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1 The Virasoro algebra

Let A be an algebra over C. A derivation of A is a linear map d : A→ A such that

d(a1a2) = d(a1)a2 + a1d(a2), for all a1, a2 ∈ A.

The vector space of derivations on A is a Lie algebra with bracket

[d1, d2] = d1d2 − d2d1.

Let g be a Lie algebra. A central extension of g is a short exact sequence of Lie algebras

0 −→ c −→ g1
ϕ1−→g −→ 0 such that c ⊆ Z(g1),

the center of g̃. A morphism of central extensions is a Lie algebra homomorphism ψ : g1 → g2

such that ϕ2ψ = ϕ1. A universal central extension is a central extension g̃ such that there is
a unique morphism from g̃ to every other central extension of g. The Schur multiplier is the
kernel of the universal central extension of g. It classifies the projective representations of g. (at
least this is right for GROUPS, see Steinberg). Isomorphism classes of one-dimensional central
extensions are in bijection with elements c ∈ H2(g; F) via the formula

[x, y]∼ = [x, y] + c(x, y)c, for x, y ∈ g,

where c is a basis element of Z(g̃).
The Witt algebra is the Lie algebra of derivations of C[t, t−1]. If d : C[t, t−1]→ C[t, t−1] is a

derivation then
d(1) = 0, d(tk) = ktk−1d(t), for all k ∈ Z,

and hence d is determined by the value d(t). Thus

W has basis {dj | j ∈ Z}, where dj = −tj+1 d

dt
,

and
[dn, dm] = (n−m)dn+m.

Note that C[t, t−1] is the complexification of the ring of smooth functions on the circle S1.
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The Virasoro algebra is the universal central extension of W . It has basis

{c, di | i ∈ Z} with [c, di] = 0, [dn, dm] = (n−m)dn+m + δn,−m
n3 − n

12
c.

To try to prove this note that if

[dn, dm] = (n−m)dn+m + c(n,m)z,

then
[dn, dm] = −[dm, dn] forces c(n,m) = −c(m,n),

and the Jacobi identity forces

c(n+m, `) + c(`+ n,m) + c(m+ `, n) = 0.

The Virasoro algebra has triangular structure and skew linear (θ(ξx) = ξθ(x), for ξ ∈ C and
x ∈ Vir) Cartan involution given by

Vir<0 = span{di | i ∈ Z<0},
Vir0 = span{c, d0},
Vir>0 = span{di | i ∈ Z>0},

with
θ : Vir −→ Vir

dn 7−→ d−n

c 7−→ c

Let U be the universal enveloping algebra of Vir. The action of h = Vir0 on U<0 gives U<0

a Z<0 grading such that

U−n has basis {d−λ | λ is a partition of n} where dPICTURE = d−λ = d−λ1 · · · d−λ`
,

if λ = (λ1, . . . , λ`). This is the Poincaré-Birkhoff-Witt basis of U<0.

1.1 The action on admissible ĝ modules

Because the Witt algebra is the space of derivations of C[t, t−1] the Witt algebra acts on the
loop algebra g⊗ C[t, t−1], and the Virasoro algebra also acts on g⊗ C[t, t−1] by

[d̃k, t
⊗x] = tk+1 d

dt
(tn ⊗ x) = ntn+k ⊗ x

and c acting by 0?? We can “extend” this action to an action admissible ĝ modules.
Let h be the Coxeter number of g and let

Tk =
1
2

∑
j∈Z

∑
i

: ui(−j)ui(j + k) :

where the normal ordering is

: ui(−j)ui(j + k) :=

{
ui(−j)ui(j + k), if −j ≤ j + k,
ui(j + k)ui(−j), if −j > j + k.

Proposition 1.1. If V is a restricted ĝ-module of level ` and ` 6= −h then

dk 7−→
1

`+ h
Tk and z 7−→ `

`+ h
dim(g)

define an action of Vir on V .
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Let g = sl2 and use the imbedding

ι : sl2 −→ sl2 ⊕ sl2
x 7−→ (x, x)

to define an action of Vir on L(ξ)⊗ L(mξ + n
2α) by

dk 7−→
1

`+ h
(Tk ⊗ 1 + 1⊗ Tk)−

1
`+ h

ι(Tk).

This action of Vir commutes with the action of ŝl
′
2. By a character computation

L(ξ)⊗ L(mξ + n
2α) ∼=

⊕
k∈I

L
ŝl
′
2
(ξ + λ− kα)⊗ Um,n,k, as (ŝl

′
2,Vir) bimodules, and

L(ξ)⊗ L(mξ + n
2α) ∼=

⊕
k∈I

j≥k2

Lŝl2
(ξ + λ− kα− jδ)⊗ U j

m,n,k, as ŝl2 modules,

where

I = {k ∈ Z | n
2 −

m+1
2 ≤ k ≤ n

2 }, and

char(Um,n,k) =
∑

j∈Z≥0

dim(U j
m,n,k)q

j = (fm,n,k − fm,n,n+1−k)
∏

j∈Z≥0

1
1− qj

,

with
fm,n,k =

∑
j∈Z

q(m+2)(m+3)j2+(n+1+2k(m+2))j+k2
.

Then z acts on Um,n,k by the constant

c = 1− 6
(m+ 2)(m+ 3)

,

and d0 acts on U j
m,n,k by the constant

n(n+ 2)
4(m+ 2)

− (n− 2k)(n− 2k + 2)
4(m+ 3)

+ j

and the minimum value of j for which U j
m,n,k 6= 0 is

j = k2 when d0 acts by hr,s =
((m+ 3)r − (m+ 2)s)2 − 1

4(m+ 2)(m+ 3)

where
r = n+ 1, s = n+ 1− 2k, if k ≥ 0,
r = m− n+ 1, s = m− n+ 2 + 2k, if k < 0.
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1.2 The Shapovalov determinant

Lemma 1.2. The highest power of h in det(M(h, c)(h+n,c) is∑
λ`n

`(λ), with coefficient
∏
λ`n

z2λ,

where, for a partition λ of n, n!/zλ is the cardinality of the conjugacy class of the symmetric
group Sn labeled by λ.

Proof. Let us first analyze the entries 〈d−µv
+, dλv

+〉 in the matrix. Then

〈d−µv
+, d−λv

+〉 = 〈v+, dmud−λv
+〉 = p0,0(h.c),

where p0,0(d0, z) is the polynomial in d0 and z in the PBW basis expansion

dµd−λ =
∑
ν,τ

d−νpν,τ (d0, z)dτ .

This expansion is obtained by using the relations

dkdj = djdk + (k − j)dj+k, if j + k 6= 0,

dkd−k = d−kdk + (2kd0 +
k2(k − 1)

12
z), for k > 0,

d1d−1 = d−1d1 + 2d0,

d0d−k = d−kd0 + kd−k = d−k(d0 + k),
zd−k = d−kz,

to put the di in increasing order. The first relation “combines” j and k into j + k. If
d−νpν,τ (d0, z)dτ is a term in the PBW expansion then the parts of −ν and τ are combina-
tions of parts of µ and −λ and the degree in d0 of the polynomial pν,τ (d0, z) is the maximal
number of 0 parts that can be obtained by combinations of the remaining parts of µ and −λ
(those that do not contribute to ν and −τ).

Thus the degree (in d0) of p0,0(d0, z) is the maximal number of 0 parts that can be obtained
by combinations of the parts of µ and −λ and is at most `(µ) and at most `(λ). Since both λ
and µ are partitions of n, a term of degree `(λ) is produced only when λ = µ and each part of λ
is combined with a single part of −λ. Thus the maximal degree term in row λ of A(h, c)(h+n,c)

appears in column λ, i.e. on the diagonal.
The identity

drd
s
−r = ds

−rdr + ds−1
−r

(
2rsd0 + 2r2

(
s

2

)
+ s
(

r3−r
12

)
z
)
,

is verified by induction on s, the induction step being

drd
s
−r = d−rdrd

s−1
−r +

(
2rd0 +

(
r3−r
12

)
z
)
ds−1
−r

= d−r

(
ds−1
−r dr + ds−2

−r

(
2r(s− 1)sd0 + 2r2

(
s− 1

2

)
+ (s− 1)s

(
r3−r
12

)
z
)

+ ds−1
−r

(
2r(d0 + r(s− 1)) +

(
r3−r
12

)
z
)

= ds
−rdr + ds−1

−r

(
2rsd0 + 2r2

(
s

2

)
+ s
(

r3−r
12

)
z
)
.
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Suppose that

dk
rd

s
−r = ds

−rd
k
r + ds−1

−r p
k,s
1 dk−1

r + d2
−rp

k,s
2 dk−2

r + · · ·+ ds−k
−r p

k,s
k ,

where pk,s
i are polynomials in d0 and z. Then

dk+1
r ds

−r = dr

k∑
j=0

ds−j
−r p

k,s
j (d0, z)dk−j

r

=
k∑

j=0

ds−j
−r drp

k,s
j (d0, z)dk−j

r + ds−j−1
−r

(
2r(s− j)d0 + 2r2

(
s− j

2

)
+ (s− j)

(
r3−r
12

)
z
)
pk,s

j (d0, z)dk−j
r

=
k∑

j=0

ds−j
−r p

k,s
j (d0 − r, z)dk−j+1

r + ds−j−1
−r

(
2r(s− j)d0 + 2r2

(
s− j

2

)
+ (s− j)

(
r3−r
12

)
z
)
pk,s

j (d0, z)dk−j
r ,

from which it follows that

pk+1.s
` (d0, z) = pk,s

` (d0−r.z)+
(
2r(s−`+1)d0 +2r2

(
s− `+ 1

2

)
+(s−`+1)

(
r3−r
12

)
z
)
pk,s

`+1(d0, z).

(I’m not quite sure if this calculation is exaclty right, I need to do some checks for s = 2 and
s = 3 to make sure). In particular,

pk+1,s
k+1 =

k+1∏
j=1

(
2r(s−j)d0+2r2

(
s− j

2

)
+(s−j)

(
r3−r
12

)
z
)

= (2r)k+1(k+1)!dk+1
0 +lower degree terms in d0.

There is a bijection

{(λ, i) | λ ` n, 1 ≤ i ≤ `(λ)} ↔ {(µ, (rs)) | rs = ∅, |µ|+ rs = n}
(λ, i) −→ (λ− (λsi

i ), (λsi
i ))

(µ ∪ (rs), j) ←− (µ, (rs))
PICTURE

where λ − (λsi
i ) is the partition obtained by removing all rows of length λi which are in rows

with number ≥ i, si is the number of j ≥ i such that λj = λi and j − 1 is the row number of
the largest part ≤ r in the partition µ.

This bijection proves the identity∑
λ`n

`(λ)
∑

(rs) 6=∅
n−rs≥0

p(n− rs),

where p(k) is the number of partitions with k boxes.

Lemma 1.3. If k < n and d0−h divides the determinant det(M+k) then (d0−h)p(n−k) divides
the determinant det(M+n).

Lemma 1.4. Crs(h, c) divides the determinant det(M+rs).
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Proof. First proof:
Second proof: Define a Vir action on the space of semi-infinite forms

H(α, β) = span{· · · ∧ fik ∧ · · · ∧ fi1 | with i1 < i2 < · · · and ik = −k for k large},

by setting
dn(fj) = (j + β − (1− n)α)fj−n.

Then, for appropriate choice of α and β, the Vir module H(α, β) becomes a highest weight
module of highest weight (h, c). One can construct a number of highest weight vectors in
H(α, β), see ???.

1.3 Blocks

Given (h, c) the equation

µ+
1
µ

=
13− c

6
determines {µ, 1/µ},

and for each choice of µ in this set,

y2 = 4µ
(1− c

24
− h
)

determines {y,−y}

giving 4 lines

s = µr + y, s = µr − y, s =
1
µ
r − 1

µ
y, s =

1
µ
r +

1
µ
y.

Conversely, given (µ, y) then

13− c
6

= µ+
1
µ

determines c,

and

h =
−y2

4µ
+

1− c
24

determines h.

Define

Crs(h, c) =
1
42

(s− µr + y)(s− µr − y)(s− 1
µ
r − 1

µ
y)(s− 1

µ
r +

1
µ
y)

=
1
42

((s− µr)2 − y2)((s− 1
µ
r)2 − y2

µ2
)

=

(
(s− µr)

( 1
µs− r)

4
− y2

4µ

)(
(s− 1

µ
r)

(µs− r)
4

− y2

4µ

)

=

(
µr2 − 2rs+ 1

µs
2

4
− y2

4µ

)(
µr2 − 2rs+ µs2

4
− y2

4µ

)
=
(

1
4
(
µr2 +

1
µ
s2
)
− rs

2
+ h− 1− c

24

)(
1
4
( 1
µ
r2 + µs2

)
− rs

2
+ h− 1− c

24

)
.

If

x =
1
2

√
25− c
1− c
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then (
x− 1

2
)(
x+

1
2
)

= x2 − 1
4

=
1
4

(
25− c
1− c

)
− 1

4
=

1
4

(
25− c− 1 + c

1− c

)
=

1
4
( 24
1− c

)
=

6
1− c

so that

1− c
6

=
1

(x− 1
2)(x+ 1

2)
and

13− c
6

= 2 +
1− c

6
= 2 +

1
(x− 1

2)(x+ 1
2)
.

Then the solutions to µ+ 1/µ = (13− c)/6 are

µ =
x+ 1

2

x− 1
2

and
1
µ

=
x− 1

2

x+ 1
2

,

since

x+ 1
2

x− 1
2

+
x− 1

2

x+ 1
2

=
x2 − x+ 1

4 + x2 + x+ 1
4

(x− 1
2)(x+ 1

2)
=

2x2 + 1
2

x2 − 1
4

=
2x2 − 1

2 + 1
x2 − 1

4

= 2 +
1

(x− 1
2)(x+ 1

2)
.

Then

1− c
24
− 1

4
(
µr2 +

1
µ
s2
)

+
rs

2

=
1− c
24
− 1

4

(
x+ 1

2

x− 1
2

r2 +
x− 1

2

x+ 1
2

s2

)
+
rs

2

=
1− c
24
− 1

4

(
(x2 + x+ 1

4)r2 + (x2 − x+ 1
4)s2

(x− 1
2)(x+ 1

2)

)
+
rs

2

=
1− c
24
− 1

4

(
2x2 + 1

2

(x− 1
2)(x+ 1

2)
(r2 + s2) +

x

(x− 1
2)(x+ 1

2)
(r2 − s2)

)
+
rs

2

=
1− c
24
− 1

4

((13− c
6

)
(r2 + s2) +

1
2

√
25− c
1− c

(1− c
6

)
(r2 − s2)

)
+
rs

2

=
1− c
24
− 1

4

((13− c
6

)
(r2 + s2) +

1
12

√
(25− c)(1− c)(r2 − s2)

)
+
rs

2

and

1− c
24
− 1

4
(
µr2 +

1
µ
s2
)

+
rs

2

=
1− c
24
− 1

4
(s− µr)2

µ

=
1− c
24
− 1

4

(
s−

x+ 1
2

x− 1
2

r

)2
x− 1

2

x+ 1
2

=
1
4

(
1

(x− 1
2)(x+ 1

2)
−

((x− 1
2)s− (x+ 1

2)r)2

(x− 1
2)(x+ 1

2)

)
=

(
(x+ 1

2)r − (x− 1
2)s)2 − 1

−4(x− 1
2)(x+ 1

2)

Now put m+ 5
2 = x so that x+ 1

2 = m+ 3 and x− 1
2 = m+ 2.
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Theorem 1.5.

det(A−n) =
∏

1≤r≤s≤n

(
(2r)ss!

)p(n−rs)−p(n−r(s+1))
∏

r,s∈Z≥0
rs≤n

(h− hrs)p(n−rs),

where
hrs =

1
48

(
(13− c)(r2 + s2) +

√
(c− 1)(c− 25)(r2 − s2)− 24rs− 2 + 2c).

Then

Cr,s(h, c) =

{
(h− hrs)(h− hsr), if r 6= s,

h− hrr, if r = s.
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