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Abstract

In this paper we construct an “abstract Fock space” for general Lie types that serves as a
generalisation of the infinite wedge q-Fock space familiar in type A. Specifically, for each pos-
itive integer `, we define a Z[q, q−1]-module F` with bar involution by specifying generators
and “straightening relations” adapted from those appearing in the Kashiwara-Miwa-Stern
formulation of the q-Fock space. By relating F` to the corresponding affine Hecke algebra we
show that the abstract Fock space has standard and canonical bases for which the transition
matrix produces parabolic affine Kazhdan-Lusztig polynomials. This property and the con-
venient combinatorial labeling of bases of F` by dominant integral weights makes F` a useful
combinatorial tool for determining decomposition numbers of Weyl modules for quantum
groups at roots of unity.

0 Introduction

The classical Fock space arises in the context of mathematical physics, where one would like
to describe the behaviour of certain configurations with an unknown number of identical, non-
interacting particles. It is a (non-irreducible) representation of the affine Lie algebra ŝln. The
book [MJD], for example, is an inspiring and friendly tour of applications and connections
between this representation, integrable systems, hierarchies of differential equations and infinite
dimensional Grassmannians.

Combinatorial models have proven to be incredibly useful in studying the representations of
various algebraic objects, such as affine Lie algebras, algebraic groups, Lie algebras, quantum
groups and symmetric groups. Often the goal is to express simple modules in terms of “standard”
modules (modules whose dimensions and formal characters are computable).

In a wonderful confluence of these two points of view, Lascoux-Leclerc-Thibon [LLT] pre-
dicted a connection between Hayashi’s q-Fock space [Ha] and decomposition numbers for repre-
sentations of type A Iwahori-Hecke algebras at roots of unity. The LLT conjecture was proved in
work of Ariki [Ar] and Grojnowski [Gr]. The book of Kleshchev [Kl] shows how successful these
methods have been in the study of the modular representation theory of symmetric groups.

This paper arose from an effort to produce an object analogous to the q-Fock space that will
play the same role in other Lie types, in particular which will be related to the decomposition
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numbers for representations of cyclotomic BMW algebras in the same way that the type A case
is related to representations of cyclotomic Hecke algebras.

In this paper, we provide a construction of an “abstract” Fock space F` in a general Lie
type setting. Our construction is given by simple combinatorial “straightening relations” which
generalize the Kashiwara-Miwa-Stern [KMS] formulation of the q-Fock space from the type A
case. Adapting the methods used by Leclerc-Thibon [LT] for the type A case, we prove that
our abstract Fock space picks up the parabolic affine Kazhdan-Lusztig polynomials for the
corresponding affine Hecke algebra of the affine Weyl group (thus generalizing type A results of
Varagnolo-Vasserot [VV]). By a combination of the results of Kashiwara-Tanisaki [KT95] and
Kazhdan-Lusztig [KL94] and Shan [Sh], these parabolic affine Kazhdan-Lusztig polynomials
are graded decomposition numbers of Weyl modules for the corresponding affine Lie algebra at
negative level and for the quantum group at a root of unity.

A combinatorial study of the same parabolic affine Kazhdan-Lusztig polynomials was car-
ried out also in [GW], where the authors provided an efficient algorithm which generalizes the
algorithm appearing to [LLT] to arbitrary Lie type. The focus of [GW] was the combinatorial
understanding of such polynomials rather than the construction of a tool that can play the same
role for other Lie types that the infinite wedge space takes in the type A case.

In Section 1 we give the simple construction of the general Lie type “abstract Fock space”
F`. We then explain exactly how this general construction relates to the classical type A setting,
the framework of Kashiwara-Miwa-Stern and the familiar formulations in terms of semi-infinite
wedges, partitions and Maya diagrams. In Section 2 we give an expository treatment of modules
with bar involution, general bar-invariant KL-bases, and the construction of KL-polynomials
for Hecke algebras, including the singular, parabolic and parabolic-singular cases. Although
this material is well known (see, for example, [Soe97]) it is crucial for us to set this up in
a form suitable for connecting to the abstract Fock space so that we can eventually see the
parabolic affine KL-polynomials in the abstract Fock space F`. In Section 3 we review the results
of Kashiwara-Tanisaki, Kazhdan-Lusztig and Shan and concretely connect the decomposition
numbers for Weyl modules of affine Lie algebras at negative level and quantum groups at roots of
unity to the parabolic and parabolic-singular KL polynomials that have been treated in Section
2. In Section 4, we prove that a certain module with bar involution which is constructed from the
affine Hecke algebra is isomorphic to the abstract Fock space F`. This is the key step for proving
that the abstract Fock space picks up the appropriate parabolic and parabolic-singular affine
KL-polynomials. Finally, at the end of section 4 we tie together the results of Section 3 and 4 to
conclude that the abstract Fock space, a combinatorial construct, computes the decomposition
numbers of Weyl modules for quantum groups at roots of unity.

Our construction is an important first step in providing combinatorial tools for general Lie
type that are direct analogues of the tools that have been so useful in the Type A case. There is
much to be done. In particular, we hope that in the future someone will complete the following:

(a) Development of the combinatorics of F` in parallel to the way it is used in the type A
case (see, for example, Kleshchev’s book [Kl]) to provide a “theory of crystals” for other
types which applies to the representation theory of the cyclotomic BMW algebras in the
same way that the classical crystal theory applies to the modular representation theory of
cyclotomic Hecke algebras.

(b) Provide operators on F` analogous to the Uq ŝl` action on F` in the type A case. Taking
the point of view of [RT] these operators are the (graded Grothendieck group) images of
translation functors for representations of the quantum group at a root of unity. There is
significant evidence (see, for example, [ES13], [BW], [BSWW] and [FLLLW]) leading one
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to expect that in the type B,C and D cases these operators will provide actions of coideal
quantum groups on F`.

(c) Elias-Williamson [EW] introduced the diagrammatic Hecke category DBS over a field,
which in characteristic zero provides a generators and relations presentation of the Soergel
bimodule category. It is expected [RW, Conjecture 5.1] that a regular block Rep0(G(Fp))
is equipped with an action of the category DBS over Fp. This conjecture can be viewed as a
(categorical) extension of the project described in (b). Indeed, our abstract Fock space Fp
is designed to be a decategorification of Rep(G(Fp)). For the type A case, Riche-Williamson

[RW] have used the U(ĝlp)-action on Fp (in its infinite wedge space formulation) to prove
their conjecture and hence to show that the p-canonical basis corresponds to the indecom-
posable tilting modules in Rep0(G(Fp)). It is possible that our abstract Fock space Fp
could be a useful tool for generalizing the results of [RW] to other Lie types in a uniform
fashion (taking care also of singular blocks).

It is a pleasure to thank all the institutions which have supported our work on this pa-
per, including especially the University of Melbourne, the Australian Research Council (grants
DP1201001942 and DP130100674) and ICERM (Institute for Computational and Experimen-
tal Research in Mathematics). M.L. would like to thank the University of Edinburgh, which
supported her research during the final part of this project.

1 The abstract Fock space

1.1 Fock space F`
Let W0 be a finite Weyl group, generated by simple reflections s1, . . . , sn, and acting on a lattice
of weights a∗Z. For example, this situation arises when T is a maximal torus of a reductive
algebraic group G,

a∗Z = Hom(T,C×) and W0 = N(T )/T, (1.1)

where N(T ) is the normalizer of T in G. The simple reflections in W0 correspond to a choice of
Borel subgroup B of G which contains T . Let R+ denote the positive roots. Let α1, . . . , αn be
the simple roots and let α∨1 , . . . , α

∨
n be the simple coroots. The dot action of W0 on a∗Z is given

by

w ◦ λ = w(λ+ ρ)− ρ, where ρ = 1
2

∑
α∈R+

α (1.2)

is the half sum of the positive roots for G (with respect to B).

Fix ` ∈ Z>0. The Fock space F` is the Z[t
1
2 , t−

1
2 ]-module generated by {|λ〉 | λ ∈ a∗Z} with

relations

|si ◦ λ〉 =


−|λ〉, if 〈λ+ ρ, α∨i 〉 ∈ `Z≥0,

−t
1
2 |λ〉, if 0 < 〈λ+ ρ, α∨i 〉 < `,

−t
1
2 |si ◦ λ(1)〉 − |λ(1)〉 − t

1
2 |λ〉, if 〈λ+ ρ, α∨i 〉 > ` and 〈λ+ ρ, α∨i 〉 6∈ `Z,

(1.3)

where λ(1) = λ− jαi if 〈λ+ ρ, α∨i 〉 = k`+ j with k ∈ Z>0 and j ∈ {1, . . . , `− 1}. t
The following picture illustrates the terms in (1.3). This is the case G = SL2 with ` = 5,

〈ω1, α
∨
1 〉 = 1 and α1 = 2ω1 and, in the picture, λ corresponds to the third case of (1.3), µ to the
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first case and ν to the second case.

s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s
−14−13−12−11−10−9 −8 −7 −6 −5 −4 −3 −2 −ρ 0 ω1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

λλ(1)s1◦λ(1)s1◦λ
µs1◦µ

νs1◦ν

Define a Z-linear involution : F` → F` by

t
1
2 = t−

1
2 and |λ〉 = (−1)`(w0)(t−

1
2 )`(w0)−Nλ |w0 ◦ λ〉. (1.4)

where w0 is the longest element of W0, `(w0) = Card(R+) is the length of w0, and Nλ =
Card{α ∈ R+ | 〈λ+ ρ, α∨〉 ∈ `Z}.

1.2 F` is a KL-module

The dominant integral weights with the dominance partial order ≤ are the elements of

(a∗Z)+ = {λ ∈ a∗Z | 〈λ+ ρ, α∨i 〉 > 0 for i = 1, 2, . . . , n}

with µ ≤ λ if µ ∈ λ−
∑

α∈R+ Z≥0α.
(1.5)

In combination, Theorem 1.1 and Proposition 2.1 below give that F` has bases

{|λ〉 | λ ∈ (a∗Z)+} and {Cλ | λ ∈ (a∗Z)+} (1.6)

where Cλ are determined by

Cλ = Cλ and Cλ = |λ〉+
∑
µ 6=λ

pµλ|µ〉, with pµλ ∈ t
1
2Z[t

1
2 ]. (1.7)

Theorem 1.1. Let F` be defined as (1.3) and let L = {|λ〉 | λ ∈ (a∗Z)+}. Then, with the
definition of KL-module as in Section 2, L is a basis of F` and

((a∗Z)+,F`,L, : F` → F`) is a KL-module.

Proof. (Sketch) If λ ∈ (a∗Z)+ then there are only finitely many µ ≤ λ with the property that µ
is also dominant (see [St, Cor. 1.4]).

Let i ∈ {1, . . . , n} and let λ ∈ a∗Z be such that 0 < 〈λ+ ρ, α∨i 〉. Write

〈λ+ ρ, α∨i 〉 = k`+ j, with k ∈ Z and j ∈ {0, 1, . . . , `− 1}.

When j 6= 0 define
λ(1) = λ− jαi and λ(j+1) = (λ(j))(1).

Then induction on k using the third case in (1.3) gives

|si ◦ λ〉 = (−t
1
2 )|λ〉+ (−t

1
2 )t−

1
2 |λ(1)〉+ (−t

1
2 )|si ◦ λ(1)〉

= (−t
1
2 )|λ〉+ (−t

1
2 )t−

1
2 |λ(1)〉

+ (−t
1
2 )(−t

1
2 )

(
|λ(1)〉 − (t

1
2 − t−

1
2 )|λ(2)〉 − (t

1
2 − t−

1
2 )(−t

1
2 )|λ(3)〉

− · · · − (t
1
2 − t−

1
2 )(−t

1
2 )k−2|λ(k)〉

)

= (−t
1
2 )

(
|λ〉 − (t

1
2 − t−

1
2 )|λ(1)〉 − (t

1
2 − t−

1
2 )(−t

1
2 )|λ(2)〉

− · · · − (t
1
2 − t−

1
2 )(−t

1
2 )k−1|λ(k)〉

)
. (1.8)
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More generally, for λ ∈ a∗Z such that 〈λ + ρ, α∨i 〉 6= 0 for i ∈ {1, . . . , n} let λ+ be the dominant
representative of W0 ◦ λ and let

R(λ) = {α ∈ R+ | 〈λ+ ρ, α∨〉 ∈ Z<0},
R`(λ) = {α ∈ R+ | 〈λ+ ρ, α∨〉 ∈ `Z<0}.

(1.9)

Then iterating (1.8) produces cµ ∈ (t−
1
2 − t

1
2 )Z[t

1
2 ] so that

|λ〉 = (−1)Card(R(λ))(t
1
2 )Card(R(λ))−Card(R`(λ))

|λ+〉+
∑

µ+∈(a∗Z)
+

µ+≤λ+

cµ|µ+〉

 . (1.10)

With (1.10) in hand all steps in a direct proof of Theorem 1.1 are straightforward except proving
that {|λ+〉 | λ+ ∈ (a∗Z)+} is a basis of F` (the linear independence is the issue). To prove this
directly the unpleasant step is to show that if λ+ ∈ (a∗Z)+ and w ∈W0 then |w ◦ λ+〉 defined by
|w◦λ+〉 = |si1 ◦(si2 ◦· · ·◦(sik ◦λ+))〉 for a reduced decomposition w = si1si2 · · · sik will produce a
well defined element of F` (independent of the choice of reduced decomposition). Alternatively,
it is possible to use a Gröbner basis argument using the ordering � on a∗Z given by

µ ≺ λ if µ+ < λ+ in dominance order and
u ◦ λ+ ≺ v ◦ λ+ if u < v in Bruhat order,

where µ+ denotes the dominant representative of W0 ◦ µ. However, we will not complete this
sketch here as Theorem 1.1 is a consequence of the realization of F` provided by Corollary
4.7.

1.3 F` as a semi-infinite wedge space for the case G = GL∞

Fix ` ∈ Z>0. The semi-infinite wedge space considered by Kashiwara-Miwa-Stern [KMS, (43)-
(45)] is

F` = Λ
∞
2 V = C-span

{
va1 ∧ va2 ∧ · · ·

∣∣∣∣∣ aj ∈ Z and, for all but
a finite number of j, aj = −j + 1

}
, (1.11)

where va, a ∈ Z are symbols, and if a < b then

vb ∧ va =


−(va ∧ vb), if a− b ∈ `Z≥0,

−t
1
2 (va ∧ vb), if 0 < a− b < `,

−t
1
2 (vb+j ∧ va−j)− (va−j ∧ vb+j)− t

1
2 (va ∧ vb),

if a− b = k`+ j with k ∈ Z
and j ∈ {0, 1, . . . , `− 1}.

From the point of view of (1.1) and (1.3), this is the caseG = GL∞(C) with a∗Z = Z-span{ε1, ε2, . . .}
and W0 the infinite symmetric group generated by s1, s2, s3, . . ., where si is the simple transpo-
sition that switches εi and εi+1. This framework illustrates that the straightening laws of (1.3)
are generalizations of those that appear in [KMS, (43-45)] and [LT, Prop. 5.11].

In the semi-infinite wedge space setting of (1.11) the bar involution appears in [Le, §3.6], and
[LT, Prop. 5.9 and (85)]. Kashiwara-Miwa-Stern [KMS] already have the affine Hecke algebra
playing a significant role in their story; in retrospect, this is not unrelated to the role that the
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affine Hecke algebra takes for us in Corollary 4.7. Leclerc-Thibon [LT] also have the affine Hecke
algebra playing an important role, essentially the same as in this paper.

The correspondence between partitions, semi-infinite wedges and Maya diagrams appears
in [MJD, §4.3 and Fig. 9.3] (see also [Le, §2.2.1] and [Tin, Fig. 1]). Following [Le, §2.2.1], the
partition

λ = (λ1 ≥ λ2 ≥ · · · ≥ λs > 0) = (λ1, λ2, . . . , λs, 0, 0, . . .) corresponds to

the semi-infinite wedge |λ〉 = vλ1−1+1 ∧ vλ2−2+1 ∧ · · · .

The ρ-shift which appears in (1.3) also appears here since ρ can be taken to be

ρ = (0, 1, 2, 3, . . .) for the case of G = GL∞(C).

In the picture below, when following the bold boundary of the partition λ = (4, 4, 3, 3, 2, 2, 1, 1, 1)
the positive slope edges correspond to black dots in the Maya diagram and the black dots in the
Maya diagram correspond to the indices in the corresponding wedge |λ〉 = vi1 ∧ vi2 ∧ · · · .

λ = (4, 4, 3, 3, 2, 2, 1, 1, 1) with |λ〉 = v4∧v3∧v1∧v0∧v−2∧v−3∧v−5∧v−6∧v−7∧v−9∧v−10∧· · · .

2 KL-modules and bases

The bar involution on the ring Z[t
1
2 , t−

1
2 ] of Laurent polynomials in t

1
2 is the ring isomorphism

: Z[t
1
2 , t−

1
2 ]→ Z[t

1
2 , t−

1
2 ] given by t

1
2 = t−

1
2 . (2.1)

A KL-module over Z[t
1
2 , t−

1
2 ] is a tuple (Λ,M, {Tw}w∈Λ, : M →M) where

(a) Λ is a partially ordered set such that if w ∈ Λ then {v ∈ Λ | v ≤ w} is finite,
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(b) M is a free Z[t
1
2 , t−

1
2 ]-module with basis {Tw | w ∈ Λ},

(c) : M →M is a Z-module homomorphism such that if m ∈M , a ∈ Z[t
1
2 , t−

1
2 ] and w ∈ Λ

then
a ·m = a ·m, m = m, and Tw = Tw +

∑
v<w

avwTv, (2.2)

where a is given by (2.1) and the coefficients av,w in the expansion of Tw are elements of

Z[t
1
2 , t−

1
2 ].

Proposition 2.1. Let (Λ,M, {Tw}, · ) be a KL-module over Z[t
1
2 , t−

1
2 ]. There is a unique basis

{Cw | w ∈ Λ} of M characterized by

Cw = Cw and Cw = Tw +
∑
v<w

pvwTv, with pvw ∈ t
1
2Z[t

1
2 ] for v < w. (2.3)

Let dvw be the coefficients in the expansion

Tw = Cw +
∑
v<w

dvwCv, with dvw ∈ t
1
2Z[t

1
2 ] for v < w. (2.4)

The polynomials puw and duw = 0 are specified, inductively, by the equations puw = duw = 0
unless u ≤ w, pww = dww = 1,

puw − puw =
∑

u<z6w

auzpzw and duw − duw = −
∑

u≤z<w
duzaz,w. (2.5)

Proof. The matrices A = (avw), P = (pvw) and D = (dvw) defined by (2.2) and (2.4) are all
upper triangular with 1’s on the diagonal. Then

AA = 1, P = AP, D = DA and DP = 1 = PD, (2.6)

since

Tw = Tw =
∑
v

avwTv =
∑
u,v

auvavwTu,∑
u

puwTv = Cw = Cw =
∑
v

pvwTv =
∑
u,v

pvwauvTu, and

Cw +
∑
v<w

dvwCv = Tw =
∑
u≤w

au,wTu =
∑

v≤u≤w
au,wdvuCv.

Letting f = puw − puw =
∑
k∈Z

fk(t
1
2 )k,

f = puw − puw = (P − P )uw = ((A− 1)P )uw = (AP − P )uw =
∑

u<z6w

auzpzw, (2.7)

and the identity

f = (puw − puw) = puw − puw = −f implies fk = −f−k, for k ∈ Z.

Thus puw =
∑
k∈Z<0

fk(t
1
2 )k. The derivation of the formula for the entries of D is similar using

D −D = D −DA and aww = 1.
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2.1 KL modules associated to Hecke algebras of Coxeter groups

Let W be a Coxeter group generated by s0, s1, . . . , sn so that

s2
i = 1, and (sisj)

mij = 1, for i 6= j (2.8)

(mij is allowed to be ∞, in which case, the expression (sisj)
mij = 1 should be interpreted as

“sisj has infinite order”). Let w ∈W . A reduced word for w is a sequence si1 · · · sir of generators
with w = si1 · · · sir and r minimal. The length of w is `(w) = r if si1 . . . sir is a reduced word
for w. The Bruhat order ≤ on W is given by v ≤ w if there is a reduced word sj1 . . . sjm for v
which is a subword of a reduced word si1 . . . sir for w.

The Hecke algebra of W is the Z[t
1
2 , t−

1
2 ]-algebra H with generators T0, T1, . . . , Tn and rela-

tions
T 2
i = (t

1
2 − t−

1
2 )Ti + 1 and TiTjTi · · ·︸ ︷︷ ︸

mij factors

= TjTiTj · · ·︸ ︷︷ ︸
mij factors

. (2.9)

For w ∈ W define Tw = Tsi1 . . . Tsir for a reduced word w = si1 · · · sir . By [Bou, Ch. 4, §2, Ex.
23)], Tw does not depend on the choice of reduced word for w and

{Tw | w ∈W} is a Z[t
1
2 , t−

1
2 ]-basis of H. (2.10)

Define a Z-algebra automorphism : H → H by

t
1
2 = t−

1
2 and Tw = T−1

w−1 for w ∈W . (2.11)

By the first relation in (2.9), T−1
i = Ti1 − (t

1
2 − t−

1
2 ), so that if w = si1 · · · sir is a reduced word

for w ∈W then

Tw = Ti1 · · ·Tir = T−1
i1
· · ·T−1

ir
=
(
Ti1 − (t

1
2 − t−

1
2 )
)
· · ·
(
Tir − (t

1
2 − t−

1
2 )
)

= Tw +
∑
v<w

avwTv, with avw ∈ (t
1
2 − t−

1
2 )Z[t

1
2 − t−

1
2 ].

With standard basis as in (2.10) indexed by the poset W and with bar involution as in (2.11),

H is a KL-module over Z[t
1
2 , t−

1
2 ]

and, from Proposition 2.1, there is a unique basis {Cw | w ∈W} determined by

Cx = Cx and Cx =
∑
y≤x
y∈W

(−1)`(x)−`(y)Py,x(t
1
2 )Ty, (2.12)

with Py,x(t
1
2 ) ∈ t

1
2Z[t

1
2 ] for y < x. The polynomials Py,x are the Kazhdan-Lusztig polynomials

for H.

2.2 Singular and parabolic KL polynomials

2.2.1 The projectors

Let J, γ ⊆ {0, 1, . . . n} and let Wν and Wγ be the subgroups of W generated by the corresponding
simple reflections,

Wν = 〈sj | j ∈ J〉 and Wγ = 〈sk | k 6∈ γ〉, respectively. (2.13)
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Assume that Wν and Wγ are both finite. Let wν be the longest element of Wν and let wγ be
the longest element of Wγ and let

Wν(t) =
∑
z∈Wν

t`(z) and Wγ(t) =
∑
z∈Wγ

t`(z). (2.14)

Then

1ν =
∑
z∈Wν

(t−
1
2 )`(wν)−`(z)Tz = (t−

1
2 )`(wν)

∑
z∈Wν

(t
1
2 )`(z)Tz, and

εγ =
∑
z∈Wγ

(−t
1
2 )`(wγ)−`(z)Tz = (−t

1
2 )`(wγ)

∑
z∈Wγ

(−t−
1
2 )`(z)Tz, (2.15)

satisfy

1ν = 1ν , Tsj1ν = t
1
21ν for j ∈ J , and 12

ν = (t−
1
2 )`(wν)Wν(t)1ν ,

εγ = εγ , εγTsk = −t−
1
2 εγ for k 6∈ γ, and ε2

γ = (−t−
1
2 )`(wγ)Wγ(t)εγ ,

and
1ν = Twν +

∑
x<wν

h−x,wνTx and εγ = Twγ +
∑
x<wγ

hx,wγTx,

with coefficients h−x,wν ∈ t
− 1

2Z[t−
1
2 ] and hx,wγ ∈ t

1
2Z[t

1
2 ].

2.2.2 Singular block KL polynomials

As in (2.13), let Wν = 〈sj | j ∈ J〉 and let W ν be the set of minimal length coset representatives

of the cosets in W/Wν . The Z[t
1
2 , t−

1
2 ]-module

H1ν has basis {Tu1ν | u ∈W ν} and : H1ν → H1ν , (2.16)

since 1ν = 1ν . The Bruhat order W ν is the restriction of the Bruhat order on W to W ν and,
with these structures, H1ν is a KL-module.

If ϕ : H → H1ν is the surjective KL-module homorphism defined by right multiplication by
1ν then

H1ν has KL-basis {Cu1ν | u ∈W ν}, (2.17)

where {Cw | w ∈W} is the KL-basis of H. With notation as in (2.12),

Cx1ν =
∑
y≤x
y∈W

(−1)`(x)−`(y)Py,x(t
1
2 )Ty1ν , for x ∈W ν , (2.18)

where the sum can contain several y ≤ x which have the same coset yWν (and this is how
cancellation can occur in the sum (2.18)). Since

Tx1ν = (t
1
2 )`(z)Txz1ν , for z ∈Wν ,

the coefficients P νy,x in

Cx1ν =
∑
y∈W ν

(−1)`(x)−`(y)P νy,xTy1ν are P νy,x =
∑
z∈Wν

(−1)`(y)−`(yz)(t
1
2 )`(z)Pyz,x. (2.19)
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Since CwTsi = −t−
1
2Cw unless wsi > w (see [Hu, Prop. 7.14(a)]), it follows that Cw(Tsi +

t−
1
2 ) = 0 unless wsi > w so that

Cw1ν = 0, unless w ∈W ν . (2.20)

In summary, right multiplication by 1ν is a surjective homomorphism of Z[t
1
2 , t−

1
2 ]-modules

H −→ H1ν

Tw 7−→ (t
1
2 )`(v)Tu1ν , if w = uv with u ∈W ν and v ∈Wν , and

Cw 7−→

{
Cw1ν , if w ∈W ν ,

0, if w 6∈W ν .

(2.21)

2.2.3 Parabolic KL polynomials

As in (2.13), let Wγ = 〈sk | k 6∈ γ〉 and let γW be the set of minimal length coset representatives

of the cosets in Wγ\W . The Z[t
1
2 , t−

1
2 ]-module

εγH has basis {εγTu | u ∈ γW} and : εγH → εγH

since εγ = εγ . The Bruhat order γW is the restriction of the Bruhat order on W to γW and,
with these structures, εγH is a KL-module.

Let wγ be the longest element of Wγ and let u ∈ γW . Since TsiCwγu = −t−
1
2Cwγu for simple

reflections si ∈Wγ (see [Hu, Prop. 7.14(a)]), it follows that Cwγu ∈ εγH. Thus

εγH has KL-basis {Cwγu | u ∈ γW}, (2.22)

where {Cw | w ∈W} is the KL-basis of H. In summary, there is an injective homomorphism of
KL-modules

εγH −→ H
εγTu 7−→ εγTu
Cwγu 7−→ Cwγu

(2.23)

where u ∈ γW .
If x ∈ γW then, from the second formula in (2.12),

Cwγx =
∑
y≤wγx
y∈W

(−1)`(wγx)−`(y)Py,wγx(t
1
2 )Ty =

∑
wγy≤wγx
y∈γW

(−1)`(wγx)−`(wγy)Pwγy,wγx(t
1
2 )εγTy. (2.24)

where, by the second formula in (2.15), if w ∈W and w = vu with u ∈ γW and v ∈Wγ then

εγTw = εγTvTu = (−t−
1
2 )`(v)εγTu = (−t−

1
2 )`(v)

∑
z∈Wν

(−t
1
2 )`(wγ)−`(z)Tzu. (2.25)

2.2.4 Singular block parabolic KL polynomials

As in (2.13),
let Wγ = 〈sk | k 6∈ γ〉 and let Wν = 〈sj | j ∈ J〉.
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Let wγ be the longest element of Wγ and let εγ and 1ν be as defined in (2.15). The composite
of (2.21) and (2.23)

εγH −→ H −→ H1ν
εγTu 7−→ εγTu 7−→ εγTu1ν
Cwγx 7−→ Cwγx 7−→ Cwγx1ν

has image εγH1ν . (2.26)

Let γW be the set of minimal length coset representatives of the cosets in Wγ\W , and let W ν be
the set of minimal length coset representatives of the cosets in W/Wν . From (2.20), Cw1ν = 0
unless w ∈W ν , and so, in (2.26),

if u ∈ γW then Cwγu1ν = 0 unless wγu ∈W ν .

By [Bou, Ch. IV §1 Ex. 3]), the elements of γW ∩W ν are the minimal length elements of the
double cosets in Wγ\W/Wν and are a set of representatives of the double cosets in Wγ\W/Wν .
If WγaWν is a double coset in Wγ\W/Wν then there is a unique element u ∈WγaWν of minimal
length and

if w ∈WγaWν then
w = vuz, with v ∈Wγ , z ∈Wν

and `(w) = `(v) + `(u) + `(z).
(2.27)

Note that (2.27) does not imply that Card(WγaWν) = Card(Wγ)Card(Wν).

Proposition 2.2. Let u ∈ γW ∩W ν so that u is a minimal length element of a double coset in
Wγ\W/Wν .

(a) If wγu /∈W ν then εγTu1ν = 0.

(b) If wγu ∈W ν then

εγTu1ν = (−t
1
2 )`(wγ)(t−

1
2 )`(wν)

∑
v∈Wγ ,z∈Wν

(−t−
1
2 )`(v)(t

1
2 )`(z)Tvuz. (2.28)

Proof. The group Wγ acts on the coset space W/Wν . The coset space W/Wν can always be
identified with the orbit Wν for some element ν ∈ a∗, where a∗ = aZ ⊗Z R. Thus a Wγ orbit
is Wγλ for some λ ∈ a∗. We may take λ = uν where u is minimal length in the orbit WγuWν .
Let Wλ = StabW (λ) = uWνu

−1. Since the stabilizer of the Wγ action on λ is Wγ ∩Wλ, the
elements of the orbit Wγλ are indexed by the set W λ

γ of minimal length representatives of the
cosets in Wγ/(Wγ ∩Wλ). It follows that

WγuWν = {xuy | x ∈W λ
γ , y ∈Wν} with Card(WγuWν) = Card(W λ

γ )Card(Wν).

(a) Assume wγu 6∈ W ν . Then there exists si ∈ Wγ ∩Wλ. So siu = usj with sj ∈ Wν and it
follows that

εγTu1ν = (−t
1
2 )εγTsiTu1ν = (−t

1
2 )εγTsiu1ν = (−t

1
2 )εγTusj1ν = (−t

1
2 )εγTuTsj1ν = −tεγTu1ν ,

giving that εγTu1ν = 0.

(b) Continuing from the proof of (a), εγTu1ν 6= 0 only when Wγ ∩Wλ = {1} so that

W λ
γ = Wγ , in which case Card(WγuWν) = Card(Wγ)Card(Wν) and

WγuWν = {xuy | x ∈Wγ , y ∈Wν} and wγu ∈W ν .

11



Then

εγTu1ν =

(−t
1
2 )`(wγ)

∑
v∈Wγ

(−t−
1
2 )`(v)Tv

Tu

(
(t−

1
2 )`(wν)

∑
z∈Wν

(t
1
2 )`(z)Tz

)

= (−t
1
2 )`(wγ)(t−

1
2 )`(wν)

∑
v∈Wγ ,z∈Wν

(−t−
1
2 )`(v)(t

1
2 )`(z)TvTuTz

= (−t
1
2 )`(wγ)(t−

1
2 )`(wν)

∑
v∈Wγ ,z∈Wν

(−t−
1
2 )`(v)(t

1
2 )`(z)Tvuz,

where the first equality follows from (2.15) and the third equality follows from (2.27).

Since 1ν = 1ν and εγ = εγ , the restriction of : H → H provides

: εγH1ν → εγH1ν , and εγH1ν has basis {εγTu1ν | u ∈ γW and wγu ∈W ν},

and the restriction of the Bruhat order on W provides a partial order on the set {u ∈ γW | wγu ∈
W ν}. With these structures, εγH1ν is a KL-module and, from (2.17) and (2.22),

εγH1ν has KL-basis {Cwγu1ν | u ∈ γW and wγu ∈W ν} (2.29)

and, using (2.24) and Proposition 2.2,

Cwγx1ν =
∑

wγy≤wγx
y∈γW

(−1)`(wγx)−`(y)Pwγy,wγx(t
1
2 )εγTy1ν

=
∑

wγy≤wγx
y∈γW,wγy∈Wν

(−1)`(wγx)−`(wγy)P νwγy,wγx(t
1
2 )εγTy1ν , (2.30)

where, as in (2.19),

P νwγy,wγx =
∑
z∈Wν

(−1)`(wγy)−`(wγyz)Pwγyz,wγx.

3 Decomposition numbers via Hecke algebras

3.1 Affine Kac-Moody and ν negative level rational

With W0 and a∗Z as in (1.1), let g̊ be a finite dimensional complex reductive Lie algebra with

Cartan subalgebra a and Borel subalgebra b̊ containing a such that the Weyl group is W0, the
weight lattice is a∗Z and the simple coroots are α∨1 , . . . , α

∨
n . Let g be the corresponding affine

Kac-Moody Lie algebra (see [Kac, (7.2.2)]),

g = (̊g⊗C C[ε, ε−1])⊕ CK ⊕ Cd, with Cartan subalgebra h = a⊕ CK ⊕ Cd (3.1)

and positive real roots R+
re and integral weight lattice h∗Z. Let α∨0 , α

∨
1 , . . . , α

∨
n be the simple

coroots of g with respect to the Borel subalgebra b = b̊ ⊕ CK ⊕ Cd ⊕ (̊g ⊗C εC[ε]) (see [Kac,
Theorem 7.4]) and let

ρ̂ ∈ h∗ such that 〈ρ̂, α∨i 〉 = 1, for i ∈ {0, 1, . . . , n}
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(see [Kac, (6.2.8) and (12.4.3)]). For ν ∈ h∗ define

∆+(ν) = {α ∈ R+
re | 〈ν + ρ̂, α∨〉 ∈ Z} and W (ν) = 〈sα | α ∈ ∆+(ν)〉 (3.2)

and define the dot action of W on h∗ by

w ◦ λ = w(λ+ ρ̂)− ρ̂, for w ∈W and λ ∈ h∗. (3.3)

If ν ∈ h∗Z then W (ν) = 〈sα | α ∈ R+
re〉 = W as defined in (3.2) is the full affine Weyl group.

For λ ∈ h∗ let

M(λ) be the Verma module of highest weight λ for g, and
L(λ) the irreducible module of highest weight λ for g.

(3.4)

A weight ν ∈ h∗ is negative level rational if ν satisfies:

(a) (negativity/antidominance) If i ∈ {0, 1, . . . , n} then 〈ν + ρ̂, α∨i 〉 ∈ Q≤0,

(b) (negative level) 〈ν + ρ̂,K〉 ∈ Q<0.

Given condition (a) the only additional content of (b) is that 〈ν + ρ̂,K〉 6= 0, (see the statement
of [KT96, Theorem 3.3.6]).

Theorem 3.1. [KT96, Theorem 0.1] Let g be an affine Kac-Moody Lie algebra and let ν ∈ h∗

be negative level rational. Let w ∈ W be of minimal length in wW (ν). Letting < denote the
Bruhat order on W , let x ∈W (ν) be such that

if w′ ∈W and w′ < wx then w′ ◦ ν 6= wx ◦ ν. (3.5)

Let ch(M) denote the character (weight space generating function) of a g-module M . Then

ch(L(wx ◦ ν)) =
∑
y≤νx

(−1)`ν(x)−`ν(y)P νy,x(1)ch(M(wy ◦ ν)), (3.6)

where `ν is the length function, ≤ν is the Bruhat order and P νy,x are the Kazhdan-Lusztig poly-
nomials (see (2.12)) for the Coxeter group W (ν), and the sum is over y ∈ W (ν) such that
y ≤ν x.

This statement generalizes a conjecture of Lusztig [Lu90, Conj. 2.5c], proved by Kashiwara-
Tanisaki in [KT95]. It is a negative level affine version of the original “Kazhdan-Lusztig con-
jecture” of [KL79, Conjecture 1.5]. A refinement of [KL79, Conjecture 1.5] is the Jantzen
conjecture, which was proved by Beilinson-Bernstein [BB, Cor. 5.3.5]. The “Jantzen conjec-
ture” result generalizes to the negative level affine setting, as proved by Shan [Sh, Proposition
5.5 and Theorem 6.4].

3.2 The Kashiwara-Tanisaki theorem in Hecke algebra notation

The purpose of this subsection is to repackage the result of Theorem 3.1 (in the strong “Jantzen
conjecture” form) into the Hecke algebra notations of Section 2.2.

Keep the notations of Theorem 3.1 so that g is the affine Lie algebra, h is the Cartan subalgera
as in (3.1) and ν ∈ h∗ is negative level rational.

Let H be the Hecke algebra of the group W (ν),
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where W (ν) is as defined in (3.2) and H is as defined in (2.9). Let

K(O[ν]) be the free Z[t
1
2 , t−

1
2 ]-module generated by symbols [M(x ◦ ν)]

for x ∈W ν . Define elements [L(y ◦ ν)], y ∈W ν , by the equation

[M(x ◦ ν)] =
∑
y≤x

 ∑
i∈Z≥0

[
M (i)(x ◦ ν)

M (i−1)(x ◦ ν)
: L(y ◦ ν)

]
(t

1
2 )i

 [L(y ◦ ν)],

where [M : L(µ)] denotes the multiplicity of the simple g-module L(µ) of highest weight µ in a
composition series of M and

M(λ) = M(λ)(0) ⊇M(λ)(1) ⊇ · · · is the Jantzen filtration of M(λ),

see, for example, [OR, (2.5)].

Case R: regular ν. Let ν ∈ h∗ such that 〈ν + ρ̂, α∨i 〉 ∈ Q<0. Then Stab(ν) = {1} under the dot
action of (3.3). In this case the strong “Jantzen conjecture” version of Theorem 3.1 (see [Sh,

Theorem 6.4 and Proposition 5.5]) is equivalent to a Z[t
1
2 , t−

1
2 ]-module isomorphism

K(O[ν])
∼−→ H

[M(y ◦ ν)] 7−→ Ty
[L(x ◦ ν)] −→ Cx

where Ty and Cx are as in (2.12). (3.7)

Case S: singular ν. Let ν ∈ h∗ such that 〈ν + ρ̂, α∨i 〉 ∈ Q≤0 and let

J = {j ∈ {0, 1, . . . , n} | 〈ν + ρ̂, α∨j 〉 = 0} so that Wν = 〈sj | j ∈ J〉

is the stabilizer of the dot action of W on ν. Let 1ν be the element of H defined in (2.15). Then
the strong “Jantzen conjecture” version of Theorem 3.1 (see [Sh, Theorem 6.4 and Proposition

5.5]) is equivalent to a Z[t
1
2 , t−

1
2 ]-module isomorphism

K(O[ν])
∼−→ H1ν

[M(y ◦ ν)] 7−→ Ty1ν
[L(x ◦ ν)] −→ Cx1ν

where Ty1ν and Cx1ν are as in (2.18). (3.8)

3.3 Decomposition numbers for parabolic O

Keep the notations for the affine Lie algebra as in (3.1), and let e0, . . . , en, f0, . . . , fn, a and d
be Kac-Moody generators for g. Let γ ⊆ {0, 1, . . . , n} with γ 6= ∅ and define, following [Soe98,
§7], a Z-grading on g by deg(d) = 0, deg(h) = 0 for h ∈ a,

deg(ei) =

{
0, if i ∈ γ,

1, if i 6∈ γ,
and deg(fi) =

{
0, if i ∈ γ,

−1, if i 6∈ γ.

Let
gγ = {x ∈ g | deg(x) = 0} and bγ = {x ∈ g | deg(x) ≥ 0}. (3.9)

Following the first two paragraphs of [Soe98, §3], the parabolic category O (with respect to deg)
is the category Og

gγ of g-modules M such that
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(a) M is gγ-semisimple,

(b) M is bγ-locally finite, i.e. If m ∈M then dim(Ubγ ·m) <∞.

Let (a∗)+
γ be an index set for the finite dimensional simple gγ-modules {Lgγ (λ) | λ ∈ (a∗)+

γ }.
The standard modules in Og

gγ are

∆g
gγ (λ) = Ug⊗Ubγ Lgγ (λ), for λ ∈ (a∗)+

γ , (3.10)

where Lgγ (λ) becomes a bγ-module by setting xn = 0 if n ∈ Lgγ (λ) and x ∈ g is homogeneous
with deg(x) > 0. The simple modules in Og

gγ are the quotients

L(λ) =
∆g

gγ (λ)

(max. proper submodule)
, for λ ∈ (a∗)+

γ .

Let Wγ be the Weyl group corresponding to γ as in (2.13). Since γ 6= ∅ and g is an affine
Kac-Moody Lie algebra, the Lie algebra gγ is finite dimensional and the integrable simple module
Lgγ (λ) for the Lie algebra gγ has a BGG-resolution (see [Dx, Ex. 7.8.14]),

0 −→ ∆
gγ
b (wγ ◦ λ) −→ · · · −→

⊕
z∈Wγ
`(z)=j

∆
gγ
b (z ◦ λ) −→ · · · −→ ∆

gγ
b (λ) −→ Lgγ (λ) −→ 0. (3.11)

where ∆
gγ
b (µ) denotes the Verma module of highest weight µ for gγ and wγ is the longest element

of Wγ (since γ 6= ∅ then Wγ is a finite Coxeter group and wγ exists). (The dot action in (3.11)
coincides with the dot action defined in (3.3) since Wγ is generated by {si | i 6∈ γ} and both
actions satisfy si ◦ λ = λ− (〈λ, α∨i 〉+ 1)αi for i 6∈ γ.)

As in [Soe98, paragraph before Prop. 7.5], parabolic induction of the resolution (3.11) to g
gives

0 −→ ∆g
b(wγ ◦ λ) −→ · · · −→

⊕
z∈Wγ
`(z)=j

∆g
b(z ◦ λ) −→ · · · −→ ∆g

b(λ) −→ ∆g
gγ (λ) −→ 0, (3.12)

where ∆g
b(µ) = M(µ) is the Verma module for g as in (3.4). Thus the multiplicity of a simple

g-module L(µ) in the standard module ∆g
gγ (λ) is

[∆g
gγ (λ) : L(µ)] =

∑
z∈Wγ

(−1)`(z)[∆g
b(z ◦ λ) : L(µ)]. (3.13)

In the correspondence to the Hecke algebra as in (3.8),

[M(zy ◦ ν)] = [∆g
b(zy ◦ ν)] 7→ Tzy1ν

[∆g
gγ (wγy ◦ ν)] 7→ εγTy1ν
[L(w ◦ ν)] 7→ Cw1ν

so that the identity in (3.13) (which comes from the BGG resolution) corresponds to the Hecke
algebra identity (see (2.28))

εγTx1ν =
∑
z∈Wγ

(−t
1
2 )`(wγ)−`(z)Tzx1ν , where wγ is the longest element of Wγ .
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Let γW be the set of minimal length representatives of cosets in Wγ\W . Let

K(Og
gγ [wγ ◦ ν]) be the free Z[t

1
2 , t−

1
2 ]-module generated by symbols [∆g

gγ (wγx ◦ ν)],

for x ∈ γW such that wγx ∈W ν . Define elements [L(wγy ◦ν)], for y ∈ γW such that wγy ∈W ν ,
by the equation

[∆g
gγ (wγx ◦ ν)] =

∑
y≤x

 ∑
i∈Z≥0

[
∆g

gγ (wγx ◦ ν)(i)

∆g
gγ (wγx ◦ ν)(i+1)

: L(wγy ◦ ν)

]
(t

1
2 )i

 [L(wγy ◦ ν)],

where [M : L(µ)] denotes the multiplicity of the simple g-module L(µ) of highest weight µ in a
composition series of M and

∆g
gγ (λ) = ∆g

gγ (λ)(0) ⊇ ∆g
gγ (λ)(1) ⊇ · · · is the Jantzen filtration of ∆g

gγ (λ)

(see, for example, [Sh, §1.4, §2.3 and §2.10] for the Jantzen filtration in this context).

Case PR: Parabolic O, regular ν. Let ν ∈ h∗ such that 〈ν + ρ, αi〉 ∈ Q<0. Let γ ⊆ {0, 1, . . . , n}
and let gγ be the corresponding “standard” Levi subalgebra of g as defined in (3.9) with Weyl
group Wγ = 〈sk | k ∈ γ〉 as defined in (2.13). Then Theorem 3.1 (or (3.8)) combined with
(3.13) and (2.23) is equivalent, in the strong “Jantzen conjecture” form (see [Sh, Theorem 6.4

and Proposition 5.5]) to a Z[t
1
2 , t−

1
2 ]-module isomorphism

K(Og
gγ [wγ ◦ ν])

∼−→ εγH
[∆g

gγ (wγy ◦ ν)] 7−→ εγTy
[L(wγx ◦ ν)] −→ Cwγx

(3.14)

Case PS: parabolic O, singular ν. Let ν ∈ h∗ such that 〈ν+ρ, αi〉 ∈ Q≤0. The maps in (3.8) and
(3.14) can be packaged into a single statement as follows: If ν ∈ h∗ is such that 〈ν+ρ, αi〉 ∈ Q≤0

and Wν = Stab(ν) is the stabilizer of ν in W under the dot action then

K(Og
gγ [wγ ◦ ν])

∼−→ εγH1ν
[∆g

gγ (wγy ◦ ν)] 7−→ εγTy1ν
[L(wγx ◦ ν)] −→ Cwγx1ν

(3.15)

3.4 Decomposition numbers for quantum groups

In 1989 and 1990, Lusztig made conjectures that the decomposition numbers for representations
of quantum groups can be picked up by Kazhdan-Lusztig polynomials for the affine Weyl goup.
Let q ∈ C× and let Uq (̊g) be the Drinfel’d-Jimbo quantum group corresponding to g̊. Let

Mq(λ) the Verma module of highest weight λ for Uq (̊g),

∆q(λ) the Weyl module for Uq (̊g) of highest weight λ,

Lq(λ) the simple module for Uq (̊g) of highest weight λ,

the conjectures [Lu90, Conj. 2.5] and [Lu89, Conj. 8.2] are

Lq(x ◦ ν) =
∑
y∈W0
y≤x

(−1)`(v)+`(w)Py,x(1)Mq(y ◦ ν), if q = 1 or q2 is not a root of unity,

Lq(x ◦ ν) =
∑
y∈W
y≤x

(−1)`(v)+`(w)Py,x(1)Mq(y ◦ ν), if q2 is a primitive `-th root of unity,

Lq(x ◦ ν) =
∑
y∈W
y≤x

(−1)`(v)+`(w)Py,x(1)∆q(y ◦ ν), if q2 is a primitive `-th root of unity,
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where, with h and ϕ∨ as in (3.17) below, ν is an element of

A−`−h = {ν ∈ a∗Z | 〈ν, ϕ∨〉 ≥ −` and 〈ν, α∨i 〉 ≤ 0 for i ∈ {1, . . . , n}}. (3.16)

These conjectures motivated Theorem 3.2 below [KL94, Theorem 38.1] which had been previ-
ously conjectured by Lusztig [Lu90, Conjecture 2.3].

Theorem 3.2 provides a connection between the representations of affine Lie algebras and the
representations of quantum groups. Let us first sketch this relation on the level of weights. Keep
the notation for affine Lie algebras as in (3.1)-(3.3). Following [Kac, §6.2] and coordinatizing
h∗ = CΛ0 + a∗ + Cδ with 〈a∗,K〉 = 0, 〈a∗, d〉 = 0,

〈Λ0,K〉 = 1, 〈Λ0, a〉 = 0, 〈Λ0, d〉 = 0, 〈δ,K〉 = 0, 〈δ, a〉 = 0, 〈δ, d〉 = 1,

then ϕ∨ ∈ a and the dual Coxeter number h are such that

α∨0 = −ϕ∨ +K, and ρ̂ = ρ+ hΛ0, (3.17)

where ρ̂ ∈ h∗ and ρ ∈ a∗ are as in (3.3) and (1.2), respectively. Let ` ∈ Z>0. Weights of
g-modules that are level −` − h are elements of (−` − h)Λ0 + a∗ + Cδ, Restricting modules in
Og

g0 to the subalgebra g′ = [g, g] loses the information of Cδ, and in the diagram

(−`− h)Λ0 + a∗ + Cδ −→ (−`− h)Λ0 + a∗ ←→ a∗

(−`− h)Λ0 + λ+ aδ 7−→ (−`− h)Λ0 + λ 7−→ λ
(3.18)

the second map is a bijection. Using the definition of negative level rational from just before
Theorem 3.1,

{ν ∈ h∗Z | ν + ρ̂ is level −` and ν is negative level rational}
= {ν ∈ h∗Z | 〈ν + ρ̂,K〉 = −` and 〈ν + ρ̂, α∨i 〉 ∈ Q≤0 for i ∈ {0, . . . , n}}
= (−`− h)Λ0 + {ν ∈ aZ | 〈ν − `Λ0, α

∨
i 〉 ∈ Q≤0 for i ∈ {0, . . . , n}}

= (−`− h)Λ0 + {ν ∈ aZ | 〈ν − `Λ0,−ϕ∨ +K〉 ∈ Q≤0 and 〈ν, α∨i 〉 ∈ Q≤0 for i ∈ {1, . . . , n}}
= (−`− h)Λ0 + {ν ∈ aZ | 〈ν, ϕ∨〉 ≥ −` and 〈ν, α∨i 〉 ≤ 0 for i ∈ {1, . . . , n}}
= (−`− h)Λ0 +A−`−h,

and, in light of Theorem 3.2 below, the “source” of the alcove A−`−h in (3.16) is the negative
level rational condition for weights of the affine Lie algebra.

Next we compare the dot action from (3.3) to the dot action from (1.2). Following [Kac,
(6.5.2)], the action of a translation tµ on h∗ = Cδ + a∗ + CΛ0 is given by

tµ(aδ + λ+mΛ0) =
(
a− 〈λ, µ〉 − 1

2m〈µ, µ〉
)
δ + λ+mµ+mΛ0, and

w(aδ + λ+mΛ0) = aδ + wλ+mΛ0, for w ∈W0, the finite Weyl group.

Thus, if λ ∈ a∗ then

(tµw) ◦ (λ+ (−`− h)Λ0) = (tµw)(λ+ (−`− h)Λ0 + ρ̂)− ρ̂
= (tµw)(λ+ (−`− h)Λ0 + ρ+ hΛ0)− (ρ+ hΛ0)

= tµ(w(λ+ ρ)− `Λ0)− ρ− hΛ0

= (w(λ+ ρ)− `Λ0 − `µ)− ρ− hΛ0 mod δ

= (w ◦ λ)− `µ+ (−`− h)Λ0 mod δ,
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where it is important to note that that the ◦ on the left side of this equation is the dot action
of (3.3) and the ◦ on the right hand side is the dot action of (1.2). This computation is the
basis for using (3.18) to obtain an action of the affine Weyl group W on a∗ and define the level
(−`− h) dot action of W on a∗ by

(tµw) ◦ λ = (w ◦ λ)− `µ = w(λ+ ρ)− ρ− `µ, (3.19)

Now let us state the Kazhdan-Lusztig theorem relating representations of affine Lie algebras
to representations of quantum groups at root of unity. Let

g′ = [g, g] = g̊⊗C C[ε, ε−1] + CK.

In the context of (2.13) and (3.9), let γ = {0} so that

gγ = g0 = g̊ and εγ = ε0 =
∑
w∈W0

(−t
1
2 )`(w0)−`(z)Tz,

where w0 is the longest element of W0, the Weyl group of g̊. By restriction, the modules in Og
g0

are g′-modules.

Theorem 3.2. [KL94, Theorem 38.1] There is an equivalence of categories{
finite length g′-modules
of level −`− h in Og

g0

}
∼←→

{
finite dimensional Uq (̊g)-modules

with q2` = 1

}
∆g

g0((−`− h)Λ0 + λ) 7−→ ∆q(λ)
L((−`− h)Λ0 + λ) 7−→ Lq(λ)

This statement of Theorem 3.2 is for the simply-laced (symmetric) case. With the proper
modifications to this statement the result holds for non-simply laced cases as well, see [Lu94,
§8.4] and [Lu95].

Let

K(fdUq (̊g)-mod) be the free Z[t
1
2 , t−

1
2 ]-module generated by symbols [∆q(λ)],

for λ ∈ a∗Z. Define elements [Lq(w0y ◦ ν)], for ν ∈ A−`−h and y ∈ 0W such that w0y ∈ W ν , by
the equation

[∆q(w0x ◦ ν)] =
∑
y≤x

 ∑
i∈Z≥0

[
∆q(w0x ◦ ν)(i)

∆q(w0x ◦ ν)(i+1)
: Lq(w0y ◦ ν)

]
(t

1
2 )i

 [Lq(w0y ◦ ν)],

where [M : Lq(µ)] denotes the multiplicity of the simple g-module Lq(µ) of highest weight µ in
a composition series of M and

∆q(λ) = ∆q(λ)(0) ⊇ ∆q(λ)(1) ⊇ · · · is the Jantzen filtration of ∆q(λ)

(see, for example, [Sh, §1.4, §2.3 and §2.10 and Cor. 2.14] and [JM, §4] for the Jantzen filtration
in this context).

Case QG: quantum groups, integral weights. The maps in (3.15) combined with the result of
Theorem 3.2 can be packaged in terms of the affine Hecke algebra as follows: Let ν ∈ A−`−h
and let Wν = Stab(ν) is the stabilizer of ν in W under the level −`− h dot action. Then

K(fdUq (̊g)mod)
∼−→

⊕
ν∈A−`−h

ε0H1ν

[∆q(w0y ◦ ν)] 7−→ ε0Ty1ν
[Lq(w0x ◦ ν)] −→ Cw0x1ν

(3.20)
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4 The Fock space Hecke KL-module in the general setting

Keep the notation for the finite Weyl group W0, the simple reflections s1, . . . , sn and the weight
lattice a∗Z as in (1.1). The affine Weyl group is

W = {tµw | µ ∈ a∗Z, w ∈W0}, with tµtν = tµ+ν , and wtµ = twµw, (4.1)

for µ, ν ∈ a∗Z and w ∈W0.
Let ` ∈ Z>0. Following (3.19), the level (−`− h) dot action of W on a∗Z is given by

(tµw) ◦ λ = (w ◦ λ)− `µ = w(λ+ ρ)− ρ− `µ, (4.2)

for µ ∈ a∗Z, w ∈W0 and λ ∈ a∗Z.

4.1 The affine Hecke algebra H

Keep the notation for the finite Weyl group W0, the simple reflections s1, . . . , sn and the weight
lattice a∗Z as in (1.1). For i, j ∈ {1, . . . , n} with i 6= j, let

mij denote the order of sisj in W0

so that s2
i = 1 and (sisj)

mij = 1 are the relations for the Coxeter presentation of W0. The affine
Hecke algebra is

H = Z[t
1
2 , t−

1
2 ]-span{XµTw | µ ∈ a∗Z, w ∈W0}, (4.3)

with Z[t
1
2 , t−

1
2 ] basis {XµTw | µ ∈ a∗Z, w ∈W0} and relations

(Tsi − t
1
2 )(Tsi + t−

1
2 ) = 0, TsiTsjTsi . . .︸ ︷︷ ︸

mij factors

= TsjTsiTsj . . .︸ ︷︷ ︸
mij factors

, (4.4)

Xλ+µ = XλXµ, and TsiX
λ −XsiλTsi = (t

1
2 − t−

1
2 )

(
Xλ −Xsiλ

1−X−αi

)
, (4.5)

for i, j ∈ {1, . . . , n} with i 6= j and λ, µ ∈ a∗Z. The bar involution on H is the Z-linear automor-
phism : H → H given by

t
1
2 = t−

1
2 , Tsi = T−1

si , and Xλ = Tw0X
w0λT−1

w0
. (4.6)

for i = 1, . . . , n and λ, µ ∈ a∗Z. For µ ∈ a∗Z and w ∈W0 define

Xtµw = Xµ(Tw−1)−1 and Ttµw = TxX
µ+(Tx−1w)−1, (4.7)

where µ+ is the dominant representative of W0µ and x ∈ W0 is minimal length such that
µ = xµ+.

Remark 4.1. Formulas (4.6) and (4.7) are just a reformulation of the usual bar involution and
the conversion between the Bernstein and Coxeter presentations of the affine Hecke algebra (see
for example [NR, Lemma 2.8 and (1.22)]).
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4.2 Definition of P+
−`−h

Following (3.16) and (3.20), define

A−`−h = {ν ∈ a∗Z | 〈ν, ϕ∨〉 ≥ −` and 〈ν, α∨i 〉 ≤ 0 for i ∈ {1, . . . , n}}. (4.8)

and
P+
−`−h =

⊕
ν∈A−`−h

ε0H1ν , (4.9)

where ε0 and 1ν are formal symbols satisfying ε0 = ε0, 1ν = 1ν ,

ε0Tw = (−t−
1
2 )`(w)ε0 for w ∈W0 and Ty1ν = (t

1
2 )`(y)1ν for y ∈Wν ,

where Wν = StabW (ν) under the level (−`− h) dot action of W on a∗Z. It is important to note
that here that the 1ν are formal symbols (and not elements of the Hecke algebra as in the case of
(2.15)) so that 1ν 6= 1γ if ν 6= γ (even though it may be that Wν = Wγ). Define a bar involution

: P+
−`−h → P

+
−`−h by ε0h1ν = ε0h̄1ν , for ν ∈ A−`−h and h ∈ H. (4.10)

For λ ∈ a∗Z define

[Tλ] = [Tw0y◦ν ] = ε0Ty1ν and [Xλ] = [Xw0v◦ν ] = ε0X
v1ν , (4.11)

where
λ = w0y ◦ ν = w0v ◦ ν, with ν ∈ A−`−h, and (4.12)

(T) y ∈W is such that Tyu = TyTu for any u ∈Wν and

(X) v ∈W is such that Xvu = XvTu for any u ∈Wν .

The condition (T) is equivalent to y being a minimal length representative of the coset yWν , i.e.
y ∈W ν .

4.3 The straightening laws for [Tλ]

The following Proposition is a special case of the situation in Proposition 2.2. As in Proposition
2.2, when λ ∈ (a∗Z)+ (λ is a dominant integral weight) then the element [Tλ] has an expansion
in H as a sum over the double coset W0uWν , where λ+ = w0u ◦ ν with ν ∈ A−`−h and u is
minimal length in W0uWν . The properties in Proposition 4.2 determine [Tλ] for λ ∈ a∗Z (all
integral weights).

Proposition 4.2. Let λ ∈ a∗Z. Let λ+ be the maximal element of W0 ◦ λ and let λ− be the
minimal element of W0 ◦ λ in dominance order. Let u ∈ W and x ∈ W0 be of minimal length
such that

λ− = u ◦ ν and λ = x ◦ λ+.

Then [Tλ] = (−t−
1
2 )`(x)[Tλ+ ] and

[Tλ+ ] =

{
ε0Tu1ν , if 〈λ+ + ρ, α∨i 〉 6= 0 for i ∈ {1, . . . , n},
0, otherwise.
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Proof. As in (4.11), let y ∈W ν be such that λ = w0y ◦ ν. Then

λ− = u ◦ ν and λ+ = w0u ◦ ν and y = (w0xw0)u,

since λ = x ◦ λ+ = xw0u ◦ ν = w0(w0xw0)u ◦ ν. Thus, using the definition in (4.11),

[Tλ+ ] = [Tw0u◦ν ] = ε0Tu1ν , [Tλ− ] = [Tu◦ν ] = [Tw0(w0u)◦ν ] = ε0Tm1ν ,

where m is the minimal length representative of the coset w0uWν and

[Tλ] = [Tw0(w0xw0)u◦ν ] = ε0Tw0xw0u1ν = ε0Tw0xw0Tu1ν

= (−t−
1
2 )`(w0xw0)ε0Tu1ν = (−t−

1
2 )`(x)ε0Tu1ν .

If i ∈ {1, . . . , n} and 〈λ+ + ρ, α∨i 〉 = 0 then sj ∈ Wλ− where sj = w0siw0. Since Wλ− =
Wu◦ν = uWνu

−1, then suαj = u−1sju ∈ Wν . Since ν ∈ A−`−h then u−1sju = suαj = sk with
k ∈ {0, . . . , n}. Thus sju = usk and

[Tλ+ ] = ε0Tu1ν = (−t
1
2 )ε0TsjTu1ν = (−t

1
2 )ε0Tsju1ν

= (−t
1
2 )ε0Tusk1ν = (−t

1
2 )ε0TuTsk1ν = (−t

1
2 )t

1
2 ε0Tu1ν = −t[Tλ+ ],

so that [Tλ+ ] = 0.

Remark 4.3. The following “straightening laws” for [Tλ] follow from Proposition 4.2. Let
λ ∈ a∗Z and let i ∈ {1, . . . , n}. Then

[Tsi◦λ] =

{
−t

1
2 [Tλ], if 〈λ+ ρ, α∨i 〉 < 0,

0, if 〈λ+ ρ, α∨i 〉 = 0.
(4.13)

4.4 The straightening laws for [Xλ]

In parallel with the case for [Tλ], the properties in Proposition 4.4 determine [Xλ] for λ ∈ a∗Z
(all integral weights) in terms of [Xλ+ ] for λ+ ∈ (a∗Z)+ (dominant integral weights). Proposition
4.4 is the same as [GH, Prop. 6.3(ii)] (see also [LT, Prop. 5.11]).

Proposition 4.4. Let λ ∈ a∗Z and let λ+ and λ− be the dominant and the antidominant repre-
sentatives of W0 ◦ λ, respectively.

(a) If i ∈ {1, . . . , n} and 〈λ+ ρ, α∨i 〉 = 0 then [Xλ] = 0.

(b) If 〈λ+ ρ, α∨i 〉 6= 0 for i ∈ {1, . . . , n} then [Xλ+ ] = [Tλ+ ].

(c) Let i ∈ {1, . . . , n}. Then

[Xsi◦λ] =


−[Xλ], if 〈λ+ ρ, α∨i 〉 ∈ `Z≥0,

−t
1
2 [Xλ], if 0 < 〈λ+ ρ, α∨i 〉 < `,

−t
1
2 [Xsi◦λ(1) ]− [Xλ(1) ]− t

1
2 [Xλ], if 〈λ+ ρ, α∨i 〉 > ` and 〈λ+ ρ, α∨i 〉 6∈ `Z,

where

λ(1) = λ− jαi if 〈λ+ ρ, α∨i 〉 = k`+ j, with k ∈ Z≥0 and j ∈ {1, . . . , `− 1}.
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Proof. Define [Xλ] = ε0X
v1ν as in (4.11) and let µ ∈ a∗Z and w ∈W0 to write

v = tµw. Then [Xλ] = ε0X
v1ν = ε0X

tµw1ν = ε0X
µ(Tw−1)−11ν . (4.14)

The weight λ is the −`w0µ-translate of the element (w0w) ◦ ν since

λ = w0v ◦ ν = w0tµw ◦ ν = tw0µ(w0w) ◦ ν = −`w0µ+ (w0w) ◦ ν. (4.15)

Keeping i ∈ {1, . . . , n} as in the statement of (c), let

sk = w0siw0 and αk = w0(αi). (4.16)

(a) follows from the first case of (c): If 〈λ+ρ, α∨i 〉 = 0 then si◦λ = λ and [Xλ] = [Xsi◦λ] = −[Xλ],
so that 2[Xλ] = 0.

(b) Assume 〈λ + ρ, α∨i 〉 6= 0 for all i ∈ {1, . . . , n}. Let u ∈ W be of minimal length such that
λ− = u ◦ ν. Then λ+ = w0u ◦ ν and, by the definition in (4.11), [Xλ+ ] = [Xw0u◦ν ] = ε0X

u1ν .
Write u = tµ+x with µ+ ∈ a∗Z and x ∈ W0. By (4.15), µ+ is dominant since λ− is in the
antidominant chamber, and (4.7) then gives that Xu = Tu. Thus

[Xλ+ ] = [Xw0u◦ν ] = ε0X
u1ν = ε0Tu1ν = [Tw0u◦ν ] = [Tλ+ ].

(c) The proof depends on the following identities in H, which we refer to as “lifted straightening

laws”. The equality 0 = ε0(t
1
2 + T−1

sk
) is used to establish the “right half of the hexagon lifted

straightening law”: If skw > w then

0 = ε0(t
1
2 + T−1

sk
)(Xskµ +Xµ)(Tw−1)−1 = ε0(Xskµ +Xµ)(t

1
2 + T−1

sk
)T−1
w−1

= ε0(XskµT−1
(skw)−1 + t

1
2XskµT−1

w−1 +XµT−1
(skw)−1 + t

1
2XµT−1

w−1). (R)

The equality
0 = TskX

skµ −Xskµ+αkT−1
sk

+ TskX
µ−αk −XµT−1

sk
, (4.17)

is proved by the computation

TskX
skµ −Xskµ+αkT−1

sk
+ TskX

µ−αk −XµT−1
sk

= TskX
skµ −Xskµ+αk(Tsk − (t

1
2 − t−

1
2 )) + TskX

µ−αk −Xµ(Tsk − (t
1
2 − t−

1
2 ))

= (t
1
2 − t−

1
2 )
Xskµ −Xµ

1−X−αk
+Xskµ+αk(t

1
2 − t−

1
2 ) + (t

1
2 − t−

1
2 )
Xµ−αk −Xskµ+αk

1−X−αk
+Xµ(t

1
2 − t−

1
2 )

=
(t

1
2 − t−

1
2 )

1−X−αk
(
Xskµ −Xµ + (1−X−αk)Xµ +Xµ−αk −Xskµ+αk + (1−X−αk)Xskµ+αk

)
= 0.

The identity (4.17) is the source of the “left half of the hexagon lifted straightening law”: If
skw > w then

0 = ε0(TskX
skµ −Xskµ+αkT−1

sk
+ TskX

µ−αk −XµT−1
sk

)T−1
w−1

= ε0(−t−
1
2XskµT−1

w−1 −Xskµ+αkT−1
(skw)−1 − t−

1
2Xµ−αkT−1

w−1 −XµT−1
(skw)−1). (L)

Case 1R: 0 ≤ 〈`(−w0µ), α∨i 〉 − ` < 〈`(−w0µ), α∨i 〉 ≤ 〈λ+ ρ, α∨i 〉 < 〈`(−w0µ), α∨i 〉+ `.
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First assume that 〈`(−w0µ), α∨i 〉 − ` < 〈`(−w0µ), α∨i 〉 < 〈λ + ρ, α∨i 〉 < 〈`(−w0µ), α∨i 〉 + `.
Then (see the upper picture for Case 1R)

[Xsi◦λ] = ε0X
skµT−1

(skw)−11ν , [Xλ] = ε0X
µT−1

w−11ν ,

[Xsi◦λ(1) ] = ε0X
skµT−1

w−11ν , [Xλ(1) ] = ε0X
µT−1

(skw)−11ν .

Since
〈w ◦ ν + ρ, α∨k 〉 = 〈w0w ◦ ν + ρ, α∨i 〉 = 〈(λ− `(−w0µ)) + ρ, α∨i 〉 > 0

then skw > w and so equation (R) gives

0 = ε0(XskµT−1
(skw)−1 + t

1
2XskµT−1

w−1 +XµT−1
(skw)−1 + t

1
2XµT−1

w−1)1ν

= [Xsi◦λ] + t
1
2 [Xsi◦λ(1) ] + [Xλ(1) ] + t

1
2 [Xλ]. (1Rreg)

In the limiting case 〈`(−w0µ), α∨i 〉 − ` < 〈`(−w0µ), α∨i 〉 = 〈λ + ρ, α∨i 〉 < 〈`(−w0µ), α∨i 〉 + `,
then (see the lower picture for Case 1R)

[Xsi◦λ] = ε0X
skµT−1

w−11ν , and [Xλ] = ε0X
µT−1

w−11ν (cen)

Since
〈w ◦ ν + ρ, α∨k 〉 = 〈w0w ◦ ν + ρ, α∨i 〉 = 〈(λ− `(−w0µ)) + ρ, α∨i 〉 = 0

then sk ∈Ww◦ν and w−1skw ∈Wν . Let

sj = w−1skw ∈Wν and x = skw = wsj ,

so that skx > x and xsj > x and

XµT−1
(skw)−1T

−1
sj = XµT−1

w−1 and XskµT−1
(skw)−1T

−1
sj = XskµT−1

w−1 .

Since skx > x then equation (R) gives

0 = ε0(XskµT−1
(skx)−1 + t

1
2XskµT−1

x−1 +XµT−1
(skx)−1 + t

1
2XµT−1

x−1)1ν

= ε0(XskµT−1
(skx)−1 + tXskµT−1

x−1T
−1
sj +XµT−1

(skx)−1 + tXµT−1
x−1T

−1
sj )1ν

= ε0(XskµT−1
(skx)−1 + tXskµT−1

(xsj)−1 +XµT−1
(skx)−1 + tXµT−1

(xsj)−1)1ν

= ε0(XskµT−1
w−1 + tXskµT−1

w−1 +XµT−1
w−1 + tXµT−1

w−1)1ν

= (1 + t)([Xsi◦λ] + [Xλ]). (1Rsing)

Case 1L: 0 ≤ 〈`(−w0µ), α∨i 〉 − ` ≤ 〈λ+ ρ, α∨i 〉 < 〈`(−w0µ), α∨i 〉 < 〈`(−w0µ), α∨i 〉+ `.
First assume that 〈`(−w0µ), α∨i 〉 − ` < 〈λ + ρ, α∨i 〉 < 〈`(−w0µ), α∨i 〉 < 〈`(−w0µ), α∨i 〉 + `.

With x = skw, (see the upper picture for Case 1L)

[Xsi◦λ(1) ] = ε0X
skµ+αkT−1

(skx)−11ν , [Xλ(1) ] = ε0X
µ−αkT−1

x−11ν ,

[Xsi◦λ] = ε0X
skµT−1

x−11ν , [Xλ] = ε0X
µT−1

(skx)−11ν .

Since
〈w ◦ ν + ρ, α∨k 〉 = 〈w0w ◦ ν + ρ, α∨i 〉 = 〈(λ− `(−w0µ)) + ρ, α∨i 〉 < 0
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then skw < w and so x < skx. Then equation (L) gives

0 = ε0(−t−
1
2XskµT−1

x−1 −Xskµ+αkT−1
(skx)−1 − t−

1
2Xµ−αkT−1

x−1 −XµT−1
(skx)−1)1ν

= −t−
1
2 ([Xsi◦λ] + t

1
2 [Xsi◦λ(1) ] + [Xλ(1) ] + t

1
2 [Xλ]). (1Lreg)

In the limiting case 〈`(−w0γ), α∨i 〉 − ` = 〈λ + ρ, α∨i 〉 < 〈`(−w0γ), α∨i 〉 < 〈`(−w0γ), α∨i 〉 + `
with

γ = µ+ αk, (bdy)

then (see the lower picture for Case 1L)

[Xsi◦λ] = ε0X
skµ−αkT−1

w−11ν = ε0X
skγT−1

w−11ν and

[Xλ] = ε0X
µT−1

w−11ν = ε0X
γ−αkT−1

w−11ν .

Since
〈w ◦ ν + ρ, α∨k 〉 = 〈w0w ◦ ν + ρ, α∨i 〉 = 〈(λ− `(−w0µ)) + ρ, α∨i 〉 > 0

then skw > w. Since

〈w ◦ ν + ρ, α∨k 〉 − ` = 〈w0w ◦ ν + ρ, α∨i 〉 − ` = 〈(λ− `(−w0µ)) + ρ, α∨i 〉 − ` = 0

then s−αk+δ ∈Ww◦ν and s0 = ws−αk+δw
−1 = sw(−αk+δ) ∈Wν . Then

Xskγ+αkT−1
(skw)−1 = XskγT−1

w−1Ts0 and XγT−1
(skw)−1 = Xγ−αkT−1

w−1Ts0 .

and equation (L) gives

0 = ε0(−t−
1
2XskγT−1

w−1 −Xskγ+αkT−1
(skw)−1 − t−

1
2Xγ−αkT−1

w−1 −XγT−1
(skw)−1)1ν

= ε0(−t−
1
2XskγT−1

w−1 −XskγT−1
w−1Ts0 − t−

1
2Xγ−αkT−1

w−1 −Xγ−αkT−1
w−1Ts0)1ν

= ε0(−t−
1
2XskγT−1

w−1 − t
1
2XskγT−1

w−1 − t−
1
2Xγ−αkT−1

w−1 − t
1
2Xγ−αkT−1

w−1)1ν

= −(t−
1
2 + t

1
2 )([Xsi◦λ] + [Xλ]). (1Lsing)

Case 2R: 0 = 〈`(−w0µ), α∨i 〉 and 0 = 〈`(−w0µ), α∨i 〉 ≤ 〈λ+ρ, α∨i 〉 < ` = 〈`(−w0µ), α∨i 〉+ `. This
case is really a special case of Case 1R, with

skµ = µ, since 0 = 〈`(−w0µ), α∨i 〉 = `〈−µ, α∨k 〉.

In the case that 0 < 〈λ+ ρ, α∨i 〉 < ` then (see the top picture in Case 2R)

[Xsi◦λ] = ε0X
µT−1

(skw)−11ν and [Xλ] = ε0X
µTw−11ν

and (1Rreg) becomes

0 = ε0(XskµT−1
(skw)−1 + t

1
2XskµT−1

w−1 +XµT−1
(skw)−1 + t

1
2XµT−1

w−1)1ν

= [Xsi◦λ] + t
1
2 [Xλ] + [Xsi◦λ] + t

1
2 [Xλ] = 2(t

1
2 [Xλ] + [Xsi◦λ]). (2Rreg)

For the limiting case where 0 = 〈λ+ ρ, α∨i 〉 < ` (this is analogous to (cen))

[Xλ] = [Xsi◦λ] = ε0X
µT−1

w−11ν .
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and (1Rsing) becomes

0 = ε0(XskµT−1
w−1 + tXskµT−1

w−1 +XµT−1
w−1 + tXµT−1

w−1)1ν = (1 + t)2[Xλ]. (2Rsing)

Case 2L: ` = 〈`(−w0µ), α∨i 〉 and 0 = 〈`(−w0µ), α∨i 〉 − ` < 〈λ+ ρ, αi〉 < 〈`(−w0µ), α∨i 〉 = `. This
case is really a special case of Case 1L, with

skµ = µ− αk, since 1 = 1
` ` = 1

` 〈`(−w0µ), α∨i 〉 = 〈−µ, α∨k 〉.

In the case that 0 < 〈λ+ ρ, α∨i 〉 < ` then (see the bottom picture in Case 2L)

[Xsi◦λ] = ε0X
µ−αkT−1

x−11ν and [Xλ] = ε0X
µT−1

(skx)−11ν .

and (1Lreg) becomes

0 = ε0(−t−
1
2XskµT−1

x−1 −Xskµ+αkT−1
(skx)−1 − t−

1
2Xµ−αkT−1

x−1 −XµT−1
(skx)−1)1ν

= −t−
1
2 [Xsi◦λ]− [Xλ]− t−

1
2 [Xsi◦λ]− [Xλ] = −2t−

1
2 ([Xsi◦λ] + t

1
2 [Xλ]). (2Lreg)

For the limiting case where 0 = 〈λ+ ρ, α∨i 〉 < ` (this is analogous to (bdy))

[Xλ] = [Xsi◦λ] = ε0X
µT−1

(skx)−11ν = ε0X
γ−αkT−1

w−11ν = ε0X
skγT−1

w−1

and (1Lsing) becomes

0 = ε0(−t−
1
2XskγT−1

w−1 − t
1
2XskγT−1

w−1 − t−
1
2Xγ−αkT−1

w−1 − t
1
2Xγ−αkT−1

w−1)1ν

= −(t−
1
2 + t

1
2 )2[Xλ]. (2Lsing)

Together these computations complete the proof of part (c): the third case follows from
(1Rreg) and (1Lreg), the second case from (2Rreg) and (2Lreg), and the first case from (1Rsing)
and (1Lsing), with (2Rsing) and (2Lsing) specifically treating the statement in (a).

Remark 4.5. If λ ∈ `a∗Z − ρ then there is a unique µ ∈ a∗Z such that

λ = `w0µ− ρ = tw0µ ◦ (−ρ) = tw0µw0 ◦ (−ρ) = w0tµ ◦ (−ρ),

so that λ = w0v ◦ ν with ν = −ρ and v = tµ. Since ν = −ρ then 1ν = 10 with Tsi10 = t
1
210 for

i ∈ {1, . . . , n}. Thus,
[Tλ] = ε0Ttµ10 and [Xλ] = ε0X

µ10.

so that the [Xλ], for λ ∈ `a∗Z − ρ, are the elements Aµ studied in [NR, §2]. In this case the
first case of Proposition 4.4(c) is the straightening law and this coincides with the equality
Asiµ = −Aµ proved in [NR, Prop. 2.1].

Remark 4.6. Following the definition of [Xλ] in (4.11),

if λ = w0v ◦ ν then w0 ◦ λ = w0(w0v) ◦ ν = w0(w0vwν) ◦ ν

and we have [Xλ] = ε0X
v1ν and [Xw0◦λ] = ε0X

w0vwν1ν . With Xv = Xtµw then

Xv = Xtµw = Xµ(T−1
w−1) = XµTw = Tw0X

w0µT−1
w0
Tw = Tw0X

w0µT−1
w−1w0

= Tw0X
tw0µ(w0w) = Tw0X

w0v = Tw0X
w0vwνTwν

By the previous computation, Xw0vwν = T−1
w0
XvT−1

wν , so that

[Xw0◦λ] = ε0X
w0vwν1ν = ε0T

−1
w0
XvT−1

wν 1ν = (−t−
1
2 )−`(w0)(t

1
2 )−`(wν)ε0Xv1ν

= (−1)`(w0)(t−
1
2 )−`(w0)+`(wν)ε0Xv1ν = (−1)`(w0)(t−

1
2 )−`(w0)+`(wν)[Xλ].

Hence
[Xλ] = (−1)`(w0)(t−

1
2 )`(w0)−`(wν)[Xw0◦λ]. (4.18)
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4.5 Relating the KL-modules P+
−`−h and F`

In this subsection we tie together our components: the module with bar involution P+
−`−h from

(4.9) which was built from the affine Hecke algebra and the abstract Fock space F` from (1.3).
Because of the way that we arrived at P+

−`−h from representation theory (see (QG) at the end

of Section 3) the isomorphism between P+
−`−h and F` will allow us to prove that the abstract

Fock space F` captures decomposition numbers of Weyl modules for quantum groups at roots
of unity.

Theorem 4.7. Let ≤ be the dominance order on the set (a∗Z)+ of dominant integral weights.

Let P+
−`−h with basis B = {[Xλ] | λ ∈ (a∗Z)+} and bar involution as in (4.10), and

let F` with basis L = {|λ〉 | λ ∈ (a∗Z)+} and bar involution as in (1.4).

Then P+
−`−h is a KL-module and

P+
−`−h −→ F`

[Xλ] 7−→ |λ〉 is a KL-module isomorphism.

Proof. By definition (see (4.9)), P+
−`−h =

⊕
ν∈A−`−h ε0H1ν . By §2.2.4, each summand is a

KL-module and so P+
−`−h is a KL-module.

The Z[t
1
2 , t−

1
2 ]-module F` is generated by |λ〉, λ ∈ a∗Z. By definition, these symbols satisfy

the relations in (1.3). The Z[t
1
2 , t−

1
2 ]-module P+

−`−h is generated by the symbols [Xλ], λ ∈ a∗Z.
By comparison of the relations in (1.3) with those in Proposition 4.4(c), there is a surjective

Z[t
1
2 , t−

1
2 ]-module homomorphism

Φ: F` → P+
−`−h given by Φ(|λ〉) = [Xλ], (4.19)

for λ ∈ a∗Z. This homomorphism respects the bar involution since, by (1.4) and (4.18),

Φ(|λ〉) = Φ((−1)`(w0)(t−
1
2 )`(w0)−Nλ |w0 ◦ λ〉)

= (−1)`(w0)(t−
1
2 )`(w0)−Nλ Φ(|w0 ◦ λ〉)

= (−1)`(w0)(t−
1
2 )`(w0)−Nλ [Xw0◦λ]

= (−1)`(w0)(t−
1
2 )`(w0)−Nλ(−1)`(w0)(t−

1
2 )−`(w0)+`(wν)[Xλ]

= (−1)`(w0)(t−
1
2 )`(w0)−Nλ(−1)`(w0)(t−

1
2 )−`(w0)+`(wν)Φ(|λ〉) = Φ(|λ〉).

If λ ∈ (a∗Z)+ then [Xλ] = [Tλ]. Thus, by Proposition 4.2 (see also Proposition 2.2), the set
{[Xλ] | λ ∈ (a∗Z)+} is a basis of P−`−h. Since the Φ` image of {|λ〉 | λ ∈ (a∗Z)+} is linearly
independent in P−`−h this set must be linearly independent in F` and Φ` is injective. Since F`
is spanned by {|λ〉 | λ ∈ (a∗Z)+} then Φ` is a KL-module isomorphism.

The KL-module F` has

standard basis {|λ〉 | λ ∈ (a∗Z)+} and KL-basis {Cλ | λ ∈ (a∗Z)+}. (4.20)

For µ, λ ∈ (a∗Z)+ define pµλ, dλµ ∈ Z[t
1
2 , t−

1
2 ] by

Cµ = |µ〉+
∑
µ

pµλ|λ〉, and |λ〉 = Cλ +
∑
µ

dλµCµ. (4.21)

The following theorem relates the pµλ to affine KL-polynomials and the dλµ to decomposition
numbers of Weyl modules for the quantum group at an `th root of unity. It is a generalization
of a type GLn statement found, for example, in [Sh, Thm. 6.4].
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Theorem 4.8. Fix ` ∈ Z>0 and let q2 be a primitive `th root of unity in C. Let Uq(g) be the
Drinfeld-Jimbo quantum group corresponding to the weight lattice a∗Z, the Weyl group W0 and
the positive roots R+. Let Lq(µ) be the simple module of highest weight µ for the quantum group
Uq(g) and let

∆q(λ) = ∆q(λ)(0) ⊇ ∆q(λ)(1) ⊇ · · · be the Jantzen filtration

of the Weyl module ∆q(λ) of highest weight λ for Uq(g).
Let W be the affine Weyl group and let λ, µ ∈ (a∗Z)+ and let pµλ and dλµ be as given in

(4.21).

(a) If λ and µ are not in the same W -orbit for the level (−` − h) dot-action of W on a∗Z then
dλµ = 0 and pµλ = 0.

(b) If λ and µ are in the same W -orbit then let ν ∈ A−`−h and x, y ∈W be such that

λ = w0x ◦ ν, µ = w0y ◦ ν, x, y ∈ 0W and w0x,w0y ∈W ν ,

where w0 is the longest element of the Weyl group W0, Wν is the stabilizer of ν under the dot
action of W , W ν is the set of minimal length representatives of cosets in W/Wν and 0W is the
set of minimal length representatives of cosets in W0\W .
Then

pµλ(−1)`(w0x)−`(w0y)P νw0y,w0x(t
1
2 ) and

dλµ =

 ∑
j∈Z≥0

tjdim
(

Hom
( ∆q(λ)(j)

∆q(λ)(j+1)
, Lq(µ)

)) ,

where P νw0y,w0x(t
1
2 ) is the (parabolic singular) Kazhdan-Lusztig polynomial (see (2.30)) for the

affine Hecke algebra H corresponding to W (see (2.12) and (4.3)).

Proof. By definition (see (4.9)), P+
−`−h =

⊕
ν∈A−`−h ε0H1ν . The analysis in §2.2.4 applies to

each of the summands ε0H1ν to give that, for λ, µ ∈ (a∗Z)+,

Φ(|λ〉) = [Xλ] = [Tλ] = ε0Ty1ν and Φ(Cµ) = Cw0x1ν ,

where Φ: F` → P+
−`−h is the KL-module isomorphism from (4.19) and x, y ∈W and ν ∈ A−`−h

are as defined in the statement of (b). In particular, by (2.30), the transition matrix between
these bases is given by

Φ(Cµ) = Cw0x1ν =
∑

w0y≤w0x

y∈0W,w0y∈Wν

(−1)`(w0x)−`(w0y)P νw0y,w0x(t
1
2 )ε0Ty1ν

=
∑

w0y≤w0x

y∈0W,y∈Wν

(−1)`(w0x)−`(w0y)P νw0y,w0x(t
1
2 )Φ(|λ〉),

and, since Φ is an isomorphism, this establishes the formula for pµλ. The formula for dλµ is then
a consequence of the isomorphism of (QG) given at the end of Section 3.
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Case 1R: 0 ≤ 〈`(−w0µ), α∨i 〉 − ` < 〈`(−w0µ), α∨i 〉 < 〈λ+ ρ, α∨i 〉 < 〈`(−w0µ), α∨i 〉+ ` and

0 < 〈`(−w0µ), α∨i 〉 − ` < 〈`(−w0µ), α∨i 〉 = 〈λ+ ρ, α∨i 〉 < 〈`(−w0µ), α∨i 〉+ `.
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Case 1L: 0 < 〈`(−w0µ), α∨i 〉 − ` < 〈λ+ ρ, α∨i 〉 < 〈`(−w0µ), α∨i 〉 < 〈`(−w0µ), α∨i 〉+ ` and

0 < 〈`(−w0µ), α∨i 〉 − ` = 〈λ+ ρ, α∨i 〉 < 〈`(−w0µ), α∨i 〉 < 〈`(−w0µ), α∨i 〉+ `.
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Case 2R: 0 = 〈`(−w0µ) + ρ, α∨i 〉 < 〈λ+ ρ, α∨i 〉 < ` = 〈`(−w0µ) + ρ, α∨i 〉+ ` and

Case 2L: 0 = 〈`(−w0µ) + ρ, α∨i 〉 − ` < 〈λ+ ρ, α∨i 〉 < ` = 〈`(w0µ) + ρ, α∨i 〉
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