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Abstract
Abstract.

1 Deformations

A Lie bialgebra is a pair (g,0), where g is a Lie algebra and § : ¢ — g ® g is a linear map, such
that

(@) f@1+1@z,6(y)] - [y®1+1@y,d(@)] =0, for all 2,y € g,

(b) 6*: g* ® g* — g* is a Lie bracket.
Alternatively, a Lie bialgebra is a pair (g, ¢) where g is a Lie algebra, ¢: g — A%g is a 1-cocycle
so that (g, ¢) is a Lie coalgebra.

A Manin triple is a Lie algebra p with an invariant scalar product (,): p ® p — p and a
decomposition p = p; @ po such that p; and po are isotropic. If (p, p1,p2) is a Manin triple define

p:p1— A%pr by p(x) =777

Then the map
{Manin triples} «— {Lie bialgebras}
(9 g",9.07) - (9,0)
(p, p1,Pp2) — (p1,¢)
is a bijection.
Let (g,0) be a Lie bialgebra. A deformation of the universal enveloping algebra U(g) is a
Hopf algebra U over C[[h]], such that U = U(g)[[h]] as a C[[h]]— module with the following
properties:
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(a) U/hUU ~ U(g) as Hopf algebras, and
Aa) — A°P
(b) (a)hm) mod h = d(amodh), fora€U.
1.1 Existence of deformations
1.2 Equivalence of deformations and the trivial deformation

1.3 Obstructions

2 The Lie algebra g|u]

Let g be a finite dimensional complex semisimple Lie algebra. Let (,) be an ad-invariant bilinear
form on g, and let {z;} be an orthonormal basis of g with respect to this form. The Casimir
element of g is the element of g ® g given by

t:Z:vl-@)xi, nggxg.
i

The graded Lie algebra of polynomials in uw with coefficients in g is
glu] = g ® Clu| = @ gu’, with [zul, yu!] = [z, y]u™7,  and  deg(azu®) =k,
iGZzo

defining the bracket and grading on glu]. Then g[u| is a graded Lie bialgebra with cobracket
defined by the map

5:glu] — alu) @ glu] = (@@ @)uv] given by (p(w) = |p(u) © 1+ 12 p(0), ——|

for any p(u) € glu]. The map 9§ is well defined since [z @1+ 1®x,t] =0 for x € g. If x € g then

_ , - 1 A ,
d(zu') = [z @1+ 1@z, = ([t 1 tu' +[1®z,tjv")
u—v u—v

ut — vt

= L (moLi e L) =l =[z@ 1, + .. 4oL,

uU—v uU—v
The last expression is a polynomial in v and v. In particular,
d(zu) = [z @ 1,1 and deg(d) = —1.

The classical r-matriz is

so that d(p(w)) = |p(u) ® 1+ 1® p(v), !

u—v u—"v

r(u,v) =
Since r satisfies the “triangle” or classical Yang-Baxter relation (CYBE),
but since r is not really an element of glu]|®g[u] = g[u, v], the pair (g[u], r) is “pseudotriangular”.
If

— gl : _ t _ N T |
pu) — plut ) oen m®ld)(r)_u+/\—u_k;z>ot( )A

is a power series in A™! with coefficients in g[u] ® g[u].



3 Definition of the Yangian

We will give five definitions of the Yangian:

(
(

a) As a deformation of Ug where g = afu],

b) By a presentation with generators a and au,
(
(d

)
)
¢) By a presentation in loop form,
) RTT presentation,

)

(e) By degeneration from U,g.

The Yangian Yy(g) is a graded Hopf algebra deformation of the graded Lie bialgebra g[u]
with
deg(h) =1 and generators x and J(z), forz € g,

which have classical limits « and xu, respectively. The formulas
h
Alz)=z1+1®x and A(J(m)):J($)®1+1®J($)+§[$®1,t]

are forced by the degree condition and

AU() - A®(U()  Brel-lewt] heold )
z S - = z = [z ® 1,t] = §(zu).

Then
[‘Tay]h = [‘Ta y]

is forced by the degree condition. It seems that we could have
[z, J(Y)]n = J([z,y]) + hz, for some z € g.

Is there a reason why z = 077
Note that the maps

i Yu(g) — Yi(g)
xr x .
J(z) — A(z) for A € C*,
h — Ah

are Hopf algebra isomorphisms (essentially because Y3 (g) is a graded Hopf algebra). Hence
Ya(g) = YEJ(g)a for any a, b7 € Cc*.

We have Yo(g) = U(glu]) # Yi(g)-



4 The automorphisms 7,
The automorphisms 7y, A € C, of g[u| given by

™o — gy
zuf s z(u+ N)F, for x € g,

have analogues for Y (g). For each A € C the map

™ Y(e) —  Y(e)
r T
J(x) — J(z)+ Az, for z € g,

is a Hopf algebra automorphism,
A(1x(a)) = (1A @ T2)(A(a)), for a € Y(g).
Then

T T
r\ r\
Ta(Hiy) = <S>ar *Hie and (X)) =) <S>ar *X,

in Y(g).

5 The evaluation homomorphisms ev): Y (sl,) — Usl,
By the Jacobi identity, the map

gRg — g

, is a g-module homomorphism.
z@y — [r,9]

If g = sl, then there is a another copy of g in g® g. Let m: g ® g — g be the projection onto

this other copy and define
evy: Y(sl,) — Usl,
o L for A € C.
J(x) +— ax+- Z T(x ® ;)T
4 - ’

These are algebra homomorphisms but not Hopf algebra homomorphisms.
The evaluation map is given by

[SAY Uh(L(S[Q)) — Uh(ﬁfg)

(')" — f+

& — -
ii— N qflaflehn‘SJr

51— N q—la—lg—elm

a8 —s  qae " xit

£ —  qaf e ™

On the representation (ev,) * (L(mwy))
vy =[m —i+1v;1 and E v = [i + 1vit1,



and so

£ =[m—i+1vi & vi = [i + 1viya,
&l vi = ¢ 2 m — i + vi-1(qa) 7, v = (qa) " g™ i
zit v = (qa)g "2 m — i+ v, £ v = (qa)g~ " v,

On the representation (ev,)*(L(mw1)) the algebra Y (sly) acts as

m—2i—1\" 4
mﬁvi: a—l—f (m—z—l)vi_l.

6 The R matrix

Theorem 6.1. There is a unique formal power series

RN =14+ Y ReA™,  with Ry €Y(g)®Y(g),
k€Z>0

such that
(A®id)(R(N) = RBNR®(N)  and (1\ ®id)A%(a) = RO ((1y @ id)A(a))R(N) 7,
foraeY(g).
Conceptually,
R(\) = (1, ®id)(R), for some R such that A°P(a) = RA(a)R ™,
(A ®id)(R) = R¥BR?, (id® A)(R) = R¥PR2, and RPZR* =1
Facts about R(\):
(a) RZ(A1 — A2)RB(A — A3)RB (g — A3) = RB (g — A3)RB(A — A3)R1Z(A\1 — Na),
(
(€) (u®@7)(RA) =R(A+p—v),

)
b) RENR(=N) =1,
)
(d) R

(e) mMR(A) = A1t + A2 (ZJ(xi)mi—xi@J(xi)) +

Proof. (c) Let
Ayy=(ma®@T1u)A and A(;\},)u = (1) ® 7,,) A°P.

Then the second defining relation for R(\) can be written?
Ay (@) RN —p) =R - M)A(;\f)u(a).
Then R(A) is characterized by the conditions

R(A)Axo(a) = AFR(A)  and  (A@IDR(A) = RPARP(N).



Then, since 7, is an automorphism of Y (g),

(70 @ 7)) (R(A) At (@) = Aiiu u( )(Tu @ 7)) (R(A)).
So
(70 @ 7)) (R(A) Axo(7u(a)) = A (Tu(@) (7 ® 7) (R(A))-
So
(Tu @ 7u) (R(A) A 0(b) = AT () (72 @ 1) (R(A)),
for all b € Y(g). Furthermore,
(A®id)((7, ® 7,)(R(A) = (7 ® 7, @ 7,) (A ® id)(R(A))
= (1 @ 7 ® 1) (RP(NR¥ (V)
= (Tu® Tu)(R(/\)) (Tu ®7u)(R(A)) .
So
(7 @ Tu) (R(A)) = R(A).
Then
(7 @ 7)) (R(A) Axtpw(a) = (70 @ ) (R(A)Axo(a)
= (1, ® 1) (AT, (@) R(N))
= A())\I—)F,u (@) (T @ 7,)(R(A))
and
(A@id)(1, @ T)R(A) = (Tu © 7 @ ) (A @ 1d)R(A)
= (7 ® 7 @ 1) (RP(NR¥ (V)
= (7. ® 1) (R(N) (1, @ 1) (R(A))*?

and so
(Tu @ )R(A) = RA+p—v).

RZ(A1 — M)RB(A1 — A)R*P (A2 — A3)
=RZ(A1 = X2) (7, ® Ty, ®id)(RP(—=A3)R?(—A3))
=R2Z(\1 — M) (1y, @ Ty, ®1d)(A ®id)(R(—\3))
=RYZ(AM — X2)(Ax, , ®1d)(R(—A3))

= (A, ®1d)(R(=A3)) R (A1 — A2)
= (1), ® T, ®1d)(AP @ id)(R(=A3))RZ (A1 — X2)
= (Ta, ® T, @A) (R (=A3) R (=A3))RZ (A1 — \2)
=RB N — A)RB(A — A3))RZ(\ — \o)

Ay o(@RZANRH (=2) = RZ(NAT ()R (—X)
= RZ(N)(1a @ ™) A\ (a)R* (=)
= RPN (12 ® 1) (A _x0,(@)R(=))°
= RZA) (1 @ ) (R(=M)AX,  (a))
(\) A)Axo(a)).

) P
)
_R12 A R21(
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So???
RIZNR?H(=N) = 1.

Theorem 6.2. Fiz a finite dimensional irreducible representation
p:Y(g) — Mn(C)  andlet  Ry(A) = (p@p)RN).
Then, up to a scalar factor, R,(\) is the unique solution to the system
Ro(A = )P\ i) = Py (N WRp(A =), forz € g,

where
Pr.m) = (p@p) Ay u(J(2))  and P (\p) = (p@ p)AY,(J(2))

Note that

AL (J(@) = (men)(J(@)@l+1eJ(z) + %[m ®1,t])°P

= (J(@) + Aa) © 14 1® (J@) + pa) + 5l @ 1,
— (@) + M) @1+ 16 (J(x) + ) — é[x@l,t]

Theorem 6.3. 77 Let p: g — End(V) be a representation of g and let

Rw) =1+u"(p@p)t)+ Y u Ry,  Re€End(VaV),
k€Z>1

a solution to the QYBE. Then there is a representation
m: Y (g) — End(V) such that  R(u) = f(u)(m @ 7)(R(u)),

with f(u) a constant. So every solution to the QYBE of the above power series form comes from
a representation of Y (g).

Theorem 6.4. Let p: g — M,(C) be an irreducible representation of g. Let Rﬁ(A) e M,(C)®
M, (C) be a solution of QYBE with the property

R 1
R;(\)=1®1+ X Z:cl ® x; + higher terms in  A.
Then there is a unique extension of p to a representation p: Y (g) — My(C) such that

Ry(\) = fFNR,(N),

where Ry(A) = (p® p)R(A), f(A) € 1+ A7'C[[A]].
p is unique up to the shift by 7,.

Let p : Y(g) — M,(C) be an irreducible nontrivial representation and let R,(\) = (p ®
p)R(A). Define an algebra A, with generators {t |1 <i,j <mn, k€ Z>o} and the relations

Ry(A — u)(T(N) @ id) (id ® T()) = (id ® T(u)(T(N) ® id) Ry(A - p).



Here T'(\) is the matrix with entries
tij()\) = 5ij + Z tg?)/\fk
k

This is a Hopf algebra with the comultiplication

Atij()\) = Z til()‘) ® tlj()‘)
l

Theorem 6.5. a) There is a surjective Hopf algebras homomorphism ¢ : A, — Y (g), given by
T(\) — (p@id)R(N).

b) The kernel of ¢ is spanned by the elements {c1,ca,...} of the center of A, c) The element
cA) =1+ ea™*

is group like: A(c(X) = c¢(A) ® ¢(N)

Ezxample. Let g = sl,, with inner product

(x,y) = tr(zy), for z,y € sl,.

Let
p: Y(sl,) — M,(C)
T — x, for x € sl,,
J(x) — 0, for = € sl,.
Then

ChoCr — CreC™
mae®n — nYm

R,(\) = fAN) (1 +A"to)  where
and f(A\) € 1+ A7IC[[A7Y]] is determined by

JA=1fA=2)---fA=n)=1-A"1
In this case A4, = Y (g!,(C))

7 The algebra Y(gl,)

The matrix
o: VRV — VeV

R(u) = uid + o, where mon — nem

satisfies the QYBE
ng(u)ng(u -+ U)Rgg(v) = RQg(U)ng(u + U)ng (u)

Let
T(u) = (tij(u)) where tij(u) = 6 + Z tl(;?)u—k'
=

We want
Ru—v)(T(u) ®@id)(id® T'(v)) = Id® T))(T(u) ®id)R(u — v).

oo



Define
Y(gl,) — Y(gl,) by 7u(ti(u)=tj(u+v), andlet Ty, =7y ® Tp.

Define a coproduct on Y(gl,,) by

Aty (u Z tin(u) @ tr;(u

Then
R(v — u)(1y,,A%(a)) = (TyvA(a))R(v — u), for all a € Y(gl,,).
Consider the irreducible sly-module CV. Then

N
R(u) =11+ Z (EZJ & Eji)u_l
i =1

is a solution of the QYBE in End(C" ® C") such that the u~! term coincides with the action
of the “Casimir” ¢t = ) x; ® x;, where {x;} is an orthnormal basis of sly. Hence we

define Y (gl ) by  generators Ti(jr), 1<4,5 <N, reZs,
with relations

T =5 and R(u—v)T(x) ®id)(id ® T(v)) = (id ® T(v))(T(u) ® id)R(u — v)

)

where

T(u) = (T;j(w) and Ty(u)= Y T,

kEZZO

Then there is a surjective map

¢:Y(aly) — Y(n) with ker ¢ = Z(Y (gly)) = (ca, €2y .- .),

where
Av(u)=1+cu 't +cu?+-- = Z (=D)(m) Ty (1) (W) Ton(ay(w — 1) - - Tmeny (w — N +1).
TeSN
The evaluation map
ev: Y(y) — Usly
r = extends to ev Y(w) - Usly

J(x) — 0,
and the automorphisms

o Y(sly) —  Y(sly) ™ Y(gly) —  Y(aly)

T — T extend to
J@) — J(@)+az Tjw)  — Tylu+A)
The evaluation map sends
Z(Y(gh)) Z(Y (gly)) Z(Y (gly)
N| al al
Yigh) < Y(k) < S Y(gly)



to
Z(U(gh)) Z(U(gly)) Z(U(‘Q[N)
N

A o
Ulgh) < Ufgly) C C  Ulgly)

Let A be a partition and let U;\“ be a highest weight vector for Ugly of weight A\. Then

+

Ap(u)vy = ev ( > (=D Ty (u) - Ty (w — ke + 1)) vy

TESE
=ev(Th(u) - Tpe(u — k + 1))vf
=1 +Enu) - (14 Egwl(u—k+1)
1
B U S A A

_ ()\1+u)(>\2+u—1)-~
N u(u—l) (u—k+1)

_1)U;\r

-u—k—i—l-i—Ekk)v;'

(Metu—k+1)
Ux

where 7;(\) is the rightmost box in row i of A and ¢;()\) is the leftmost box in row 7 of A
The map ¢: Y(gly) — Y () satisfies

A1 (W Ay (v —1) = H;(u where (u) = e Rl
¢< A =T >_HZ( ), h H;(u) 1+kZZOHz,k ,

and Ap(u) = 1. So
kal utc(r;(N))

k41 utc(ri(N)+1
o “Feeoy iz arewop

=1 “ute(t;(\)
Hk(u) - ko utc(ri(N))+1 k utc(r; (A
Hi 1 % ’ Hi:l u+c(€(l(1)$)))zl
ute(rign (V)41
i) (e (V) + DU+ e(fe(V) — 1)
ute(ri(V) (u+ el 1 (N)) (w + e(ri ()

utc(l (N)—1

and this determines the Drinfeld polynomials of L(\).

The diagram
Y(gly) ®Y(gly) — Y(alyin)

l¢®¢ @
Ugly; @ Ugly —  Uglyan
commutes and
. [ + -~
if L(\u)= (Resﬁ[if*NL()\)) then  L(\) = @L(,u) ® L\ )

K J

as gly; ® gl modules. In this way L(\/u) is an Y (gl )-module.
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8 Presentation of the Yangian
The Yangian Yy(g) is a the graded Hopf algebra over C[[h]] given by generators
z and J(z), x € g,
with
deg(z) =0, deg(J(z)) =1, deg(h) =1,

and the relations
J(az + by) = a(x) + bJ (y), for a,b € C,

[zyl = [z,9], 2 J()] = J (2, 9]),

[J(2), J([y, 2D] + [T (2), J ([, yD)] + [J (9), I ([2, 2])]

=7 2 (e Lol {ly, Dol [2, L)) {Las 15, I}

[ (), J((W)], [z, J ()] + [/ (2), J ()] [z, T (y)]]

2
= ST e 1), [ I, [ ], 1)) U D5, T (1)1
a,B,y

where

1
{z1, 22,23} = 6 Z Zr(1)*m(2)#m(3)-

TESs

The Hopf algebra structure is given by

A)=z@1+1o,

AJ(z)=J(z)@1+1® J(x) + g[l‘@) 1,],
e(x) =¢e(J(x)) =0.

S@)= -z, S(U(@)=-J@)+ e,

where c is the eigenvalue of the Casimir element ¢ in the adjoint representation of g. This is a
deformation of g[u] where the classical limit of z is = and the classical limit of J(z) is xu. Note
that

1
A%(J(x)—J(x)@1+1® J(z) — ih[:n ® 1,t].
The relations can also be written in the form
Z[ai,bi] =0 implies Z[J(ai), J(b;)] =777

and

Z[[ai,bi],ci}:() implies Z[[J(ai),J(bi)],J(ci)] =777

If g = sly the the first of these is unneeded and if g # sly then the second of these is unneeded.
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9 Loop presentation of the Yangian

There is another presentation of Y'(g) by
generators Xz-ir and H;,, forl<i<n,reZs>,
with
deg(Xfr) =deg(H;,) =,
and such that the classical limit of Xij; is Xiiur, and the classical limit of H;, is H;u". The
relations are

[Hip, Hisl =0,  [Hio, X3, = +2(0s, a)) X5 (X7 X5 = 0ijHips,

7,87 1,17 ],s]

(Hirt1, st] — [H;p, X

+ +
j,s+1] = :|:h<04;/, a}/><Hi77‘Xj,s + XLSHZ"T),

+ + + + + yv=* + v+
[X Xj,s] - [X X; ] = :l:h<Oé;/, a}/><Xi,7'Xj,s + Xj,in,r)7

i,r+17 4, “Tg,5+1
and, if i # j and m = 1 — (o, o) and 71,..., 7, € Z>g then
+ + + + _
Z [Xi,Tﬂ.u)’ I:Xivrﬂ(Q)’ [ T I:Xi77n7r(7n) ’ vas] o ] - 0
TESm

The relations imply that

1 1 2
XE ., = o [Hi, X5 - -

ir+l T T 2 (0, o) (HioX7, + XipHio)  and Higer = [X40, Xl

3,r4+17

Remark. Perhaps formulas for A(X fr) and A(H;,) are not known.

The relation between the two presentations is given by

Qi,Q + _ v+
Hi = ( 2 >Hi,0a XZ _XLO?

{0, ) 2H; \* 1 WX+ Y- o Y- X+
J(H;) = Hij — way) T > i B (XFX; +X5X5) ]
T BeR*

1 2
XH =x*t =
J( 7 ) 7,1 4 <aiaai>

1
(XFH; + H;XF) + i >

BERT

B3 ([Xfxg]xg + X;,F[Xii, Xf;]).

10 Definition of the affine quantum group
11 Presentation of the affine quantum group
12 Loop presentation of the affine quantum group

13 Spectral algebras

Let A be a Hopf algebra with an invertible element
ReA® A such that RA(a)R™! = A°P(a),

12



foralla € A. Let R=>a; ® a’. If M and N are A-modules, define the operator

Ryn: M®N — N@M
men +— Y.adn®am

where R = Zai ® a’,

is an A-module isomorphism since

Ras(a(m © ) = Fary (A(a)(m & n)) = oRA(a) (m 1)
= 0A%(a)oo ' R(m @n) = Ala)Ryrn(m @ n) (13.1)
The pair (A, R) is a quasitriangular Hopf algebra if
(A®id)(R) =R¥R*® and (id® A)(R) = RPBR™.
These relations say that if M, N and P are A-modules then
Ryenp = (Ryp®id)(id® Ryp)  and Ry nep = (id® Ryp)(Ryy ®id),

as operators on M @ N ® P.
Then
Co={pe A" | plry) = p(yx)} is a commutative algebra,

since, if £1,¢5 € Cy and a € A then
(boy)(a) = (1 ® £2)A°P(a) = ({1 ® L2)RA(a)R ™!
= (lh @ L2)A(a)R™IR = (1 ®@ €a)A(a) = (£142)(a),
where the third equality uses the definition of Cjy.

If (A, R) is a quasitriangular Hopf algebra then R satisfies the quantum Yang-Bazter equation
(QYBE),

RUZRBR? = RZ2(A ®id)(R) = (A ® id)(R)R'? = RPRIBRI. (13.2)
Since
R=(e®id®id)(A®id)(R) = (¢t ®id® id)RPR* = (¢ ®id)(R) - R, and
R=>1d®id®e)(id®A)(R) = (i[d®id ® e)RPR* = (id®¢)(R) - R,
and so

(e®id)(R)=1 and (dd®e)(R)=1. (13.3)
Then, since
R(S®id)(R) = (m®id)(id@S®id)(RP*R*) = (m®id)(id® S®id)(A®id)(R) = (¢®id)(R) = 1,

it follows that
(S®id)(R) =R % (13.4)

Applying this to the pair (AP, R?!) gives (S7! ®id)(R?*') = (R?!)°P, and so
(ido S H(R)=R"" (13.5)
Then
(S®S)(R)=(ild® S)(S®id)(R) = ([d® S)(R™!) = ([d® S)(id® ST'(R)=R.  (13.6)

The map ¢: C — Z(A) in the following proposition is an analogue of the Harish-Chandra
homomorphism.

13



Proposition 13.1. Let (A, R) be a quasitriangular Hopf algebra. Then
C={\e A" | Mzy) = M\yS*(z))} is a commutative algebra

and the map
¢p: C — Z(A)
¢ — (id®0)(RaR)

18 a well defined algebra homomorphism.

Proof. 1f £1,05 € A* and a € A then

(fal1)(a) = A%(a) = (01 ® &) (RA(@)R™)

A(a)R™ 1(52 ® 5?)(R)), by definition of C,

and hence C' is a commutative algebra.
Let a € A. First note that

a®1=(id®e)A) = (id @ m)(id ® ! @ id)(id ©@ A®)A(a)
= am)y® 5 Hag)ae = > (105 o)) aqr) @ agz)

=Y (105 (am)Aa),

since S~! is the antipode of A°, and
a®1l=>G1d®e)A(a) = (id ®@m)(id®id® S)(id ® A)A(a)
= Za ® a@)S(ag) = > (aan ® aqzy)(1 @ S(aw))

a

—ZA )(1® S(ag))).

Then, since
R*RA(a) = RMAP(a)R = A(a)RHR,

R?'R) = (id ® £)((a ® )R R'?)

d (e S_l(a(z)))A(a(l))R21R>

ap(f) = a(id ® ¢)

—

= (id® 0

a

=(id® /) Z A(a(l))R21R(1 ® S(a(g))> , by definition of C,

a

= (id® )

N N/ N

RQlRZA (1L ® S(a ()))>

= (([dRHR*"R(a®1) = (id® £)(R*'R)a = ¢({)a,

14



and so ¢(¢) € Z(A). Since
P(L14) = (Id ® £1£2)(R*'R) = (id ® £1 @ £o)((id ® A)(R?*'R))
(id @ 6 @ L)(RFRIRPR) = (id @ 01)(R* (4(f2) @ )R'?)
= (id @ () (R¥R(¢(f2) @ 1)), since ¢(f2) € Z(A),
= ¢(l1)9(£2),

and so ¢ is a homomorphism. O

14 RTT realizations

Let A be a Hopf algebra with an invertible element

R = Z a, @b, €ARA such that RA(a)R™ = A°(a),

for a € A. The dual A* of A is a Hopf algebra. Fix a positive integer n and an index set T. Let
{0+ A= M,(C) | xeT}
be a set of representations of A. Their matrix entries
pU A — C are elements of A*.

On the pf‘j, the coproduct A: A* — A* ® A* has values

n

pz] Z Pik @ Iok]? since pf\] (U1UQ) = Z pz)\k(ul)pég (u2)7
k=1

for ui,us € A. Let
RO p)=(p*@p")(R) and  T(A) = (o),
so that T'(\) is a matrix in M, (A*). Then
T\ @id =Y, 5 135(Eij @ Egg), id®@T (1) =32 i 1 tre(Bii @ Ege), and
1) = Z P25 (ar) pliy(br) (Eij @ Eg).
1,5,k ,¢

Since

RO ) (TN @id)(id @ T(n) = Y pi (a0, (be)th, (Bij @ Bre),  and

1]k€

(id ® T(w)(T(\) ® id)R Z th st o (as) pls(bs),

1,7,k€
a,B

the equation

R w)(TA) ®@id)(id @ T(p)) = (id © T(u))(T(A) @ id)R(A, p)

15



is a concise way of encoding the relations

(Z pi(ar)ple, (br pmpye> (a) = Z pi(ar) e, (br) P (a1 Pl (ag))

- Zplj CLT pkf(b a(2))
= (pj ® pl)(RA(a)) = (pij ® ple) (AP (a)R)
= szg 2)0s Pu(a(l)b )

= me a(2)) P (as)plig(acy) ol (bs)
7/8

D Phgpiara, (as)ols(bs) | (a)
I

which are satisfied by the pf‘j in A*.
Let B be the Hopf algebra given by

generators t?j ,
and relations

RO u)(T(N) @id)(id @ T(p)) = (d @ T(u))(T(A) @ id)R(A, p)
with comultiplication given by

n
A A
=D i@ty
k=1

The the map
B — A*
A pf‘j

is a Hopf algebra homomorphism.
We really want a map B — A, not B — A*. But it is "easy” to make maps A* — A. For
example, one can construct a map A* — A by

I — (id®1)(R) or — (id®1)(Ry') or I — (id®1)(RaR).
In the case of Yangian or U,(g), the composition ® : B — A* — A is surjective and ker ® is
generated by the elments of the center of B.
15 Finite dimensional representations
Let M be a Y (g)-module. Let
wir € C, 1<i<n, r€Z>p.
The p-weight space of M is

M,={meM | Hi,m=pi,m,for 1 <i<n,reZs}.

16



A highest weight vector is a weight vector v™ € M such that

Xtov=0, 1<i<n, 7r€Z>p.

1,7
The Verma module M (p) is the Y (g)-module generated by v} with relations

+— ot + ot
Hz-,rvﬂ = iUy and Xi’rvu =0,

for 1 <i <mn, r € Z>g. Define
L(p) to be the unique simple quotient of M ().

I DON'T LIKE THIS SETUP. THIS SHOULD BEGIN WITH A TRIANGULAR DECOMPO-
SITION OF Y (g).

Theorem 15.1. The simple module L(u) is finite dimensional if and only if there are monic
polynomials Py, ..., P, € Clu] such that

P; d; _ .
(]ii(z)):l—i- Z i (r+1), for1<i<n.

TEZZO

Proof. The module Resgég)L(u) has a Ug submodule generated by v+ and this is isomorphic to
Lg(ﬂ)aand
(X ) ottyt =0, for1<i<n.

2,0

So we want

Pi(u) = Z pisu’, with pi» € Y(g),

TEZZO
such that
Pi(u+d;) = Pi(u) | 1+ Z Hiu "1
TEZZO
Solving for Pj(u) is an Y (slz) computation. O

Theorem 15.2. For the affine quantum group with
+ot £+ _ gk
va =0 and <I>Z-7Tfu = (bmv .

the simple module L(¢) is finite dimensional if and only if there are monic polynomials Py, ..., P, €
C[z] with nonzero constant term such that

q‘.ieg(Pi)L(qi_QZ) =N oL = oA, forl<i<n
g P,J(z) 2,7 [ e - ¥ =

TEZZO TEZZO

17



16 The case sls

Let {z*,h} be a basis of sl with

[h,2%] = £227%, [z, 27] = h.
Then Y (slz) has
generators xf, h, for k € Z>o,
with relations
[hk, hg] =0, [hg, xf] = :l:2l‘,f, [ch, xZ] = hk+g,
i1, 2] — [ 2] = (i + a7 hy)
[a:fﬂ, :Uzt] — [mf, mal] = i(:vfmgi + acgimf)

Let

2t (u) =0+ Z xfu_k_l, and h(u) =1+ Z huF L,

kJEZZo kEZZO

Then the relations become

[h(u), h(v) =0,

(0, 2 (0)] = W= PO)

[z~ (u), 2~ (v)] = _(;{“13 - w*(v)){
[+ (), 2 ()] = @*(“):Z(v)){
[A(u), 2™ (v)] = [h(u)’;(;)v_ z~(v)]+
(), 2+ (v)] = WWEJ% ()

where [a, b]+ = ab + ba.
The connection between the presentations is that

h = hy, zt :IL‘Oi,

J(h) =hy + %(xarxo_ + xo_xar — hg), J(xi) = xiﬁ — i(xacho + hoxa—L)

For A € C the maps
™ Y(sly) —  Y(slp)
x — x

J(x) +— J(x)+ Az

are Hopf algebra automorphisms of Y (slz) and the map

ev: Y(slo) — Y(sly)
r — oz

J(x) +— 0

is an algebra homomorphism but not a Hopf algebra homomorphism.

18



Let L(m) be the irreducible slp-module with basis {ey, ..., e} and sly action
xre; = (i +1)ey, x e, =(m—i+1)ej_1, he; = (2i —m)e,;.
Then (ev7,)*(L(m)) has Y (slz) action given by
J(z)e; = a(i + e, J(x7)e; =alm—i+1)e;i_q, J(h)e; = a(2i — m)e;,

and
+ 1 T
mkei:(a—§m+z—§) (1 + 1eit,
1 1
r e = (a— §m+i— i)k(m —i+1)ejt,
1 1, , 1 1, .
hie; = (a—§m+Z—§) Z(m—z+1)—(a—§m+z+§) i(m—1) ) e,

Then 2} em = 0 and hgem = m(a + (m — 1)/2)ke,,, for k € Z>(. Then

Plu+1 ~1\*
W+)21+Zm<a+m2> -

P(u) kEZ>g
=1+m m a+(m_1)/2>ku_k
k;zzo < u
:1+mu1< 1 >
I1—(a+(m—1)/2)u"!
14 m :u—a—%+%+m
u—a—(m—1)/2 u—a—"2+3
u—a—mT_l—i—m u—a—mT_l—l—m—l u—a—mT_1+1
:u—a—mTfl+m—1.u—a—mTfl+m—2“. u—a—mTfl
and m—1 m—3 m—1
P(u):(u—a—T)(u—a—T)---(u—a—i—T).

For the quantum group

tovi = ¢ 2y oy = 72 2 ey = [m— s+ 1uily, g = [i 4 o,

and
P(z) = (z — a—lq—(r—l))(z o a—lq—(r—3)) .. (Z _ a_lq(r_l))_

17 Schur-Weyl duality

The graded Hecke algebra produces the Schur- Weyl duality for Y (sly).

Definition. The graded Hecke algebra of type GL(C) is the algebra Hj, generated by the
group algebra CSj of the symmetric group Sy and the elements yy, ...,y with the following
relations:

OYi = Yo(i)0s o € S,

o) = 3 32 (Godir) = Gisr))

TF]
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The algebra Hj, has the grading:

deg(y;) =1, deg(o) =0.
Define
1 F
Ui =Y~ 5 z;sgn(i — 7)si5,
J:

where s;; is the transposition in Sy which switches 7 and j. Then for s; = (¢,7 4 1)

[ui, uj] =0, (17.1)
UiS; = Sitivr1 + 1, (17.2)
Uit18; = Siu; — 1, (17.3)
UjS; = SiUyj, if j#4,i4+1, (17.4)

So Cluy,...,u;] € Hg, and there is an isomorphism of vector spaces
H,=C5.® (C[ul, e uk]
But this is not an isomorphism of algebras: u;’s and s;” s do not commute.

Proof. Proof that the u; generators and relations determine the others. O

Remark. Some history

Definition. (must be checked!) The affine Hecke algebra of type G Ly (C) is the algebra Hy, gen-

erated by the Laurent polynomials C[miﬁl, . ,xkﬂ] and elements T1, ..., T,_1 with the following

relations:
T2 =(p-1)Ti+p
LT Ty = T T,
LT =157, if [i—j| > 1,
Ty = Tizip1 — (p — V)i,
i1 Ty = Tiwy + (p — V)aip
x;T; = Ty, if j#4,i+1

(17.5)

Remark. Some history

Let z; =1 — (p — 1)U;, 8; = Tj|p=1. Then the fourth equation in () becomes
(1= (= WUYT: = T(1 = (p— DUis1) — (p— 1)(1 = (p— DVis1).
Subtract T; from each side and divide by (p — 1) to get
UT; = TiUiy1 +1— (p— 1)Ut

Observe that if we set p = 1, we get the relation (...) in the graded Hecke algebra Hj. This
process is called degeneration. To make it precise is a pain (see Luzstig, he wrote it). If we com-
plete the graded Hecke algebra, one gets the affine Hecke algebra (Lusztig). The representations
of these algebras are the same.

For any a € C one can define an automorphism

To: Hp — Hy,
o o, for o€ Sy,

(17.6)



Proof. 1t is easy to check that this map satisfies the relations for the s; and w; which are in
(777). The image of y; is then determined by the equation (777). O

Remark. Recall that we have similar automorphisms in Yangians.

We also can construct an algebra homomorphism H; ® Hp — Hpy;, which extends the
homomorphism of groups S; x S; — Ski;. Recall that the last one allows us to induce the
representations of Si x S; to the representations of Si; and corresponds to the multiplication
of Schur functions. This is also the source of the classical Schur - Weyl dualitiy.

The algebra homomorphism

Hy ® Hy, — Hi
s;®1 — Si
1® S; = Si+l
u; ® 1 — Uj
1®u; Ujy
| Lk (17.7)
el =yt > ()
r=I[+1

l

1 .
l®y; +— yj+l—§Z(J+lﬂ")
r=1

Proof. 1t is easy to check that this map satisfies the relations for the s; and u; which are in
(77?7). The images of 1 ® y; and y; ® 1 then follow from equation (777). O

Using this map we can define
H,
Ind; 2y (P® Q)

There are 4 objects in the picture:

1. Graded Hecke algebra Hy,

2. Yangian Y (sly)

3. Affine Hecke algebra 7Hy,

4. p-adic group GL,(Qp)

Roughly speaking, we have the equivalence of the following categories:

1. All finite-dimensional modules of Hy,

2. Finite-dimensional Y (sly)-modules M, such that components of Resggzég g(M ) are in
(cyek

3. Finite-dimensional modules of Hj,

4. Weakly ramified admissible representations of GLy(Q)) (i.e. admissible representations
with an Iwahori fixed vector).

We have the correspondence (7) of the following twistings:

1. Twisting by 7, in Hy, (defined above)

2. Twisting by 7, in Y (sly) (defined in sec....)

3. Twisting by 7, in Hj, (here xp — e®xy)

4. If x is a character of Q) = GL1(Q)) and  is some representation 7 : G Li(Qp) — End(M),
then

(x ® m)(g9) = x(det(g))m(g)
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is the twisted representaion.
The modules can be multiplied ? induced? by the following means:
H
L Tndjt, (P2 Q)
2. Tensor product via § : Y (sly) — Y (sly) @ Y (sln)

Hyyy
3. IndH@m (P®Q)

4. Parabolic induction (= Harish-Chandra induction)

M - N = Indg ' (Indg 0 (M © N))

In each case we can ask, whether the product of modules P - @ is isomorphic to @ - P. In
all cases the answer is yes, but the isomorphism is not just permutation p-q — ¢ - p. These
isomorphisms can be called R—matrices. From the R—matrix of any of these 4 objects one can
get the information about any other.

The Schur-Weyl duality for Yangians is the correspondance

Fy, . {Hp —modules} — {Y(sly)modules such that ...}
M — M ®s, Yk

where the Y () action on M ®g, V®* is given by

k

L(m®v ®..Q0v) = Zm@vl ® .. QLY ®...0 uy,
=1

k
Jumu ®...0v) = Zyzm QU Q... 0 [0 ® ... ® vy,
i=1
Remark. Note that in terms of y; this is a nice expression but not in terms of the u;.

How one can get these formulas? We want two things:

Fi(ra(M)) = a(Fe(M))  and  Fi(Indy'ty, (M @ N)) = F(M) ® Fy(N).

18 Degeneration

Example: Degeneration from the double affine Hecke algebra to the double graded Hecke
algebra

Example: Degeneration from the affine Hecke algebra to the affine Hecke algebra

To get this right we should really match up the finite dimensional representations of each
algebra.

Let Up(L(g)) be Upg without D and with ¢ = 0. Let A be the C[[h]]-subalgebra of
Un(L(g)) @cjn)) C((h)) generated by

Ui(L() and o kerf,

where
fo Un(L(g)) — U(L(g)) — Ug

t — 1
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19 The double affine Hecke algebra

For type Ay, the double graded Hecke algebra H; . has generators ts, z,y with
t2=1, tex = —xtg, tsy = —yts, [y, z] =1 — 2cs.
The double affine Hecke algebra Kp has generators T, X and Y with
(T—7)(T+7YH =0, TXT =z"1, Tlyrt=v"1, and Y IXTlYXT? =g

The conversion is

2 2 2
X =e, Y = e, T = seh™e, g=e" T =elc
Then ~
Kr
— =H; .
hKp

20 The graded Hecke algebra
The graded Hecke algebra H is given by
H=CW®S(*)

with multiplication determined by the multiplication in S(h*) and CW and the relations

Db —sp
pts, = ts,(8ip) + ca,; Ai(p), where  A;(p) = o
(2

for p € S(h*). Equivalently, t5,p = (sip)ts, + ca; Ai(p).
The affine Hecke algebra Kr is given by

Kr = H ®C[P],
where
H is the finite Hecke algebra, and C[P] = span{X™ | X € P}.
and \ \
XA~ X
A ) —1
LX"=X""T+ (4~ 4 )7~ x=ar

In fact, one can convert from one to the other by the formulas

he; —he;
e (— e T c
X)\Zeh)\ ':€hci T. = _ t.. .
) q”L I Sq 1 B e_hai o + S;
For the graded Hecke algebra
T Mn%en — ]\Jsgﬁ1
the T-operators are < Ca;
m = |\l ———|m
(2
and the action on calibrated representations is given by
)@t St (1 )
Ty = (Wy)(x) Ve, Oy = —— U —— | Vs;w-
“ " T (wy)(eq) " (wy)(eq) ) ™
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For the affine Hecke algebra

T Mtgen — ME;H
the 7-operators are q— qfl
m — ¢ — T——0——
ol X

and the action on calibrated representations is given by

X)\Uw = (wt)(X)\)'Uw Ts;vp = i qil Vy + q_l + 1= qil Vs;w-
’ ' 1 — (wt)(X~) ))

1 — (wt) (X~
So
t(XA) = ¢ and XA =g} = P
Then .
Ts, — -9 =15 = ¢
Sl — X oy
So
qg—q " c ehe — e—he c e%(26+°‘i) — 67%(267%’) c
T, = - — +ts = +ts, = — — + 1
i 1 — e—ho a; Si 1 — e—ho Q; Si egai _ e_%a’ o Si
So
h h
2 (2ctay) —2(2c—ay)
c ezl —e 2
T X' = (ts, —— + - ) e
i e2 — e 2%
hA hs; A\ [ 2c+ay —h 2c—ay
—ehsing 48T € _£+62( ) — el "
=€ s TC . ) Eo kg €
Q; Q; 3% _ 5%
he —hc
, N C he'—e c ,
— ehsl)\ts. . ehsl)\i + ehsz)\ + 7(6h)\ _ ehsl)\)
@ —ha
(o7} 1—e Q;
he —he he —hc
+ehsiA£_ehsiA€ —€ o h,\£+eh,\6 —€
o 1 — ehai o 1 —ehai
6h/\ _ ehsl)\

hs; A h —h
=e” T+<1_eha> (€7 —e™™).

21 The classical case: generators and relations

Let g be a finite dimensional complex semisimple Lie algebra. The Killing form (,): g x g — C
is given by
(z,y) = Tr(adyady), for x,y € g.

Up to constant multiples, this is the unique nondegenerate symmetric bilinear form on g. The
standard presentation of g by Chevalley generators and Serre relations is given by the generators

ei, fi, hi, 1<i<n,
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and relations

[hi,hj]:(), 1§i,j§n,
[hisej] = aj(ha)es,  [ha, fi] = —a;(hi) fj,
leq, f5] = dijhi,
[ei7[6i7[ei7"' 7[6217(3]“] 207 Z#]a
—a;j+1factors
—aij +‘1rfactors

EXPLAIN what is a;;, and what is a;(h;).
Define

g=g®C[t,t " 1]® Cca Cd, with bracket
[2 @5 + Me+ pd,y @ t° 4+ o2 + pod] = [2,y] @ " + Ky (2, y)e+7777,

where (,): g x g — C is the Killing form on g. The subalgebras
Lig)=g®Clt,t™"] and  g=gaC[tt]&Ce,

are, respectively, the loop algebra and the affine Lie algebra associated to g.
The Lie algebra g can be given by generators

eir=60t, fir=t, hi,=hot, reZ,i=12,....,n,

and the relations
7777

It is often helpful to write these relations in a more compact form by using the generating
functions

ei(u) = Z eiru’, filv) = Z firv", hi(z) = Z hiy 2", 1<i<n.

reZ reZ rez

With these notations the relations in 777 take the form

The algebra g has an alternative presentation by generators
¢, d, e, fi, hi 0<i<n,
and relations
[hi, hj] =0, 1<4,5 <n,
[hisej] = aj(hi)ej, [l fi] = —aj (i) f,
les, fi] = dijhi,
leis [eis [eq, -+ s [eisej]] -] =0, i # J

—a;;+1factors

[fla[f%[fl’ 7[fufj“]:07 25&]

—a;;+1factors
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where a;; and a;(hj) are as in 77?7 and ag;, aio, ao(hi), i (ho) are given by

7777

In order to obtain the second presentation of g from the first set
e=e®1, fi=fi®l, hi=h; ®1, for 1 <i<n, and
2

= t = ¢! ho=hg®@1+ ——
eo = fo®t, fo=eg®t ", 0 o ® +<979>07

where 6 is the highest root of the root system of g and eg, fy and hy are given by
In order to obtain the first presentation of g for the second presentation set
eir = ty,(e0)s fir =15, (fo)s hip =10, (ho), 77772777 (21.1)

where t,, is the element of the extended affine Weyl group W given by translating by the
fundamental weight w;.
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