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1 Partition algebras

For k € Z~, let

A = {set partitions of {1,2,...,k,1,2/,.. .,k:/}}, and
A= {d € Api1 ‘ (k+1) and (k+ 1) are in the same block} )

1
2

For convenience, represent a set partition d € Ay by a graph with k vertices in the top row,
labeled 1,...,k left to right, and k vertices in the bottom row, labeled 1’,..., k" left to right,
with vertex ¢ and vertex j connected by a path if 7 and j are in the same block of the set partition
d. For example,

12345678

o
NEACNIR | represents {{1,2,4,2,51,{31,{5,6,7,3', 4,6, 7}, {3,8'} {1'}H},
°

1723 456 78
and has propagating number 3. The graph representing d is not unique.

The composition dy o ds of partition diagrams di,ds € Ay is the set partition obtained by
placing d; above dy and identifying the bottom dots of dy with the top dots of ds, removing

any connected components that live entirely in the middle row. For k € %Z>0 and n € C, the
partition algebra CAy(n) is the associative algebra over C with basis Ay,

CAy(n) = Cspan-{d € Ay},  and multiplication defined by  dids = n*(d; o da),

where £ is the number of blocks removed from the the middle row when constructing the com-
position dq o ds. For example,

o &> « o e . *

> il _ 2 L LA_s o
dm:@ = 7 D (1.1)

since two blocks are removed from the middle row.



Another basis of CAg(n) is

{zq | de A} given by d= Z T, where (1.2)
d'<d

d' < d if the set partition d’ is coarser than the set partition d.
Let k € Zsg. For 1 <i<k—1and 1< j <k, define

i i+l J
[ ]
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(1.3)
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These elements satisfy relations
e? = ¢, €;iCit16; = €4, and eie; = eje;, for |i—j| > 1.
p; = pi, Pipie1pi =pi,  and  pipj = pipi, for |i—j| > 1/2.
52 =1, SiSi418i = Si+18iSit1, and sisj = sjs;, for |i —j| > 1.
and
8iPiPi+1 = PiPi+15i = PiDi+1; SiPiyl = P15 = Piyls SiPiSi = Pi+1,
8iSi+1Pi1 1 Si+18i = Piy 3, and 5iPj = PjSi, forj#i—%,i,i—l—%,i—l—l,i%—%.
There are inclusions of algebras given by
CAk_%(n) —  CAk(n) CAg_1(n) < CAk_%(n)
........ p and ke g (1.4)
0008 B 00 i1 o~ .al]
giving
Ap(n) CAi(n) CAi(n) CAs(n) C---.
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The propagating number of d € Ay, is
n(d) = the number of blocks in d that contain both an element (1.5)
p ~ \of {1,2,...,k} and an element of {1’,2/,... k'} '

The propagating number satisfies pn(d; o da) < min(pn(dy),pn(ds)) and so there is a chain of
ideals in Ag(r,p,n),

L Ch - C gy, given by I, = span{d | d € Ag(r,p,n),pn(d) < (}.

The maps
(CAk_%(n) ®(CAk_1(n) (CAk_%(n) — ka(n)
(1.6)
b1 ® by —  bipkba



are vector space isomorphisms.
Let k € Z~¢. Define linear maps

£ — CAk_l and IS5 (CAk — (CAk_l

:CAx —» CAy 1, €2:CA,

1
2

by the equations

1
Preibper =e1Oppy, pebpr =e2(0)pr,  and  exber = e1(b)ex. (1.7)

Pictorially

Y o ) Y k-
51( d ): d 55( d ): d and
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so that e1 = 8% oe1, €1(d) is the same as d except that the block containing k and the block
2 2

containing k' are combined, and 5%(d) has the same blocks as d except with k& and &’ removed.
There is a factor of n in sé(d) if the removal of k and k' reduces the number of blocks by 1.
Pulling the product in the ideal I back across the isomorphism in (77?7) gives

a product on CA,_1(n)®ca, ) CA,_1(n given by 1.8
k—3 k—1(n) k-2

(b1 ® b2) (b3 @ bs) = b1 ® E%(bgb3)b4, and (c1®c2)(c3®eq) =1 ® 85(0263)64,
for by, ba, b3, by € CAg(n), and for ¢y, co,c3,c4 € (CAk_%(n), k € Zwo.
Define try: CA, — C and trk_% : (CAk_% — C by the equations

tr(b) = tr_1(e1 (b)), and trk_%(b):uk,l(eé(b)), (1.9)

1
2
so that )

trie(b) = e¥(b), and  tr,_1(b) =i le2(b). (1.10)

Pictorially tr(d) = n® where ¢ is the number of connected components in the closure of the
diagram d,

, for d € Ay. (1.11)

Martin’s Morita equivalence

The H colored partition algebra: color the vertices of each set partition by elements of a
group H and define two colorings of a set partition to be equivalent if, for each block, the product
of the colors on that block coincide. Define the product in the usual way except that the colors
multiply when they hit and propagate to the end of the edge and each floating block turns into
a factor of n|H|. Let W = Indgi’i’zil(l) so that dim(W) = n|H|. Then

Apgi(n) = Endg,,, (W)



2 Subalgebras of the partition algebra

A set partition is planar [Jo] if it can be represented as a graph without edge crossings inside
of the rectangle formed by its vertices. For each k € %Z>0, the following are subalgebras of the
partition algebra CAg(n):

CSy =span{d € Ay | pn(d) = k},
CPy(n) =span{d € Ay | d is planar},
CBy(n) = span{d € Ay | all blocks of d have size 2}, and
CTi(n) =span{d € Ay | d is planar and all blocks of d have size 2}.

(2.1)

The algebra CSy is the group algebra of the symmetric group, CPy(n) is the planar partition
algebra, CBy(n) is the Brauer algebra, and CTy(n) is the Temperley-Lieb algebra. Examples of
set partitions in these algebras are

N S N

S X o

If B is a block of a set partition d define

K(B) = | (# of top vertices in B) — (# of bottom vertices in B) |

and let
(r/p)—1
Aprp = |_| {d € Ay | for all blocks B of d, k(B) = £(r/p) mod r}
=0
Then

CAgyp(n) =span{zy | d € Agrp}
is a subalgebra of CAg(n). Then
CAgyrp(n) 2 CAgpa(n),  CAgii(n) = CAg(n),
and
CA 00,1 =span{d € Ay | k(B) = 0 for all blocks B of d}

does not depend on the parameter n.
Let
1 T
s _s_a_s»
fr= P1/2P3/2 " P(r—1)/2P1P2 " - - PrP1/2P3/2 " " " P(r-1)/2 = I I,

The algebra Ay, 1(n) is generated by si,...,Sx_1, ps and f;.
2

Is CCAk(r,p,n) = CAg(r,p,n) x Z/pZ?



3 Schur-Weyl dualities

Let n € Z~¢ and let V' be a vector space with basis v1,...,v,. Then the tensor product

VO -V eV®---@V  hasbasis {v;® --Qu, | 1<iy,...,ix<n}.

k factors

For k € Z~¢ let
yekE+y) — yok g Un, a subspace of V@(k+1)

(which is isomorphic, as a vector space, to VE*). If b € End(V®*) let bii/’;:ffk/ € C be the
coefficients in the expansion

b(og @ @u) = > bR v, @@y, (3.1)
ISiI/,...ik/STL
For d € Ay and values iy, ..., ik, i1/,...,0x € {1,...,n} define
o 1, if4, =1is when r and s are in the same block of d
(@, =9 ’ (3.2)
oot 0, otherwise.
For example, viewing (d)ii/sz, as the diagram d with vertices labeled by the values i1, ...,
and 4ys,...,1%, we have
11 12 13 %4 15 g 17 18
o
. = 0iyin0iyigOiyiy Oirigs Oigig Oisiz Oigig Oisiyy Visigy Oisis Oigig -
11 Tor 1y Ty by T Ly g
It follows from (77?) and (?77) that for all d € Ay,
L 1, if i, =i, if and only if r and s are in the same block of d,
(Pu(xa))i 05, = o (33)
1otk 0, otherwise.
The group GL,(C) acts on the vector spaces V and V&* by
n
gu; = Zgﬁvj, and  g(vi, i @ - @V, ) = gUi; ® gui, @ -+ @ gy, (3.4)
j=1

for g = (g9i5) € GL,(C). For any subgroup G C GL,(C),
Endg(V®) = {b € End(V®¥) | bgv = gbv for all g € G and v € V®k} .

Theorem 3.1. Let n € Zso and let {xq | d € Ay} be the basis of CAg(n) defined in (777).
Then the notation in (997) and (997) defines algebra homomorphisms

O, : CAp(n) — End(VEF)  for k € 1Z.. (3.5)

giving a right action of the partition algebra CAy(n) on VEF. View the symmetric group Sy, as
the subgroup of GL,(C) of permutation matrices.



(a) @ : CAp(n) — End(V®*) has

im ®;, = Endg, (V) and ker @, = C-span{zy | d has more than n blocks}, and
. Rk
(b) ®k+%.CAk+%(n)—>End(V ) has
im (I>k+% = Endg, , (V®) and ker <I>k+% = C-span{zq | d has more than n blocks}.

Proof. (a) As a subgroup of GL,(C), S, acts on V via its permutation representation and S,
acts on V& by
o(vy, QVjy @+ ® Uik) = Vg (iy) @ Vo (ip) @+ @ Vg(iy)- (3.6)

Then b € Endg, (V®*) if and only if 07 'bc = b (as endomorphisms on V&) for all o € S,,.
Thus, using the notation of (???), b € Endg, (V®*) if and only if

b = (O ON = WG ety forall o € Sn
It follows that the matrix entries of b are constant on the S,-orbits of its matrix coordinates.
These orbits decompose {1,...,k,1',... K’} into subsets and thus correspond to set partitions
d € Ag. Thus ®g(xy) has 1s in the matrix positions corresponding to d and Os elsewhere,
and so b is a linear combination of ®y(z4),d € Ag. Since xg4,d € A, form a basis of CAy,
im @), = Endg, (V®F). o

If d has more than n blocks, then by (??7) the matrix entry (®x(zq));) "7, = 0 for all
indices 41, ..., %1/,. .., i, since we need a distinct i; € {1,...,n} for each block of d. Thus,
rq € ker®p. If d has < n blocks, then we can find an index set i1,... 0,41/, ..., 1 with
(P (md));;;:ffy = 1 simply by choosing a distinct index from {1, ...,n} for each block of d. Thus,
if d has < n blocks then x4 & ker @, and so ker &, = C-span{z,4|d has more than n blocks}.

(b) The vector space VE* @ v, C V®*+D is a submodule both for (CA,H% C CAgyq and

CSp—1 € CS,. If 0 € Sy—1, then o(vy, ® -+ @ vy, @ V) = Vg(sy) @ +++ ® Vg(s,) ® vp. Then as
above b € Endg, , (V®*) if and only if

1:1,‘..,7:]‘“” — ba(i1)7"'7a(ik)7n
(RTINR PK ) 0 (i17),e 50 (igr )00

for all o € S,,_1.

The S;,—1 orbits of the matrix coordinates of b correspond to set partitions d € A, 1; that is
2

vertices ig41 and i(;11) must be in the same block of d. The same argument as part (a) can be
used to show that ker @, 1 is the span of x4 with d € A; /1 having more than n blocks. We
2 2

always choose the index n for the block containing k£ + 1 and (k + 1)". O

The multiplication in CAg(n), in terms of the basis {x4} is

0, if d1 o do don’t exactly match in the middle,

TdyTdy = Z cqrq, if di ods exactly match in the middle,
d

where the sum is over all coarsenings of d; o dy obtained by merging a top horizontal block and
a bottom horizontal block and

cg = (n = |d)1ay0ds)> where (0, =00l—1)---(L—7+1),

|d| is the number of blocks of d and [d; o da] is the number of internal blocks of d; o ds.



Proof. Let n >> k so that CAx(n) = Endg, (V®*). Then

(Viy ® -+ 0y ) Tay Ty = Z (Za, )2;,721/ (md2)2:;,7?zk,:u

o (wa)i @a)l T, = Y T=(n—|d)(n—|d[+ 1) (n—|d - (£~ 1),

Tl yeensbgyt
L1/ yeensbpt interior blocks

where the sum is over labeled interior blocks of di ® da such that the labels on these blocks are
distinct and do not lie in {i1, ..., g, i1/, ..., 0k }. O

For k € Z~¢ the following result is due to Tanabe [Ta, Lemma 2.1].

Theorem 3.2.

(a) Let T be the subgroup of GL,(C) of diagonal matrices in GL,(C) and let N = G+ 1., be the
normalizer of T in GL,(C). Then

D(CApoo1(n)) = Endy(VEF)  and  ker @, NCApooq1(n) =2777

(b) Then
®),(CS) = Endg (V) and ker @ N CSy, = the ideal generated by Z det(w)w.
wESy
Proof. O

Theorem 3.3. Let L1 = (Grin X (Z/rZ)) N Grpyn. Then

im @ = Endg, . (V®*)  and ker &, = C-span{zq | d has more than n blocks},
im ®k+% =End;, ,(V®*) and ker <I>k+% = C-span{zq | d has more than n blocks}.

Proof. In the case r = p = 1 this is a result of Jones [Jo] and Martin [Ma] (see [HR, Theorem
777]). A direct computation (which we will not do here) shows that if d € Ag(r,p,n) then x4
commutes with each of the generators t, s1, s2, ..., sy of Gypy. Thus im @) C EndGr’pyn(V@)k).
If a € Endg, ,,,(V®) then a € Endg, (V®") and so by the Jones-Martin Theorem,

a= Z Caxd, for some ¢4 € C.
deAy

We shall show that if d € Ag(r,p,n) then ¢y = 0. Let d € Ay and let
V=0 @@y, and vy =0, @ @V,
be such that i, = i4 if and only if r and s are in the same block of d. Then
= an,,

the coefficient of the basis element v, in the expansion of av;. Choose a block B of d and let
¢ € B. Then
cq = (avt”vb = (ti_zpatfg)‘vb = fp’i(B)Cd.

7



Hence c¢g = 0 unless k(B) = 0 mod r/p. Now choose a pair of distinct blocks By and Bz in d.
Let ¢ € By and m € By. Then

d-

ca = (avy)],, = (ti,.t;, ati,t; o), = €7PVP2)e

So ¢4 = 0 unless k(B1) = k(B2) = 0 mod r. The same argument with
V=0 @ - QU QUp and Uy = Vi, @ v, Qup
applies to establish case (b). O

If d € By, is a diagram choose a labeling of the blocks of d from with 1,2,...,k by marking
one vertex in each block. An element o € S; permutes the marked vertices to produce a new
diagram od € Bj.

PICTUREEXAMPLEHERE

Suppose n + 1 < k. For a given element d € By, the element of CBy(n) given by
Z (_1)é(0')0_d7
0ESH+1

depends on the choice of the labeling of d, but the set

d € By

> (-1)od

O'GSn-H

does not?77.
If £ > n let S,41 be the subgroup of S; whiich fixes n 4+ 2,...,k.

Theorem 3.4. (Schur-Weyl) Let n € Z~y.

(a) @ : CSy — End(V®F) has
im ®; = Endgr, ) (VE)

and ker @y, is the ideal of CSy, generated by

Z (-1)"gd ‘ d € Sy has more than n blocks

UESn-H

(b) ®; : CBy — End(V®*) has
im®; = Endo, (c) (V)

and ker @, is the ideal generated by

Z (-1)"9od| d € By, has more than n blocks

O'ES»,hq

Need to define action of o on d.



Define linear maps

e1 : End(V®) — End(VH) e2 : End(V®*) = End(V®*1)  and
e1 : End(V®*) — End(V®HF-1) (3.7)
by
Uyl pllyeenik 1 117 lk—1 lk—1,]
gé(b)ilhm’ik/ _bh/v ’k/dz’fzk’ ez (b) B1/5eb o1y Z i Slk—1)/" and
i1yeig—1 - 015eesik—1,]
gl(b)l'l/,...,i(k_n/ - Zbil’w'vi(k—l)/,j’ (38)
j=1
Then )
er=eroez  and  Tr(b) = eh(b), for b € End(V®F). (3.9)

. 1 . 1 . L
The relation between the maps €2, €1 and 1 in (?77) and the maps €2, €1, 1 in (?77) is given
2 2

(@O opyr  Proa(e2(B)) = Le2(@k(b)),  and
By (21(h)) = £1(@4 (b)), (3.10)

where, on the right hand side of the middle equality b is viewed as an element of CAj via the
natural inclusion CA,_1(n) € CAg(n). Then, for k € Z~o,
2

Te(®p(b) = trp(b),  and  Tr(®, 1 (b). (3.11)

4 The tower Ak(r, p,n)

Let 1,, be the trivial representation of G = G, 1, and let V = C-span{vy,...,v,} be the
reflection representation. Let

G = Gr,p,n = G7«71,n N Gr,p,n and L,_1= (Gr,l,nfl X (Z/TZ)) N Grp n-

W

The G, 1n—1 X (Z/rZ) module

xi1: Z/rZ — C*
& — &

is, by restriction, an L,_1; module and for any G-module M,

X =1,-1® x1, where

mdf (Resf (M)@x)=Mohdf (\)=MaV,
where the first isomorphism comes from the “tensor identity,”

md¥  (Res¢ (M)@N) 5 Mohdf N (4.1)
g (memn) = gm®((gen)’ '

for g € G, m € M, n € N, and the fact that Indgn_l(W) = CG ®r, , W. Iterating (77?7) it
follows that

(Indgnil(Resgnf1 ®x))F(1) = Ve and Resg%l(IndgnilResgnil)k(l) ~ YOk (4.9)



as G-modules and L,,_1-modules, respectively.
This analysis allows us to build the Bratteli diagram of Ag(r, 1,n). This graph is constructed
inductively as follows:

AU(Tv 17”) = {<(n)7 (2)7 R (Z))}
If k € Z~( then there are edges

~

Ag(r,1,n) : A
l if 41 is obtained from X by removing a box from A9,
Ak-‘,—% : (1, 0)
and
A, 1 (v, ;)
l if  is obtained from v by adding a box to (1,
Ak(r, 1,n): y

where we make the convention that p(") = ;(0).

4.1 The Bratteli diagram of the algebra CA;, ,(n)

Recall that the simple G, 1, modules are given by

G,))’Ln = span{vr | T is a standard tableau of shape A}
with action
tvr = S(T(i))UT and S; v = (Si)TTUT + (1 + (Si)TT)UsiT~

Then Z/pZ acts on the G, 1, modules by

and, this action lifts to an action of Z/pZ on CG, 1, by automorphisms

g: CGT,I,n - CGT,L”

_ 2mi/p
b Wiy where ( = e .

Then V& is a Gr,1,» module and we can twist this action by any automorphism. So

¢ fCUz‘, lf]:Za
Cows —
B v, ifj#i.

Then o: V& — (0*V)®* as G,.1 , modules and this operation commutes with the G, action.
So
o€ EndGT,pyn(V(gk).

10



5 Murphy elements in CAx(r, p,n)
Let S C{1,2,...,k} and let I C SUS’. Define bg,d; € Ay by
bs = {S U S/, {f, fl}ggs} and d[gs = {I, IC, {f, f’}ggs}. (5.1)
For example, in Ag, if S = {2,4,5,8} and I = {2,4,4’,5,8} then
® ® [ ] [ ]
by = I I and  dy = I I
o O e o

Note that

dr = die, dsus' = dy = bg, dieery = dppeye = bs_qoy-
For k € %ZZO and r € Zxg
_(n S rw(I
Zyy = <2> + > (=1 |<(n— Dbs+ > (1) (d; - bs)>,
[S|>1 k(I)=0 mod r

where the outer sum is over S C {1,2, ..., k} such that S # () and the inner sum is over I C SUS’
such that dy € Ag(r,1,n) and dr # bgs.

Theorem 5.1.

(a) Forn,r € Z>o,

Hrn—*z Z 't "s

m=01<i<j<n

is a central element of CGyp 1.

Frn = Z c(b), as operators on G7(~p 72,

bex

the irreducible G, n-module indexed by (X, j), where X = (AO ... XO=1) is o multipar-
tition with n bozes.

(b) Let n,k € Z>o. Then,
Krn = Ly 0nd  Kp_1 = Zk+l ” as operators on @k,
27

c) Letn € C, k € 1Z~¢. Then Zy(r) is a central element of CAy(r,p,n), and, if n € C is
34>
such that CAg(r,p,n) is semisimple then

Zi(r) = Z c(b), as operators on Aﬁ,
beX

where Ag is the irreducible CAg(r, p,n)-module indexed by .

Proof. (a) The element k,, is the class sum corresponding to the conjugacy class of the element
s12 in Grpp and thus k., is a central element of CG, ) . The constant by which &, , acts on

Gg py)L follows from Theorem 777.

11



(c) The first statement follows from parts (a) and (b) and Theorems 3.6 and 3.22 as follows.
By Theorem 3.6, CAx(n) = Endg, (V®*) if n > 2k. Thus, by Theorem 3.22, if n > 2k then
Zy, acts on the irreducible CAg(n)-module A}(n) by the constant given in the statement. This
means that Zj is a central element of CAg(n) for all n > k. Thus, for n > 2k, dZy = Zyd
for all diagrams d € Aj. Since the coefficients in dZj (in terms of the basis of diagrams) are
polynomials in n, it follows that dZ = Zid for all n € C.

If n € C is such that CAg(n) is semisimple let Xé Ap(n) be the irreducible characters. Then

Zy, acts on A)(n) by the constant X(CA (Zk)/dlm(A’\( )). If n > k this is the constant in the
statement, and therefore it is a polynomlal in n, determined by its values for n > 2k.

The proof of the second statement is completely analogous using CA; 1, Sp—1, and the
2
second statement in part (b).
(b) Then
1 _ _
2 (v ® - @ vy) = — > Z 7 M sigviy © - QI s,
m=0 i,j=1
i
r—1 n
- Z Z 1 - FE;; — EJJ + tmEZ] + t mEﬂ)U“ e ® (1 - FE;; — Ejj + tszij + tj_mEji)Uik
m=0 1]?3 1
i#j

Expanding this sum, let

cor = (H 5%/3%2/) ({8(’}CI)+#({Z6’}C1C)§m (tel W eIy —# {0 el belc)) <H W) (H 5@/))

lese lel lele
and
dop = (H 5ww> #ULLYCDAHLLICI) gm{Lell €I} —H{ €T LlY) (H 5@2‘) (H 51‘«1‘)
lese lel lele

so that 2k (v, ® --- ®v;,) is equal to

r—1 n
D IND D 3O D DRI

SC{Lwk} d1syeeipy m=0 =1 ICSUS’
i#]

1 r—1 n n

_ /

T r Z Z Z Z (ZCSJ(U"V®“'®Uik/)_zcs,l(vi1/®"'®Uik/))‘
SC{1,...,k} i1r,siyy m=0I1CSUS" i,j=1 i=1

Here S¢ C {1, ..., k} corresponds to the tensor positions where 1 is acting, I C SUS’ corresponds
to the tensor positions that must equal ¢, and I¢ corresponds to the tensor positions that must
equal j.
When |S| = 0 the set I is empty and the sum in (77?) is equal to
(n® —n)(vi, ® - @v;,) since csg =g = ( H Siiy )-
e{1,....k}

Assume |S| > 1 and separate the sum according to the cardinality of I. Note that the sum for
I is equal to the sum for I¢, since the whole sum is symmetric in ¢ and j. When I = SU S,

/ I | S | |
CS,I = CSJ = ( 5l‘gl‘£/> ‘ ‘ < 5141)
lese LeSus’

12



and the sum in (777) is equal to

72 > (n—1) chml/ @) = (n = 1)(=1)Fbg(v, @ - @ v;,).

Mm=014/,...,i5s

We get a similar contribution from the sum of the terms with I = (.
For each of the remaining subsets I C S U S’ the sum in (?7?) contributes 0 when x(I) #
0 mod r and

(_1)#({M’}QH#({M’}QC)(dlgs —bs) (v, @ Q) = (=D)ISHD (dye g — bg) (v, @ -+ @ ;).

when x(I) = 0 mod 7.
0, ifi=norj=n,

For the second statement, since (1 — Ey; — Ejj + EyEjj)v, = _
vn, Otherwise,

r—1 n—1
2kp—1(Vi; ® - QU @Vp) = — ZZtmt_ i | (Ui, ® -+ ®@ vy, @ vy)
m=0 i,j=1
i#£]
1 r—1 n
== tmt SijViy @+ ® t;”tj_msijfuik ® (1 — Ey — Ejj + EyEjj)vy
m=0 i,j=1
itj
1 r—1
= (; Sij)(’l)i1®"‘®vik)®vn
m=0 i#j
1 r—1 n
+ - (1-Eyi—Ej; +{"Eijj +&§ "Ej)vy, @ -+
m=0 i,j=1

- ® (1= Eyi — Ejj + 6" Eij + & " Eji)vi, @ (—Eii — Ejj)on

1 « _ _
+o Z Z it " sijvi, @ - @ sijvi, @ By Ejjup
m=01,5=1
The first sum is known to equal 2k, (v;; ® --- ® v;,) and is known by the computation proving
the first statement, and the last sum is zero since i # j. The middle sum is treated exactly as in

(777) except that now the sum is over S such that k+1 € S and I such that {k+1,(k+1)'} C I
or {k+1,(k+1)} C I O
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()@@ @u) = > (v, @ @ 1v,)

i=1
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