac{\left(Y^{-2} q ; q\right)_{j}}{\left(t^{-1} Y^{-2} q ; q\right)_{j}}\right) E_{m-(\ell-2 j)}(X) \mathbf{1}_{Y} \\
& =\operatorname{ev}_{m}\left(t B_{j}^{(\ell+1)}(Y)\right) E_{m-(\ell-2 j)}(X) \mathbf{1}_{Y},
\end{aligned}
$$

where the last equality is (6.5). Using (3.15) and (3.22) gives

$$
\begin{aligned}
& \eta^{-(\ell-2 j)} t^{\frac{1}{2}} D_{j}^{(\ell)}\left(Y^{-1}\right) E_{-m}(X) \mathbf{1}_{Y}=\operatorname{ev}_{m}\left(t^{\frac{1}{2}} D_{j}^{(\ell)}(Y)\right) \eta^{j} \eta^{-(\ell-j)} E_{-m}(X) \mathbf{1}_{Y} \\
& =\operatorname{ev}_{m}\left(t^{\frac{1}{2}} D_{j}^{(\ell)}(Y) t^{-\frac{1}{2}(\ell-2 j)} \frac{\left(t^{-1} Y^{-2} q^{\ell-2 j+1} ; q\right)_{j}}{\left(Y^{-2} q^{\ell-2 j+1} ; q\right)_{j}} \frac{\left(Y^{-2} q ; q\right)_{\ell-j}}{\left(t^{-1} Y^{-2} q ; q\right)_{\ell-j}}\right) E_{-m-(\ell-2 j)}(X) \mathbf{1}_{Y} \\
& =\operatorname{ev}_{m}\left(D_{j}^{(\ell)}(Y) t^{-\frac{1}{2}(\ell+1-2 j)} \frac{\left(t^{-1} Y^{-2} q^{\ell-2 j+1} ; q\right)_{j}}{\left(Y^{-2} q^{\ell-2 j+1} ; q\right)_{j}} \frac{\left(Y^{-2} ; q\right)_{\ell+1-j}}{\left(t^{-1} Y^{-2} ; q\right)_{\ell+1-j}} \cdot t \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)}\right) E_{-m-(\ell-2 j)}(X) \mathbf{1}_{Y} \\
& =\operatorname{ev}\left(A_{j}^{(\ell+1)}(Y)\right) E_{-m-(\ell-2 j)}(X) \mathbf{1}_{Y},
\end{aligned}
$$

where the last equality is (6.4).
Remark 6.3. After replacing $Y^{-2}$ by $X_{1} X_{2}^{-1}$ the expression for $C_{j}^{(\ell)}(Y)$ coincides with the expression for the Macdonald Littlewood-Richardson coefficient given in MW23, Theorem 1.4].

## 7 Examples

For $j \in \mathbb{Z}_{>0}$ and $a, b \in \mathbb{Z}$ with $a \leq b$ define

$$
\begin{aligned}
(z ; q)_{j} & =(1-z)(1-q z)\left(1-q^{2} z\right) \cdots\left(1-q^{j-1} z\right) \quad \text { and } \\
\left(1-z q^{a . b}\right) & =\left(1-z q^{a}\right)\left(1-z q^{a+1}\right) \cdots\left(1-z q^{b-1}\right)\left(1-z q^{b}\right) \quad \text { so that } \quad\left(1-z q^{a . b}\right)=\left(1-z q^{a}\right)_{b-a+1} .
\end{aligned}
$$

### 7.1 Examples of the $q$ - $t$-binomial coefficients

Let

$$
\left[\begin{array}{c}
k \\
j
\end{array}\right]_{q, t}=\frac{\frac{(q ; q)_{k}}{(t ; q)_{k}}}{\frac{(q ; q)_{j}}{(t ; q)_{j}} \frac{\left(q ; q q_{k-j}\right.}{(t ; q)_{k-j}}}=\frac{\left(1-q^{j+1 . . k}\right)}{\left(1-q^{1 . . k-j}\right)} \frac{\left(1-t q^{0 . . k-j-1}\right)}{\left(1-t q^{j . k-1}\right)} .
$$

Then

$$
\begin{gathered}
{\left[\begin{array}{l}
0 \\
0
\end{array}\right]_{q, t}=1,} \\
{\left[\begin{array}{l}
1 \\
0
\end{array}\right]_{q, t}=1, \quad\left[\begin{array}{l}
1 \\
1
\end{array}\right]_{q, t}=1,} \\
{\left[\begin{array}{l}
2 \\
0
\end{array}\right]_{q, t}=1 \quad\left[\begin{array}{l}
2 \\
1
\end{array}\right]_{q, t}=\frac{\left(1-q^{2}\right)(1-t)}{(1-q)(1-t q)}, \quad\left[\begin{array}{l}
2 \\
2
\end{array}\right]_{q, t}=1,} \\
{\left[\begin{array}{l}
3 \\
0
\end{array}\right]_{q, t}=1, \quad\left[\begin{array}{l}
3 \\
1
\end{array}\right]_{q, t}=\frac{(1-t)\left(1-q^{3}\right)}{(1-q)\left(1-t q^{2}\right)}, \quad\left[\begin{array}{l}
3 \\
2
\end{array}\right]_{q, t}=\frac{(1-t)\left(1-q^{3}\right)}{(1-q)\left(1-t q^{2}\right)}, \quad\left[\begin{array}{l}
3 \\
3
\end{array}\right]_{q, t}=1}
\end{gathered}
$$

### 7.2 Examples of the shifted $q$-t-binomial coefficients

Let

$$
\left\{\begin{array}{l}
k \\
j
\end{array}\right\}_{q, t}=\left[\begin{array}{l}
k \\
j
\end{array}\right]_{q, t} \frac{\left(1-t q^{k-j}\right)}{\left(1-t q^{k}\right)}=\frac{\left(1-q^{j+1 . . k}\right)}{\left(1-q^{1 . . k-j}\right)} \frac{\left(1-t q^{1 . . k-j-1}\right)}{\left(1-t q^{j . k}\right)} .
$$

Then

$$
\left.\begin{array}{c}
\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}_{q, t}=1, \\
\left\{\begin{array}{l}
2 \\
0
\end{array}\right\}_{q, t}=1 \quad\left\{\begin{array}{l}
2 \\
1
\end{array}\right\}_{q, t}=\frac{\left(1-q^{2}\right)(1-t)}{(1-q)\left(1-t q^{2}\right)}, \quad\left\{\begin{array}{l}
2 \\
2
\end{array}\right\}_{q, t}=\frac{(1-t)}{\left(1-t q^{2}\right)}, \\
1
\end{array}\right\}_{q, t}=\frac{(1-t)}{(1-t q)}, ~ \begin{aligned}
& 1, \quad\left\{\begin{array}{l}
3 \\
1
\end{array}\right\}_{q, t}=\frac{(1-t)\left(1-q^{3}\right)}{(1-q)\left(1-t q^{3}\right)}, \quad\left\{\begin{array}{l}
3 \\
2
\end{array}\right\}_{q, t}=\frac{(1-t)(1-t q)}{(1-q)\left(1-t q^{2}\right)}, \quad\left\{\begin{array}{l}
3 \\
3
\end{array}\right\}_{q, t}=\frac{(1-t)}{\left(1-t q^{3}\right)} .
\end{aligned}
$$

### 7.3 Examples of the $Y$-binomial coefficients

$$
\binom{\ell}{j}_{Y}=\frac{\left(1-t^{-1} Y^{-2} q^{-(j-1) . . \ell-2 j}\right)\left(1-t Y^{-2} q^{\ell-2 j . . \ell-j-1}\right)}{\left(1-Y^{-2} q^{1 . . \ell-j}\right)\left(1-Y^{-2} q^{-j . .-1}\right)}=\frac{\left(t^{-1} Y^{-2} q^{-(j-1)} ; q\right)_{\ell-j}\left(t Y^{-2} q^{\ell-2 j} ; q\right)_{j}}{\left(Y^{-2} q ; q\right)_{\ell-j}\left(Y^{-2} q^{-j} ; q\right)_{j}} .
$$

Then

$$
\begin{aligned}
& \binom{0}{0}_{Y}=1, \\
& \binom{1}{0}_{Y}=\frac{\left(1-t^{-1} Y^{-2} q\right)}{\left(1-Y^{-2} q\right)}=t^{-1} \cdot \frac{\left(1-t Y^{2} q^{-1}\right)}{\left(1-Y^{2} q^{-1}\right)} \\
& \binom{1}{1}_{Y}=\frac{\left(1-t Y^{-2} q^{-1}\right)}{\left(1-Y^{-2} q^{-1}\right)}=t \cdot \frac{\left(1-t^{-1} Y^{2} q\right)}{\left(1-Y^{2} q\right)} \\
& \binom{2}{0}_{Y}=\frac{\left(1-t^{-1} Y^{-2} q\right)\left(1-t^{-1} Y^{-2} q^{2}\right)}{\left(1-Y^{-2} q\right)\left(1-Y^{-2} q^{2}\right)}=t^{-2} \cdot \frac{\left(1-t Y^{2} q^{-1}\right)\left(1-t Y^{2} q^{-2}\right)}{\left(1-Y^{2} q^{-1}\right)\left(1-Y^{2} q^{-2}\right)} \\
& \binom{2}{1}_{Y}=\frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2} q\right)} \cdot \frac{\left(1-t Y^{-2}\right)}{\left(1-Y^{-2} q^{-1}\right)}=\frac{\left(1-t Y^{2}\right)}{\left(1-Y^{2} q^{-1}\right)} \cdot \frac{\left(1-t^{-1} Y^{2}\right)}{\left(1-Y^{2} q\right)} \\
& \binom{2}{2}_{Y}=\frac{\left(1-t Y^{-2} q^{-2}\right)\left(1-t Y^{-2} q^{-1}\right)}{\left(1-Y^{-2} q^{-2}\right)\left(1-Y^{-2} q^{-1}\right)}=t^{2} \cdot \frac{\left(1-t^{-1} Y^{2} q^{2}\right)\left(1-t^{-1} Y^{2} q\right)}{\left(1-Y^{2} q^{2}\right)\left(1-Y^{2} q\right)} \\
& \binom{3}{0}_{Y}=\frac{\left(1-t^{-1} Y^{-2} q\right)\left(1-t^{-1} Y^{-2} q^{2}\right)\left(1-t^{-1} Y^{-2} q^{3}\right)}{\left(1-Y^{-2} q\right)\left(1-Y^{-2} q^{2}\right)\left(1-Y^{-2} q^{3}\right)} \\
& \binom{3}{1}_{Y}=\frac{\left(1-t^{-1} Y^{-2}\right)\left(1-t^{-1} Y^{-2} q\right)}{\left(1-Y^{-2} q\right)\left(1-Y^{-2} q^{2}\right)} \cdot \frac{\left(1-t Y^{-2} q\right)}{\left(1-Y^{-2} q^{-1}\right)} \\
& \binom{3}{2}_{Y}=\frac{\left(1-t^{-1} Y^{-2} q^{-1}\right)}{\left(1-Y^{-2} q\right)} \cdot \frac{\left(1-t Y^{-2} q^{-1}\right)\left(1-t Y^{-2}\right)}{\left(1-Y^{-2} q^{-2}\right)\left(1-Y^{-2} q^{-1}\right)} \\
& \binom{3}{3}_{Y}=\frac{\left(1-t Y^{-2} q^{-3}\right)\left(1-t Y^{-2} q^{-2}\right)\left(1-t Y^{-2} q^{-1}\right)}{\left(1-Y^{-2} q^{-3}\right)\left(1-Y^{-2} q^{-2}\right)\left(1-Y^{-2} q^{-1}\right)}
\end{aligned}
$$

### 7.4 Examples of the $D_{j}^{(\ell-1)}(Y)$

The general product formula for the $D_{j}^{(\ell)}(Y)$ is

$$
D_{j}^{(\ell)}(Y)=t^{-\frac{1}{2}(\ell+1)} \cdot t^{\ell-j} \cdot\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} \cdot \frac{\left(1-t q^{\ell-j}\right)}{\left(1-t q^{\ell}\right)} \cdot\binom{\ell}{j}_{Y} \cdot \frac{\left(1-t Y^{-2} q^{\ell-j}\right)}{\left(1-t Y^{-2} q^{\ell-2 j}\right)}
$$

The first few of the $D_{j}^{(\ell-1)}(Y)$ are

$$
\begin{aligned}
D_{0}^{(0)}(Y) & =t^{-\frac{1}{2}} \cdot 1, \\
D_{0}^{(1)}(Y) & =t^{-\frac{2}{2}} \cdot \frac{\left(1-t Y^{2} q^{-1}\right)}{\left(1-Y^{2} q^{-1}\right)}=t^{-\frac{2}{2}} \cdot t \cdot \frac{\left(1-t^{-1} Y^{-2} q\right)}{\left(1-Y^{-2} q\right)} \\
D_{1}^{(1)}(Y) & =t^{-\frac{2}{2}} \cdot q t \cdot \frac{(1-t)}{(1-t q)} \cdot \frac{\left(1-t^{-1} Y^{2}\right)}{\left(1-Y^{2} q\right)}=t^{-\frac{2}{2}} \cdot \frac{(1-t)}{(1-t q)} \cdot \frac{\left(1-t Y^{-2}\right)}{\left(1-Y^{-2} q^{-1}\right)}, \\
D_{0}^{(2)}(Y) & =t^{-\frac{3}{2}} \cdot \frac{\left(1-t Y^{2} q^{-2}\right)\left(1-t Y^{2} q^{-1}\right)}{\left(1-Y^{2} q^{-2}\right)\left(1-Y^{2} q^{-1}\right)}=t^{-\frac{3}{2}} \cdot t^{2} \cdot \frac{\left(1-t^{-1} Y^{-2} q\right)\left(1-t^{-1} Y^{-2} q^{2}\right)}{\left(1-Y^{-2} q\right)\left(1-Y^{-2} q^{2}\right)} \\
D_{1}^{(2)}(Y) & =t^{-\frac{3}{2}} \cdot q t \cdot \frac{\left(1-q^{2}\right)(1-t)}{(1-q)\left(1-t q^{2}\right)} \cdot \frac{\left(1-t Y^{2}\right)}{\left(1-Y^{2} q^{-1}\right)} \cdot \frac{\left(1-t^{-1} Y^{2} q^{-1}\right)}{\left(1-Y^{2} q\right)}, \\
& =t^{-\frac{3}{2}} \cdot t \cdot \frac{\left(1-q^{2}\right)(1-t)}{(1-q)\left(1-t q^{2}\right)} \cdot \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2} q\right)} \cdot \frac{\left(1-t Y^{-2} q\right)}{\left(1-Y^{-2} q^{-1}\right)} \\
D_{2}^{(2)}(Y) & =t^{-\frac{3}{2}} \cdot q^{2} t^{2} \cdot \frac{(1-t)}{\left(1-t q^{2}\right)} \cdot \frac{\left(1-t^{-1} Y^{2}\right)\left(1-t^{-1} Y^{2} q\right)}{\left(1-Y^{2} q\right)\left(1-Y^{2} q^{2}\right)} \\
& =t^{-\frac{3}{2}} \cdot \frac{(1-t)}{\left(1-t q^{2}\right)} \cdot \frac{\left(1-t Y^{-2} q^{-1}\right)\left(1-t Y^{-2}\right)}{\left(1-Y^{-2} q^{-2}\right)\left(1-Y^{-2} q^{-1}\right)} .
\end{aligned}
$$

### 7.5 Examples of the $K_{j}^{(\ell)}(Y)$

The general product formula for the $K_{j}^{(\ell)}(Y)$ for $\ell \in \mathbb{Z}_{>0}$ is

$$
K_{j}^{(\ell)}(Y)=t^{-\frac{1}{2}(\ell-1)} \cdot t^{\ell-1-j} \cdot\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} \cdot\binom{\ell}{j}_{Y} \cdot \frac{\left(1-Y^{-2} q^{\ell-2 j}\right)}{\left(1-t^{-1} Y^{-2} q^{\ell-2 j}\right)} \cdot \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)}
$$

The first few of the $K_{j}^{(\ell)}(Y)$ are

$$
\begin{aligned}
& K_{0}^{(0)}(Y)=\left(t^{\frac{1}{2}}+t^{-\frac{1}{2}}\right) \quad\left(\text { since } \mathbf{1}_{0} E_{0}(X) \mathbf{1}_{0}=\mathbf{1}_{0}^{2}=\mathbf{1}_{0}\left(t^{\frac{1}{2}}+t^{-\frac{1}{2}}\right)\right), \\
& K_{0}^{(1)}(Y)=1 \cdot 1 \cdot \frac{\left(1-t^{-1} Y^{-2} q\right)}{\left(1-Y^{-2} q\right)} \cdot \frac{\left(1-Y^{-2} q\right)}{\left(1-t^{-1} Y^{-2} q\right)} \cdot \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)}, \\
& K_{1}^{(1)}(Y)=1 \cdot t^{-1} \cdot \frac{\left(1-t Y^{-2} q^{-1}\right)}{\left(1-Y^{-2} q^{-1}\right)} \cdot \frac{\left(1-Y^{-2} q^{-1}\right)}{\left(1-t^{-1} Y^{-2} q^{-1}\right)} \cdot \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)}, \\
& K_{0}^{(2)}(Y)=t^{-\frac{1}{2}} \cdot t \cdot \frac{\left(1-t^{-1} Y^{-2} q\right)\left(1-t^{-1} Y^{-2} q^{2}\right)}{\left(1-Y^{-2} q\right)\left(1-Y^{-2} q^{2}\right)} \cdot \frac{\left(1-Y^{-2} q^{2}\right)}{\left(1-t^{-1} Y^{-2} q^{2}\right)} \cdot \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} \\
& K_{1}^{(2)}(Y)=t^{-\frac{1}{2}} \cdot 1 \cdot \frac{\left(1-q^{2}\right)(1-t)}{(1-q)(1-t q)} \cdot \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2} q\right)} \cdot \frac{\left(1-t Y^{-2}\right)}{\left(1-Y^{-2} q^{-1}\right)} \cdot \frac{\left(1-Y^{-2}\right)}{\left(1-t^{-1} Y^{-2}\right)} \cdot \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} \\
& K_{2}^{(2)}(Y)=t^{-\frac{1}{2}} \cdot t^{-1} \cdot \frac{\left(1-t Y^{-2} q^{-2}\right)\left(1-t Y^{-2} q^{-1}\right)}{\left(1-Y^{-2} q^{-2}\right)\left(1-Y^{-2} q^{-1}\right)} \cdot \frac{\left(1-Y Y^{-2} q^{-2}\right)}{\left(1-t^{-1} Y^{-2} q^{-2}\right)} \cdot \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} \\
& K_{0}^{(3)}(Y)=t^{-1} \cdot t^{2} \cdot \frac{\left(1-t^{-1} Y^{-2} q\right)\left(1-t^{-1} Y^{-2} q^{2}\right)\left(1-t^{-1} Y^{-2} q^{3}\right)}{\left(1-Y^{-2} q\right)\left(1-Y^{-2} q^{2}\right)\left(1-Y^{-2} q^{3}\right)} \cdot \frac{\left(1-Y^{-2} q^{3}\right)}{\left(1-t^{-1} Y^{-2} q^{3}\right)} \cdot \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} \\
& K_{1}^{(3)}(Y)=t^{-1} \cdot t \cdot \frac{(1-t)\left(1-q^{3}\right)}{(1-q)\left(1-t q^{2}\right)} \cdot \frac{\left(1-t^{-1} Y^{-2}\right)\left(1-t^{-1} Y^{-2} q\right)}{\left(1-Y^{-2} q\right)\left(1-Y^{-2} q^{2}\right)} \cdot \frac{\left(1-t Y^{-2} q\right)}{\left(1-Y^{-2} q^{-1}\right)} \\
& \cdot \frac{\left(1-Y^{-2} q\right)}{\left(1-t^{-1} Y^{-2} q\right)} \cdot \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} \\
& K_{2}^{(3)}(Y)=t^{-1} \cdot 1 \cdot \frac{(1-t)\left(1-q^{3}\right)}{(1-q)\left(1-t q^{2}\right)} \cdot \frac{\left(1-t^{-1} Y^{-2} q^{-1}\right)}{\left(1-Y^{-2} q\right)} \cdot \frac{\left(1-t Y^{-2} q^{-1}\right)\left(1-t Y^{-2}\right)}{\left(1-Y^{-2} q^{-2}\right)\left(1-Y^{-2} q^{-1}\right)} \\
& \cdot \frac{\left(1-Y^{-2} q^{-1}\right)}{\left(1-t^{-1} Y^{-2} q^{-1}\right)} \cdot \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} \\
& K_{3}^{(3)}(Y)=t^{-1} \cdot t^{-1} \cdot \frac{\left(1-t Y^{-2} q^{-3}\right)\left(1-t Y^{-2} q^{-2}\right)\left(1-t Y^{-2} q^{-1}\right)}{\left(1-Y^{-2} q^{-3}\right)\left(1-Y^{-2} q^{-2}\right)\left(1-Y^{-2} q^{-1}\right)} \cdot \frac{\left(1-Y^{-2} q^{-3}\right)}{\left(1-t^{-1} Y^{-2} q^{-3}\right)} \cdot \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)}
\end{aligned}
$$

### 7.6 Examples of $K_{j}^{(\ell)}(Y)$ to $C_{j}^{(\ell)}(Y)$

The following are examples of the identity (6.3) from Proposition 6.1 which says

$$
K_{j}^{(\ell)}(Y) \cdot t^{-\frac{1}{2}(\ell-2 j)} \cdot \frac{\left(t^{-1} Y^{-2} q^{\ell-2 j} ; q\right)_{j}}{\left(Y^{-2} q^{\ell-2 j} ; q\right)_{j}} \cdot \frac{\left(Y^{-2} ; q\right)_{\ell-j}}{\left(t^{-1} Y^{-2} ; q\right)_{\ell-j}}=C_{j}^{(\ell)}(Y),
$$

where

$$
C_{j}^{(\ell)}(Y)=\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} \cdot \frac{\left(t^{-1} Y^{-2} q^{-(j-1)} ; q\right)_{j}\left(t Y^{-2} q^{\ell-2 j} ; q\right)_{j}}{\left(Y^{-2} q^{\ell-2 j+1} ; q\right)_{j}\left(Y^{-2} q^{-j} ; q\right)_{j}}
$$

The case $\ell=0$.

$$
\begin{aligned}
& K_{0}^{(0)}(Y) \cdot t^{-\frac{1}{2}(0-2 \cdot 0)} \cdot \frac{\left(t^{-1} Y^{-2} q^{\ell-2 j} ; q\right)_{0}}{\left(Y^{-2} q^{\ell-2 j} ; q\right)_{0}} \cdot \frac{\left(Y^{-2} ; q\right)_{0}}{\left(t^{-1} Y^{-2} ; q\right)_{0}} \\
& \quad=\left(t^{\frac{1}{2}}+t^{-\frac{1}{2}}\right) \cdot 1 \cdot \frac{1}{1} \cdot \frac{1}{1}=t^{\frac{1}{2}}+t^{-\frac{1}{2}}
\end{aligned}
$$

The case $\ell=1$.

$$
\begin{gathered}
K_{0}^{(1)}(Y) \cdot t^{-\frac{1}{2}(1-2 \cdot 0)} \cdot \frac{\left(t^{-1} Y^{-2} q^{\ell-2 j} ; q\right)_{0}}{\left(Y^{-2} q^{\ell-2 j} ; q\right)_{0}} \cdot \frac{\left(Y^{-2} ; q\right)_{1}}{\left(t^{-1} Y^{-2} ; q\right)_{1}} \\
=\frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} \cdot t^{-\frac{1}{2}} \frac{1}{1} \cdot \frac{\left(1-Y^{-2}\right)}{\left(1-t^{-1} Y^{-2}\right)}=t^{-\frac{1}{2}} . \\
K_{1}^{(1)}(Y) \cdot t^{-\frac{1}{2}(1-2 \cdot 1)} \cdot \frac{\left(t^{-1} Y^{-2} q^{1-2 \cdot 1} ; q\right)_{1}}{\left(Y^{-2} q^{1-2 \cdot 1} ; q\right)_{1}} \cdot \frac{\left(Y^{-2} ; q\right)_{0}}{\left(t^{-1} Y^{-2} ; q\right)_{0}} \\
=t^{-1} \frac{\left(1-t Y^{-2} q^{-1}\right)}{\left(1-t^{-1} Y^{-2} q^{-1}\right)} \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} \cdot t^{\frac{1}{2}} \frac{\left(1-t^{-1} Y^{-2} q^{-1}\right)}{\left(1-Y^{-2} q^{-1}\right)} \cdot \frac{1}{1} \\
=t^{-\frac{1}{2}} \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} \frac{\left(1-t Y^{-2} q^{-1}\right)}{\left(1-Y^{-2} q^{-1}\right)} .
\end{gathered}
$$

The case $\ell=2$.

$$
\begin{aligned}
& K_{0}^{(2)}(Y) \cdot t^{-\frac{1}{2}(2-2 \cdot 0)} \cdot \frac{\left(t^{-1} Y^{-2} q^{\ell-2 j} ; q\right)_{0}}{\left(Y^{-2} q^{\ell-2 j} ; q\right)_{0}} \cdot \frac{\left(Y^{-2} ; q\right)_{2}}{\left(t^{-1} Y^{-2} ; q\right)_{2}} \\
& \quad=t^{\frac{1}{2}} \frac{\left(1-t^{-1} Y^{-2} q\right)\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2} q\right)\left(1-Y^{-2}\right)} \cdot t^{-1} \cdot \frac{1}{1} \cdot \frac{\left(1-Y^{-2}\right)\left(1-Y^{-2} q\right)}{\left(1-t^{-1} Y^{-2}\right)\left(1-t^{-1} Y^{-2} q\right)}=t^{-\frac{1}{2}} . \\
& K_{1}^{(2)}(Y) \cdot t^{-\frac{1}{2}(2-2 \cdot 1)} \cdot \frac{\left(t^{-1} Y^{-2} q^{\ell-2 j} ; q\right)_{1}}{\left(Y^{-2} q^{\ell-2 j} ; q\right)_{1}} \cdot \frac{\left(Y^{-2} ; q\right)_{1}}{\left(t^{-1} Y^{-2} ; q\right)_{1}} \\
& \quad=t^{-\frac{1}{2}} \frac{\left(1-q^{2}\right)(1-t)}{(1-q)(1-t q)} \frac{\left(1-t Y^{-2}\right)\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2} q\right)\left(1-Y^{-2} q^{-1}\right)} \cdot 1 \cdot \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} \cdot \frac{\left(1-Y^{-2}\right)}{\left(1-t^{-1} Y^{-2}\right)} \\
& \quad=t^{-\frac{1}{2} \frac{\left(1-q^{2}\right)(1-t)}{(1-q)(1-t q)} \frac{\left(1-t Y^{-2}\right)\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2} q\right)\left(1-Y^{-2} q^{-1}\right)} .} \\
& \begin{aligned}
& K_{2}^{(2)}(Y) \cdot t^{-\frac{1}{2}(2-2 \cdot 2)} \cdot \frac{\left(t^{-1} Y^{-2} q^{2-2 \cdot 2} ; q\right)_{2}}{\left(Y^{-2} q^{2-2 \cdot 2} ; q\right)_{2}} \cdot \frac{\left(Y^{-2} ; q\right)_{0}}{\left(t^{-1} Y^{-2} ; q\right)_{0}} \\
&= t^{-\frac{3}{2}} \frac{\left(1-t Y^{-2} q^{-2}\right)\left(1-t Y^{-2} q^{-1}\right)\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2} q^{-1}\right)\left(1-t^{-1} Y^{-2} q^{-2}\right)\left(1-Y^{-2}\right)} \cdot t^{-1} \cdot \frac{\left(1-t^{-1} Y^{-2} q^{-2}\right)\left(1-t^{-1} Y^{-2} q^{-1}\right)}{\left(1-Y^{-2} q^{-2}\right)\left(1-Y^{-2} q^{-1}\right)} \cdot \frac{1}{1} \\
&= t^{-\frac{1}{2}} \frac{\left(1-t Y^{-2} q^{-2}\right)\left(1-t Y^{-2} q^{-1}\right)}{\left(1-Y^{-2} q^{-2}\right)\left(1-Y^{-2} q^{-1}\right)} \cdot \frac{\left(1-t^{-1} Y^{-2} q^{-1}\right)\left(1-t^{-1} Y^{-1}\right)}{\left(1-Y^{-2} q^{-1}\right)\left(1-Y^{-2}\right)}
\end{aligned}
\end{aligned}
$$

### 7.7 Examples of $E_{\ell}(x)$ and $P_{\ell}(x)$

$$
\begin{aligned}
& E_{-2}(x)=x^{-2}+\frac{(1-t)\left(1-q^{2}\right)}{(1-q)\left(1-q^{2} t\right)}+\frac{(1-t)}{\left(1-q^{2} t\right)} x^{2} \\
& E_{-1}(x)=x^{-1}+\frac{1-t}{1-q t} x \\
& E_{0}(x)=1 \\
& E_{1}(x)=x \\
& E_{2}(x)=x^{2}+q \frac{(1-t)}{(1-q t)}, \\
& E_{3}(x)=x^{3}+\left(\frac{(1-t) q}{(1-t q)}+\frac{(1-t) q^{2}}{\left(1-t q^{2}\right)} \frac{(1-t)}{(1-t q)}\right) x+\frac{(1-t) q^{2}}{\left(1-t q^{2}\right)} x^{-1} \\
& \vdots
\end{aligned}
$$

and

$$
\begin{aligned}
& P_{0}(x)=1, \\
& P_{1}(x)=x+x^{-1}, \\
& P_{2}(x)=\left(x^{2}+x^{-2}\right)+\frac{\left(1-q^{2}\right)(1-t)}{(1-q)(1-q t)}, \\
& P_{3}(x)=\left(x^{3}+x^{-3}\right)+\frac{\left(1-q^{3}\right)(1-t)}{\left(1-q^{2} t\right)(1-q)}\left(x+x^{-1}\right), \\
& P_{4}(x)=\left(x^{4}+x^{-4}\right)+\frac{\left(1-q^{4}\right)(1-t)}{\left(1-q^{3} t\right)(1-q)}\left(x^{2}+x^{-2}\right)+\frac{\left(1-q^{4}\right)\left(1-q^{3}\right)(1-q t)(1-t)}{\left(1-q^{3} t\right)\left(1-q^{2} t\right)\left(1-q^{2}\right)(1-q)},
\end{aligned}
$$

### 7.8 Examples of products $E_{\ell} P_{m}$

$$
\begin{aligned}
& E_{1} P_{m}=E_{m+1}+\frac{\left(1-q^{m}\right)}{\left(1-t q^{m}\right)} E_{-m+1}=E_{m+1}+\operatorname{ev}_{m}\left(\frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)}\right) E_{-m+1}, \\
& E_{2} P_{m}=E_{m+2}+\frac{(1-t)}{(1-t q)} \cdot \frac{\left(1-q^{m}\right)}{\left(1-t q^{m-1}\right)} \cdot \frac{\left(1-t^{2} q^{m}\right)}{\left(1-t q^{m}\right)} E_{m} \\
& +\frac{\left(1-q^{m-1}\right)}{\left(1-t q^{m-1}\right)} \frac{\left(1-q^{m}\right)}{\left(1-t q^{m}\right)} \cdot \frac{\left(1-t^{2} q^{m-1}\right)}{\left(1-t q^{m-1}\right)} E_{-m+2}+q \frac{(1-t)}{(1-t q)} \cdot \frac{\left(1-q^{m}\right)}{\left(1-t q^{m+1}\right)} E_{-m} \\
& =E_{m+2}+\left\{\begin{array}{l}
1 \\
1
\end{array}\right\}_{q, t} \operatorname{ev}_{m}\left(\frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2} q^{-1}\right)} \cdot \frac{\left(1-t Y^{-2}\right)}{\left(1-Y^{-2}\right)}\right) E_{m} \\
& +\operatorname{ev}_{m}\left(\frac{\left(1-t^{-1} Y^{-2} q^{-1}\right)}{\left(1-Y^{-2} q^{-1}\right)} \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} \cdot \frac{\left(1-t Y^{-2} q^{-1}\right)}{\left(1-Y^{-2} q^{-1}\right)}\right) E_{-m+2} \\
& +q\left\{\begin{array}{l}
1 \\
1
\end{array}\right\}_{q, t} \operatorname{ev}_{m}\left(\frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2} q\right)}\right) E_{-m}, \\
& E_{3} P_{m}=E_{m+3}+\frac{(1-t)\left(1-q^{2}\right)}{(1-q)\left(1-t q^{2}\right)} \cdot \frac{\left(1-q^{m}\right)}{\left(1-t q^{m-1}\right)} \cdot \frac{\left(1-t^{2} q^{m+1}\right)}{\left(1-t q^{m+1}\right)} E_{m+1} \\
& +\frac{(1-t)}{\left(1-t q^{2}\right)} \cdot \frac{\left(1-q^{m-1}\right)\left(1-q^{m}\right)}{\left(1-t q^{m-2}\right)\left(1-t q^{m-1}\right)} \cdot \frac{\left(1-t^{2} q^{m-1}\right)\left(1-t^{2} q^{m}\right)}{\left(1-t q^{m-1}\right)\left(1-t q^{m}\right)} E_{m-1} \\
& +\frac{\left(1-q^{m-2}\right)\left(1-q^{m-1}\right)\left(1-q^{m}\right)}{\left(1-t q^{m-2}\right)\left(1-t q^{m-1}\right)\left(1-t q^{m}\right)} \cdot \frac{\left(1-t^{2} q^{m-2}\right)\left(1-t^{2} q^{m-1}\right)}{\left(1-t q^{m-2}\right)\left(1-t q^{m-1}\right)} E_{-m+3} \\
& +q \frac{(1-t)\left(1-q^{2}\right)}{(1-q)\left(1-t q^{2}\right)} \cdot \frac{\left(1-q^{m-1}\right)\left(1-q^{m}\right)}{\left(1-t q^{m}\right)\left(1-t q^{m+1}\right)} \cdot \frac{\left(1-t^{2} q^{m}\right)}{\left(1-t q^{m-1}\right)} E_{-m+1} \\
& +q^{2} \frac{(1-t)}{\left(1-t q^{2}\right)} \cdot \frac{\left(1-q^{m}\right)}{\left(1-t q^{m+2}\right)} E_{-m-1} \\
& =E_{m+3}+\left\{\begin{array}{l}
2 \\
1
\end{array}\right\}_{q, t} \quad \operatorname{ev}_{m}\left(\frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2} q^{-1}\right)} \cdot \frac{\left(1-t Y^{-2} q\right)}{\left(1-Y^{-2} q\right)}\right) E_{m+1} \\
& +\left\{\begin{array}{l}
2 \\
2
\end{array}\right\}_{q, t} \operatorname{ev}_{m}\left(\frac{\left(1-t^{-1} Y^{-2} q^{-1}\right)\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2} q^{-2}\right)\left(1-Y^{-2} q^{-1}\right)} \cdot \frac{\left(1-t Y^{-2} q^{-1}\right)\left(1-t Y^{-2}\right)}{\left(1-Y^{-2} q^{-1}\right)\left(1-Y^{-2}\right)}\right) E_{m-1} \\
& +\operatorname{ev}_{m}\left(\frac{\left(1-t^{-1} Y^{-2} q^{-2}\right)\left(1-t^{-1} Y^{-2} q^{-1}\right)\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2} q^{-2}\right)\left(1-Y^{-2} q^{-1}\right)\left(1-Y^{-2}\right)} \cdot \frac{\left(1-t Y^{-2} q^{-2}\right)\left(1-t Y^{-2} q^{-1}\right)}{\left(1-Y^{-2} q^{-2}\right)\left(1-Y^{-2} q^{-1}\right)}\right) E_{-m+3} \\
& +q\left\{\begin{array}{l}
2 \\
1
\end{array}\right\}_{q, t} \operatorname{ev}_{m}\left(\frac{\left(1-t^{-1} Y^{-2} q^{-1}\right)\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)\left(1-Y^{-2} q\right)} \cdot \frac{\left(1-t Y^{-2}\right)}{\left(1-Y^{-2} q^{-1}\right)}\right) E_{-m+1} \\
& +q^{2}\left\{\begin{array}{l}
2 \\
2
\end{array}\right\}_{q, t} \operatorname{ev}_{m}\left(\frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2} q^{2}\right)}\right) E_{-m-1} .
\end{aligned}
$$

### 7.9 General formulas for $E_{\ell} P_{m}$ and $E_{-\ell} P_{m}$

The general formula for $E_{\ell} P_{m}$ with $\ell \in \mathbb{Z}_{>0}$ is

$$
\begin{aligned}
& E_{\ell}(x) P_{m}(x) \\
& =\sum_{j=0}^{\ell-1}\left\{\begin{array}{c}
\ell-1 \\
j
\end{array}\right\}_{q, t} \operatorname{ev}_{m}\left(\frac{\left.1-t^{-1} Y^{-2} q^{-(j-1) . .0}\right)\left(1-t Y^{-2} q^{\ell-2 j . . \ell-1-j}\right)}{\left(1-Y^{-2} q^{-j . .-1}\right)\left(1-Y^{-2} q^{\ell-2 j . . \ell-1-j}\right)}\right) E_{m+\ell-2 j}(x) \\
& \\
& \quad+\sum_{j=0}^{\ell-1} q^{j}\left\{\begin{array}{c}
\ell-1 \\
j
\end{array}\right\}_{q, t} \operatorname{ev}_{m}\left(\frac{\left.1-t^{-1} Y^{-2} q^{-(\ell-j-1) . .0}\right)\left(1-t Y^{-2} q^{-(\ell-2 j) . . j-1}\right)}{\left(1-Y^{-2} q^{j-(\ell-j-1) . . j}\right)\left(1-Y^{-2} q^{-(\ell-j-1) . .-1}\right)}\right) E_{-m+\ell-2 j}(x) \\
& =\sum_{j=0}^{\ell-1}\left\{\begin{array}{c}
\ell-1 \\
j
\end{array}\right\}_{q, t} \operatorname{ev}_{m}\left(\frac{\left(t^{-1} Y^{-2} q^{-(j-1)} ; q\right)_{j}\left(t Y^{-2} q^{\ell-2 j} ; q\right)_{j}}{\left(Y^{-2} q^{-j} ; q\right)_{j}\left(Y^{-2} q^{\ell-2 j}\right)_{j}}\right) E_{m+\ell-2 j}(x) \\
& \quad+\sum_{j=0}^{\ell-1} q^{j}\left\{\begin{array}{c}
\ell-1 \\
j
\end{array}\right\}_{q, t} \operatorname{ev}_{m}\left(\frac{\left(t^{-1} Y^{-2} q^{-(\ell-j-1)} ; q\right)_{\ell-j}\left(t Y^{-2} q^{-(\ell-2 j-1)} ; q\right)_{\ell-j-1}}{\left(Y^{-2} q^{-(\ell-2 j-1)} ; q\right)_{\ell-j}\left(Y^{-2} q^{-(\ell-j-1)} ; q\right)_{\ell-j-1}}\right) E_{-m+\ell-2 j}(x) \\
& =\sum_{j=0}^{\ell-1} \operatorname{ev}_{m}\left(A_{m}^{(\ell)}(Y)\right) E_{m+\ell-2 j}(x)+\sum_{j=0}^{\ell-1} \operatorname{ev}_{m}\left(B_{j}^{(\ell)}(Y)\right) E_{-m+\ell-2 j}(x),
\end{aligned}
$$

where

$$
\begin{aligned}
& A_{j}^{(\ell)}(Y)=\left\{\begin{array}{c}
\ell-1 \\
j
\end{array}\right\}_{q, t} \frac{\left(t^{-1} Y^{-2} q^{-(j-1)} ; q\right)_{j}\left(t Y^{-2} q^{\ell-2 j} ; q\right)_{j}}{\left(Y^{-2} q^{-j} ; q\right)_{j}\left(Y^{-2} q^{\ell-2 j}\right)_{j} \quad \text { and }} \\
& B_{j}^{(\ell)}(Y)=q^{j}\left\{\begin{array}{c}
\ell-1 \\
j
\end{array}\right\}_{q, t} \frac{\left(t^{-1} Y^{-2} q^{-(\ell-j-1)} ; q\right)_{\ell-j}\left(t Y^{-2} q^{-(\ell-2 j-1)} ; q\right)_{\ell-j-1}}{\left(Y^{-2} q^{-(\ell-2 j-1)} ; q\right)_{\ell-j}\left(Y^{-2} q^{-(\ell-j-1)} ; q\right)_{\ell-j-1}} .
\end{aligned}
$$

The general formula for $E_{-\ell} P_{m}$ with $\ell \in \mathbb{Z}_{\geq 0}$ is

$$
\begin{aligned}
& E_{-\ell}(x) P_{m}(x) \\
& =\sum_{j=0}^{\ell}\left\{\begin{array}{l}
\ell \\
j
\end{array}\right\}_{q, t} \operatorname{ev}_{m}\left(\frac{\left.1-t^{-1} Y^{-2} q^{-(j-1) . .0}\right)\left(1-t Y^{-2} q^{\ell+1-2 j . . \ell-j}\right)}{\left(1-Y^{-2} q^{-j . .-1}\right)\left(1-Y^{-2} q^{\ell+1-2 j . . \ell-j}\right)}\right) E_{-m-\ell+2 j}(x) \\
& \quad+\sum_{j=0}^{\ell} t \cdot q^{j}\left\{\begin{array}{l}
\ell \\
j
\end{array}\right\}_{q, t} \operatorname{ev}_{m}\left(\frac{\left.1-t^{-1} Y^{-2} q^{-(\ell-j) . .0}\right)\left(1-t Y^{-2} q^{-(\ell+1-2 j) . . j-1}\right)}{\left(1-Y^{-2} q^{j-(\ell-j) . . j}\right)\left(1-Y^{-2} q^{-(\ell-j) . .-1}\right)}\right) E_{m-\ell+2 j}(x) \\
& =\sum_{j=0}^{\ell}\left\{\begin{array}{l}
\ell \\
j
\end{array}\right\}_{q, t} \operatorname{ev}_{m}\left(\frac{\left(t^{-1} Y^{-2} q^{-(j-1)} ; q\right)_{j}\left(t Y^{-2} q^{\ell+1-2 j} ; q\right)_{j}}{\left(Y^{-2} q^{-j} ; q\right)_{j}\left(Y^{-2} q^{\ell+1-2 j}\right)_{j}}\right) E_{-m-\ell+2 j}(x) \\
& \quad+\sum_{j=0}^{\ell} t \cdot q^{j}\left\{\begin{array}{l}
\ell \\
j
\end{array}\right\}_{q, t} \operatorname{ev}_{m}\left(\frac{\left(t^{-1} Y^{-2} q^{-(\ell-j)} ; q\right)_{\ell+1-j}\left(t Y^{-2} q^{-(\ell-2 j)} ; q\right)_{\ell-j}}{\left(Y^{-2} q^{-(\ell-2 j)} ; q\right)_{\ell-j}\left(Y^{-2} q^{-(\ell-j)} ; q\right)_{\ell-j}}\right) E_{m-\ell+2 j}(x) \\
& =\sum_{j=0}^{\ell} \operatorname{ev}_{m}\left(A_{j}^{(\ell+1)}(Y)\right) E_{-m-\ell+2 j}(x)+\sum_{j=0}^{\ell} t \cdot \operatorname{ev}_{m}\left(B_{j}^{(\ell+1)}(Y)\right) E_{m-\ell+2 j}(x) .
\end{aligned}
$$

### 7.10 Examples of products $E_{-\ell+1} P_{m}$

$$
\begin{aligned}
& E_{0} P_{m}=E_{-m}+t \frac{\left(1-q^{m}\right)}{\left(1-t q^{m}\right)} E_{m}=E_{-m}+t \cdot \operatorname{ev}_{m}\left(\frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)}\right) E_{m}, \\
& E_{-1} P_{m}=E_{-m-1}+\frac{(1-t)}{(1-t q)} \cdot \frac{\left(1-q^{m}\right)}{\left(1-t q^{m-1}\right)} \cdot \frac{\left(1-t^{2} q^{m}\right)}{\left(1-t q^{m}\right)} E_{-m+1} \\
& +t \frac{\left(1-q^{m-1}\right)}{\left(1-t q^{m-1}\right)} \frac{\left(1-q^{m}\right)}{\left(1-t q^{m}\right)} \cdot \frac{\left(1-t^{2} q^{m-1}\right)}{\left(1-t q^{m-1}\right)} E_{m-1}+t q \frac{(1-t)}{(1-t q)} \cdot \frac{\left(1-q^{m}\right)}{\left(1-t q^{m+1}\right)} E_{m+1} \\
& =E_{-m-1}+\left\{\begin{array}{l}
1 \\
1
\end{array}\right\}_{q, t} \operatorname{ev}_{m}\left(\frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2} q^{-1}\right)} \cdot \frac{\left(1-t Y^{-2}\right)}{\left(1-Y^{-2}\right)}\right) E_{-m+1} \\
& +t \cdot \operatorname{ev}_{m}\left(\frac{\left(1-t^{-1} Y^{-2} q^{-1}\right)}{\left(1-Y^{-2} q^{-1}\right)} \frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} \cdot \frac{\left(1-t Y^{-2} q^{-1}\right)}{\left(1-Y^{-2} q^{-1}\right)}\right) E_{m-1} \\
& +t \cdot q\left\{\begin{array}{l}
1 \\
1
\end{array}\right\}_{q, t} \operatorname{ev}_{m}\left(\frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2} q\right)}\right) E_{m+1}, \\
& E_{-2} P_{m}=E_{-m-2}+\frac{(1-t)\left(1-q^{2}\right)}{(1-q)\left(1-t q^{2}\right)} \cdot \frac{\left(1-q^{m}\right)}{\left(1-t q^{m-1}\right)} \cdot \frac{\left(1-t^{2} q^{m+1}\right)}{\left(1-t q^{m+1}\right)} E_{-m} \\
& +\frac{(1-t)}{\left(1-t q^{2}\right)} \cdot \frac{\left(1-q^{m-1}\right)\left(1-q^{m}\right)}{\left(1-t q^{m-2}\right)\left(1-t q^{m-1}\right)} \cdot \frac{\left(1-t^{2} q^{m-1}\right)\left(1-t^{2} q^{m}\right)}{\left(1-t q^{m-1}\right)\left(1-t q^{m}\right)} E_{-m+2} \\
& +t \cdot \frac{\left(1-q^{m-2}\right)\left(1-q^{m-1}\right)\left(1-q^{m}\right)}{\left(1-t q^{m-2}\right)\left(1-t q^{m-1}\right)\left(1-t q^{m}\right)} \cdot \frac{\left(1-t^{2} q^{m-2}\right)\left(1-t^{2} q^{m-1}\right)}{\left(1-t q^{m-2}\right)\left(1-t q^{m-1}\right)} E_{m-2} \\
& +t \cdot q \frac{(1-t)\left(1-q^{2}\right)}{(1-q)\left(1-t q^{2}\right)} \cdot \frac{\left(1-q^{m-1}\right)\left(1-q^{m}\right)}{\left(1-t q^{m-1}\right)\left(1-t q^{m}\right)} \cdot \frac{\left(1-t^{2} q^{m}\right)}{\left(1-t q^{m+1}\right)} E_{m} \\
& +t \cdot q^{2} \frac{(1-t)}{\left(1-t q^{2}\right)} \cdot \frac{\left(1-q^{m}\right)}{\left(1-t q^{m+2}\right)} E_{m+2} \\
& =E_{-m-2}+\left\{\begin{array}{l}
2 \\
1
\end{array}\right\}_{q, t} \quad \operatorname{ev}_{m}\left(\frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2} q^{-1}\right)} \cdot \frac{\left(1-t Y^{-2} q\right)}{\left(1-Y^{-2} q\right)}\right) E_{-m} \\
& +\left\{\begin{array}{l}
2 \\
2
\end{array}\right\}_{q, t} \operatorname{ev}_{m}\left(\frac{\left(1-t^{-1} Y^{-2} q^{-1}\right)\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2} q^{-2}\right)\left(1-Y^{-2} q^{-1}\right)} \cdot \frac{\left(1-t Y^{-2} q^{-1}\right)\left(1-t Y^{-2}\right)}{\left(1-Y^{-2} q^{-1}\right)\left(1-Y^{-2}\right)}\right) E_{-m+2} \\
& +t \cdot \operatorname{ev}_{m}\left(\frac{\left(1-t^{-1} Y^{-2} q^{-2}\right)\left(1-t^{-1} Y^{-2} q^{-1}\right)\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2} t q^{-2}\right)\left(1-Y^{-2} t q^{-1}\right)\left(1-Y^{-2}\right)} \cdot \frac{\left(1-t Y^{-2} q^{-2}\right)\left(1-t Y^{-2} q^{-1}\right)}{\left(1-Y^{-2} q^{-2}\right)\left(1-Y^{-2} q^{-1}\right)}\right) E_{m-2} \\
& +t \cdot q\left\{\begin{array}{l}
2 \\
1
\end{array}\right\}_{q, t} \operatorname{ev}_{m}\left(\frac{\left(1-t^{-1} Y^{-2} q^{-1}\right)\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2} q^{-1}\right)\left(1-Y^{-2}\right)} \cdot \frac{\left(1-t Y^{-2}\right)}{\left(1-Y^{-2} q\right)}\right) E_{m} \\
& +t \cdot q^{2}\left\{\begin{array}{l}
2 \\
2
\end{array}\right\}_{q, t} \operatorname{ev}_{m}\left(\frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2} q^{2}\right)}\right) E_{m+2} .
\end{aligned}
$$

### 7.11 Examples of products $P_{\ell} P_{m}$

The general formula is

$$
P_{\ell}(x) P_{m}(x)=\sum_{j=0}^{\ell} \operatorname{ev}_{m}\left(C_{j}^{(\ell)}(Y)\right) P_{m+\ell-2 j}(x)
$$

where

$$
C_{j}^{(\ell)}(Y)=\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} \cdot \frac{\left(1-t^{-1} Y^{-2} q^{-(j-1) . .0}\right)\left(1-t Y^{-2} q^{\ell-2 j . \ell-j-1}\right)}{\left(1-Y^{-2} q^{\ell-2 j+1 . . \ell-j}\right)\left(1-Y^{-2} q^{-j . .-1}\right)}
$$

The first few cases are

$$
\begin{aligned}
& P_{1} P_{m}=P_{m+1}+\frac{\left(1-q^{m}\right)}{\left(1-t q^{m}\right)} \frac{\left(1-t^{2} q^{m-1}\right)}{\left(1-t q^{m-1}\right)} P_{m-1} \\
& =P_{m+1}+\operatorname{ev}\left(\frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)} \frac{\left(1-t Y^{-2} q^{-1}\right)}{\left(1-Y^{-2} q^{-1}\right)}\right) P_{m-1}, \\
& P_{2} P_{m}=P_{m+2}+\frac{\left(1-q^{2}\right)(1-t)}{(1-t q)(1-q)} \cdot \frac{\left(1-q^{m}\right)}{\left(1-t q^{m+1}\right)} \cdot \frac{\left(1-t^{2} q^{m}\right)}{\left(1-t q^{m-1}\right)} P_{m} \\
& +\frac{\left(1-q^{m-1}\right)\left(1-q^{m}\right)}{\left(1-t q^{m-1}\right)\left(1-t q^{m}\right)} \cdot \frac{\left(1-t^{2} q^{m-2}\right)\left(1-t^{2} q^{m-1}\right)}{\left(1-t q^{m-2}\right)\left(1-t q^{m-1}\right)} P_{m-2} \\
& =P_{m+2}+\left[\begin{array}{l}
2 \\
1
\end{array}\right]_{q, t} \operatorname{ev}\left(\frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2} q\right)} \cdot \frac{\left(1-t Y^{-2}\right)}{\left(1-Y^{-2} q^{-1}\right)}\right) P_{m} \\
& +\operatorname{ev}\left(\frac{\left(1-t^{-1} Y^{-2} q^{-1}\right)\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2} q^{-1}\right)\left(1-Y^{-2}\right)} \cdot \frac{\left(1-t Y^{-2} q^{-2}\right)\left(1-t Y^{-2} q^{-1}\right)}{\left(1-Y^{-2} q^{-2}\right)\left(1-Y^{-2} q^{-1}\right)}\right) P_{m-2}, \\
& P_{3} P_{m}=P_{m+3}+\frac{(1-t)\left(1-q^{3}\right)}{(1-q)\left(1-t q^{2}\right)} \cdot \frac{\left(1-q^{m}\right)}{\left(1-t q^{m+2}\right)} \cdot \frac{\left(1-t^{2} q^{m+1}\right)}{\left(1-t q^{m-1}\right)} P_{m+1} \\
& +\frac{(1-t)\left(1-q^{3}\right)}{(1-q)\left(1-t q^{2}\right)} \cdot \frac{\left(1-q^{m-1}\right)\left(1-q^{m}\right)}{\left(1-t q^{m}\right)\left(1-t q^{m+1}\right)} \cdot \frac{\left(1-t^{2} q^{m-1}\right)\left(1-t^{2} q^{m}\right)}{\left(1-t q^{m-2}\right)\left(1-t q^{m-1}\right)} P_{m-1} \\
& +\frac{\left(1-q^{m-2}\right)\left(1-q^{m-1}\right)\left(1-q^{m}\right)}{\left(1-t q^{m-2}\right)\left(1-t q^{m-1}\right)\left(1-t q^{m}\right)} \cdot \frac{\left(1-t^{2} q^{m-3}\right)\left(1-t^{2} q^{m-2}\right)\left(1-t^{2} q^{m-1}\right)}{\left(1-t q^{m-3}\right)\left(1-t q^{m-2}\right)\left(1-t q^{m-1}\right)} P_{m-3} \\
& =P_{m+3}+\left[\begin{array}{l}
3 \\
1
\end{array}\right]_{q, t} \operatorname{ev}\left(\frac{\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2} q^{2}\right)} \cdot \frac{\left(1-t Y^{-2} q\right)}{\left(1-Y^{-2} q^{-1}\right)}\right) P_{m+1} \\
& +\left[\begin{array}{l}
3 \\
2
\end{array}\right]_{q, t} \operatorname{ev}\left(\frac{\left(1-t^{-1} Y^{-2} q^{-1}\right)\left(1-t^{-1} Y^{-2}\right)}{\left(1-Y^{-2}\right)\left(1-Y^{-2} q\right)} \cdot \frac{\left(1-t Y^{-2} q^{-1}\right)\left(1-t Y^{-2}\right)}{\left(1-Y^{-2} q^{-2}\right)\left(1-Y^{-2} q^{-1}\right)}\right) P_{m-1} \\
& +\operatorname{ev}\left(\frac{\left(1-t^{-1} Y^{-2} q^{-2 . .0}\right)}{\left(1-Y^{-2} q^{-2 . .0}\right)} \cdot \frac{\left(1-t Y^{-2} q^{-3 . .-1}\right)}{\left(1-Y^{-2} q^{-3 . .-1}\right)}\right) P_{m-3}
\end{aligned}
$$

### 7.12 Proof of the $q$ - $t$-binomial formulas for $E_{\ell}$ and $P_{\ell}$

Proposition 7.1. The electronic Macdonald polynomials are given by

$$
E_{-\ell}(x)=\sum_{j=0}^{\ell}\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} \frac{\left(1-t q^{j}\right)}{\left(1-t q^{\ell}\right)} x^{\ell-2 j} \quad \text { and } \quad E_{\ell}(x)=\sum_{j=0}^{\ell-1}\left[\begin{array}{c}
\ell-1 \\
j
\end{array}\right]_{q, t} \frac{q^{\ell-1-j}\left(1-t q^{j}\right)}{\left(1-t q^{\ell-1}\right)} x^{-\ell+2 j+2},
$$

and the bosonic Macdonald polynomials are given by

$$
P_{\ell}(x)=\sum_{j=0}^{\ell}\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q, t} x^{\ell-2 j} .
$$

Proof. Following Mac03, §6.2], where $q^{k}=t$,

$$
\begin{aligned}
{\left[\begin{array}{c}
k+a \\
b
\end{array}\right] } & =\frac{(q ; q)_{k+a}}{(q ; q)_{b}(q ; q)_{k+a-b}}=\frac{\left(1-q^{k+a-b+1}\right) \cdots\left(1-q^{k+a}\right)}{(q ; q)_{b}} \\
& =\frac{\left(1-t q^{a-b+1}\right) \cdots\left(1-t q^{a}\right)}{(q ; q)_{b}}=\frac{\left(t q^{a-(b-1)} ; q\right)_{b}}{(q ; q)_{b}} .
\end{aligned}
$$

Then, from [Mac03, (6.2.7)],

$$
\begin{aligned}
E_{-m} & =\left[\begin{array}{c}
k+m \\
m
\end{array}\right]^{-1} \sum_{i+j=m}\left[\begin{array}{c}
k+i-1 \\
i
\end{array}\right]\left[\begin{array}{c}
k+j \\
j
\end{array}\right] x^{i-j} \\
& =\frac{(q ; q)_{m}}{\left(t q^{m-(m-1)} ; q\right)_{m}} \sum_{i+j=m} \frac{\left(t q^{i-1-(i-1)} ; q\right)_{i}}{(q ; q)_{i}} \frac{\left(t q^{j-(j-1)} ; q\right)_{j}}{(q ; q)_{j}} x^{i-j} \\
& =\frac{(q ; q)_{m}}{(t q ; q)_{m}} \sum_{j=0}^{m} \frac{(t ; q)_{m-j}}{(q ; q)_{m-j}} \frac{(t q ; q)_{j}}{(q ; q)_{j}} x^{m-j-j} \\
& =\frac{(1-t)}{\left(1-t q^{m}\right)} \frac{(q ; q)_{m}}{(t ; q)_{m}} \sum_{j=0}^{m} \frac{(t ; q)_{m-j}}{(q ; q)_{m-j}} \frac{\left(1-t q^{j}\right)}{(1-t)} \frac{(t ; q)_{j}}{(q ; q)_{j}} x^{m-2 j} \\
& =\sum_{j=0}^{m}\left[\begin{array}{c}
m \\
j
\end{array}\right]_{q, t} \frac{\left(1-t q^{j}\right)}{\left(1-t q^{m}\right)} x^{m-2 j}
\end{aligned}
$$

and, from Mac03, (6.2.8)],

$$
E_{m+1}=\left[\begin{array}{c}
k+m \\
m
\end{array}\right]^{-1} \sum_{i+j=m}\left[\begin{array}{c}
k+i-1 \\
i
\end{array}\right]\left[\begin{array}{c}
k+j \\
j
\end{array}\right] q^{i} x^{-i+j+1}=\sum_{j=0}^{m}\left[\begin{array}{c}
m \\
j
\end{array}\right]_{q, t} \frac{\left(1-t q^{j}\right)}{\left(1-t q^{m}\right)} q^{m-j} x^{-m+2 j+1}
$$

so that

$$
E_{m}=\sum_{j=0}^{m-1}\left[\begin{array}{c}
m-1 \\
j
\end{array}\right]_{q, t} \frac{\left(1-t q^{j}\right)}{\left(1-t q^{m-1}\right)} q^{m-1-j} x^{-m+2 j+2}
$$

From Mac03, (6.3.7)],

$$
\begin{aligned}
P_{m} & =\left[\begin{array}{c}
k+m-1 \\
m
\end{array}\right]^{-1} \sum_{i+j=m}\left[\begin{array}{c}
k+i-1 \\
i
\end{array}\right]\left[\begin{array}{c}
k+j-1 \\
j
\end{array}\right] x^{i-j} \\
& =\frac{(q ; q)_{m}}{\left(t q^{m-1-(m-1)} ; q\right)_{m}} \sum_{i+j=m} \frac{\left(t q^{i-1-(i-1)} ; q\right)_{i}}{(q ; q)_{i}} \frac{\left(t q^{j-1-(j-1)} ; q\right)_{j}}{(q ; q)_{j}} x^{i-j} \\
& =\frac{(q ; q)_{m}}{(t ; q)_{m}} \sum_{j=0}^{m} \frac{(t ; q)_{m-j}}{(q ; q)_{m-j}} \frac{(t ; q)_{j}}{(q ; q)_{j}} x^{m-j-j}=\sum_{j=0}^{m}\left[\begin{array}{c}
m \\
j
\end{array}\right]_{q, t} x^{m-2 j} .
\end{aligned}
$$

### 7.13 Examples of $E_{\ell}(X) 1_{0}$

This page provides examples of the identities in (3.29). Since $E_{1}(X)=X$ and $E_{-1}(X)=X^{-1}+\frac{(1-t)}{(1-q t)} X$ then

$$
\begin{aligned}
E_{1}(X) \mathbf{1}_{0} & =X \mathbf{1}_{0}=\tau_{\pi}^{\vee} T_{1}^{-1} \mathbf{1}_{0}=t^{-\frac{1}{2}} \tau_{\pi}^{\vee} \mathbf{1}_{0}=t^{-\frac{1}{2}} \tau_{\pi}^{\vee} E_{0}(X) \mathbf{1}_{0}=t^{-\frac{1}{2}} \eta_{\pi} \mathbf{1}_{0} \\
E_{-1}(X) \mathbf{1}_{0} & =\left(X^{-1}+\frac{(1-t)}{(1-q t)} X\right) \mathbf{1}_{0}=\left(T_{1} \tau_{\pi}^{\vee}+\frac{(1-t)}{(1-t q)} \tau_{\pi}^{\vee} T_{1}^{-1}\right) \mathbf{1}_{0} \\
& =\left(T_{1}+t^{-\frac{1}{2}} \frac{(1-t)}{(1-t q)}\right) \tau_{\pi}^{\vee} \mathbf{1}_{0}=\left(T_{1}+t^{-\frac{1}{2}} \frac{(1-t)}{(1-t q)}\right) t^{\frac{1}{2}} E_{1}(X) \mathbf{1}_{0}
\end{aligned}
$$

Since $E_{3}(X)=X^{3}+\left(\frac{(1-t) q}{(1-t q)}+\frac{(1-t) q^{2}}{\left(1-t q^{2}\right)} \frac{(1-t)}{(1-t q)}\right) X+\frac{(1-t) q^{2}}{\left(1-t q^{2}\right)} X^{-1}$ then

$$
\begin{aligned}
& E_{3}(X) \mathbf{1}_{0}=\left(X^{3}+\left(\frac{(1-t) q}{(1-t q)}+\frac{(1-t) q^{2}}{\left(1-t q^{2}\right)} \frac{(1-t)}{(1-t q)}\right) X+\frac{(1-t) q^{2}}{\left(1-t q^{2}\right)} X^{-1}\right) \mathbf{1}_{0} \\
& =\left(\tau_{\pi}^{\vee} T_{1}^{-1} \tau_{\pi}^{\vee} T_{1}^{-1} \tau_{\pi}^{\vee} T_{1}^{-1}+t^{-\frac{1}{2}} \frac{t^{-\frac{1}{2}}(1-t) t q}{(1-t q)} \tau_{\pi}^{\vee} T_{1}^{-1}\right. \\
& \left.+\frac{t^{-\frac{1}{2}}(1-t) t q^{2}}{\left(1-t q^{2}\right)} \frac{t^{-\frac{1}{2}}(1-t)}{(1-t q)} \tau_{\pi}^{\vee} T_{1}^{-1}+t^{-\frac{1}{2}} \frac{t^{-\frac{1}{2}}(1-t) t q^{2}}{\left(1-t q^{2}\right)} T_{1} \tau_{\pi}^{\vee}\right) \mathbf{1}_{0} \\
& =\left(\tau_{\pi}^{\vee} T_{1}^{-1} \tau_{\pi}^{\vee} T_{1}^{-1} \tau_{\pi}^{\vee} T_{1}^{-1}+t^{-\frac{1}{2}} \frac{t^{-\frac{1}{2}}(1-t) t q}{(1-t q)} \tau_{\pi}^{\vee} T_{1}^{-1}\right. \\
& \left.+\frac{t^{-\frac{1}{2}}(1-t) t q^{2}}{\left(1-t q^{2}\right)} \frac{t^{-\frac{1}{2}}(1-t)}{(1-t q)} \tau_{\pi}^{\vee} T_{1}^{-1}+t^{-\frac{1}{2}} \frac{t^{-\frac{1}{2}}(1-t) t q^{2}}{\left(1-t q^{2}\right)}\left(T_{1}^{-1}+\left(t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right)\right) \tau_{\pi}^{\vee}\right) \mathbf{1}_{0} \\
& =\left(\tau_{\pi}^{\vee} T_{1}^{-1} \tau_{\pi}^{\vee} T_{1}^{-1} \tau_{\pi}^{\vee} t^{-\frac{1}{2}}+t^{-\frac{1}{2}} \frac{t^{-\frac{1}{2}}(1-t) t q}{(1-t q)} \tau_{\pi}^{\vee} T_{1}^{-1} \tau_{\pi}^{\vee} \tau_{\pi}^{\vee}\right. \\
& +t^{-\frac{1}{2}} \frac{t^{-\frac{1}{2}}(1-t) t q^{2}}{\left(1-t q^{2}\right)} \frac{t^{-\frac{1}{2}}(1-t)}{(1-t q)} \tau_{\pi}^{\vee}+t^{-\frac{1}{2}} \frac{t^{-\frac{1}{2}}(1-t) t q^{2}}{\left(1-t q^{2}\right)} T_{1}^{-1} \tau_{\pi}^{\vee} \\
& \left.-t^{-\frac{1}{2}} \frac{t^{-\frac{1}{2}}(1-t) t q^{2}}{\left(1-t q^{2}\right)} \frac{t^{-\frac{1}{2}}(1-t)}{(1-t q)}(1-t q) \tau_{\pi}^{\vee}\right) \mathbf{1}_{0} \\
& =\left(\tau_{\pi}^{\vee} T_{1}^{-1} \tau_{\pi}^{\vee} T_{1}^{-1} \tau_{\pi}^{\vee} t^{-\frac{1}{2}}+t^{-\frac{1}{2}} \frac{t^{-\frac{1}{2}}(1-t) t q}{(1-t q)} \tau_{\pi}^{\vee} T_{1}^{-1} \tau_{\pi}^{\vee} \tau_{\pi}^{\vee}\right. \\
& +t^{-\frac{1}{2}} \frac{t^{-\frac{1}{2}}(1-t) t q^{2}}{\left(1-t q^{2}\right)} T_{1}^{-1} \tau_{\pi}^{\vee} \\
& \left.+t^{-\frac{1}{2}} \frac{t^{-\frac{1}{2}}(1-t) t q^{2}}{\left(1-t q^{2}\right)} \frac{t^{-\frac{1}{2}}(1-t)}{(1-t q)} t q \tau_{\pi}^{\vee}\right) \mathbf{1}_{0} \\
& =\left(t^{-\frac{1}{2}} \tau_{\pi}^{\vee} T_{1}^{-1} \tau_{\pi}^{\vee} T_{1}^{-1} \tau_{\pi}^{\vee}+t^{-\frac{1}{2}} \frac{t^{-\frac{1}{2}}(1-t) t q}{(1-t q)} \tau_{\pi}^{\vee} T_{1}^{-1} \tau_{\pi}^{\vee} \tau_{\pi}^{\vee}\right. \\
& \left.+t^{-\frac{1}{2}} \frac{t^{-\frac{1}{2}}(1-t) t q^{2}}{\left(1-t q^{2}\right)} \tau_{\pi}^{\vee} \tau_{\pi}^{\vee} T_{1}^{-1} \tau_{\pi}^{\vee}+t^{-\frac{1}{2}} \frac{t^{-\frac{1}{2}}(1-t) t q^{2}}{\left(1-t q^{2}\right)} \frac{t^{-\frac{1}{2}}(1-t) t q}{(1-t q)} \tau_{\pi}^{\vee} \tau_{\pi}^{\vee} \tau_{\pi}^{\vee}\right) \mathbf{1}_{0} \\
& =t^{-\frac{1}{2}} \tau_{\pi}^{\vee}\left(T_{1}^{-1}+\frac{t^{-\frac{1}{2}}(1-t) t q^{2}}{\left(1-t q^{2}\right)}\right) \tau_{\pi}^{\vee}\left(T_{1}^{-1}+\frac{t^{-\frac{1}{2}}(1-t) t q}{(1-t q)}\right) \tau_{\pi}^{\vee} \mathbf{1}_{0} .
\end{aligned}
$$

### 7.14 Examples of the $E_{\ell}(X) 1_{0}$ expansion

Let

$$
c(Y)=\frac{\left(1-t Y^{2}\right)}{\left(1-Y^{2}\right)} \quad \text { and } \quad F_{\ell}(Y)=\frac{(1-t)\left(1-t Y^{2} q^{\ell}\right)}{\left(1-t q^{\ell}\right)\left(1-Y^{2}\right)}
$$

Then

$$
\begin{aligned}
& E_{1}(X) \mathbf{1}_{0}=t^{-\frac{1}{2}} \eta_{\pi} \mathbf{1}_{0}=t^{-\frac{1}{2}} \eta_{\pi} \eta_{s_{1}} \mathbf{1}_{0}=\eta D_{0}^{(0)}(Y) \mathbf{1}_{0}, \\
& E_{2}(X) \mathbf{1}_{0}=t^{-\frac{2}{2}}\left(\eta c(Y)+\eta_{\pi} F_{1}(Y)\right) \eta \mathbf{1}_{0} \\
&=t^{-\frac{2}{2}} \eta^{2} c\left(q^{-\frac{1}{2}} Y\right) \mathbf{1}_{0}+t^{-\frac{2}{2}} F_{1}\left(q^{-\frac{1}{2}} Y^{-1}\right) \mathbf{1}_{0} \\
&=\eta^{2} t^{-\frac{2}{2}} \frac{\left(1-t Y^{2} q^{-1}\right)}{\left(1-Y^{2} q^{-1}\right)} \mathbf{1}_{0}+t^{-\frac{2}{2}} \frac{(1-t)\left(1-t q^{-1} Y^{-2} q\right)}{(1-t q)\left(1-q^{-1} Y^{-2}\right)} \mathbf{1}_{0} \\
&=\eta^{2} t^{-\frac{2}{2}} \cdot \frac{\left(1-t Y^{2} q^{-1}\right)}{\left(1-Y^{2} q^{-1}\right)} \mathbf{1}_{0}+t^{-\frac{2}{2}} \cdot q t \frac{(1-t)\left(1-t^{-1} Y^{2}\right)}{(1-t q)\left(1-Y^{2} q\right)} \mathbf{1}_{0} \\
&=\eta^{2} D_{0}^{(1)}(Y) \mathbf{1}_{0}+D_{1}^{(1)}(Y) \mathbf{1}_{0}
\end{aligned}
$$

and

$$
\begin{aligned}
E_{3}(X) \mathbf{1}_{0}= & t^{-\frac{1}{2}}\left(\eta c(Y)+\eta_{\pi} F_{2}(Y)\right)\left(\eta^{2} D_{0}^{(1)}(Y) \mathbf{1}_{0}+D_{1}^{(1)} \mathbf{1}_{0}\right) \\
= & \eta^{3} t^{-\frac{1}{2}} c\left(q^{-2} Y\right) D_{0}^{(1)}(Y) \mathbf{1}_{0}+\eta t^{-\frac{1}{2}} c(Y) D_{1}^{(1)}(Y) \mathbf{1}_{0} \\
& +\eta^{-1} t^{-\frac{1}{2}} F_{2}\left(q^{-2} Y^{-1}\right) D_{0}^{(1)}\left(Y^{-1}\right) \mathbf{1}_{0}+\eta t^{-\frac{1}{2}} F_{2}\left(Y^{-1}\right) D_{1}^{(1)}\left(Y^{-1}\right) \mathbf{1}_{0} \\
= & \eta^{3} t^{-\frac{1}{2}} c\left(q^{-2} Y\right) D_{0}^{(1)}(Y) \mathbf{1}_{0} \\
& +\eta t^{-\frac{1}{2}}\left(c(Y) D_{1}^{(1)}(Y)+F_{2}\left(Y^{-1}\right) D_{1}^{(1)}\left(Y^{-1}\right)\right) \mathbf{1}_{0} \\
& +\eta^{-1} t^{-\frac{1}{2}} F_{2}\left(q^{-2} Y^{-1}\right) D_{0}^{(1)}\left(Y^{-1}\right) \mathbf{1}_{0} \\
= & \eta^{3} t^{-\frac{3}{2}} \frac{\left(1-t Y^{2} q^{-2}\right)\left(1-t Y^{2} q^{-1}\right)}{\left(1-Y^{2} q^{-2}\right)\left(1-Y^{2} q^{-1}\right)} \mathbf{1}_{0} \\
& +\eta t^{-\frac{1}{2}} \frac{(1-t)\left(1-q^{2}\right)}{\left(1-t q^{2}\right)(1-q)} \cdot q \frac{\left(1-t Y^{2}\right)\left(1-t q Y^{-2}\right)}{\left(1-Y^{2} q\right)\left(1-Y^{-2} q\right)} \mathbf{1}_{0} \\
& +\eta^{-1} t^{-\frac{3}{2}} \frac{(1-t)}{\left(1-t q^{2}\right)} \cdot \frac{\left(1-t Y^{-2}\right)\left(1-t Y^{-2} q^{-1}\right)}{\left(1-Y^{-2} q^{-2}\right)\left(1-Y^{-2} q^{-1}\right)} \mathbf{1}_{0} \\
= & \eta^{3} D_{0}^{(2)}(Y) \mathbf{1}_{0}+\eta D_{1}^{(2)}(Y) \mathbf{1}_{0}+\eta^{-1} D_{2}^{(2)}(Y) \mathbf{1}_{0} .
\end{aligned}
$$

## References

[Cho19] S. Cho, A proof of linearization formula for $q$-ultraspherical polynomials, preprint, 2019. 1
[CR22] L. Colmenarejo and A. Ram, c-functions and Macdonald polynomials, arXiv:2212.03312. 1
[HR22] T. Halverson and A. Ram, Monk rules for type $G L_{n}$ Macdonald polynomials, arXiv:2212.04032. 11
[Is05] Mourad E. H. Ismail Classical and quantum orthogonal polynomials in one variable, Encyclopedia Math. Appl., 98 Cambridge University Press, Cambridge, 2005. xviii+706 pp. ISBN:978-0-521-78201-2 ISBN:0-521-78201-5, MR2191786. 1
[Mac] I.G. Macdonald, Symmetric functions and Hall polynomials, Second edition, Oxford Mathematical Monographs, Oxford University Press, New York, 1995. ISBN: 0-19-853489-2, MR1354144. (1), 2. 2.4
[Mac03] I.G. Macdonald, Affine Hecke Algebras and Orthogonal Polynomials, Cambridge Tracts in Mathematics, vol. 157, Cambridge University Press, Cambridge, 2003. MR1976581. 1, 2.1, 3.1, 3.1.1, 3.2, 3.2, 7.12
[MW23] K. Matveev and Y. Wei, Factorization of certain Macdonald Littlewood-Richardson coefficients, arXiv:2301.06500. 6.3
[SF14] L. Susskind and A. Friedman, Quantum Mechanics, The theoretical minimum, Basic Books, New York, 2014. xx+364 pp. ISBN:978-0-465-03667-7 ISBN:978-0-465-08061-8 MR3156348. 1
[Yi10] M. Yip, A Littlewood-Richardson rule for Macdonald polynomials, Math. Z. 272 (2012) 12591290, MR2995168, arXiv:1010.0722. [1, 5.2


[^0]:    AMS Subject Classifications: Primary 05E05; Secondary 33D52.

