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1 Schur functions

The group algebra of P is the ring

Z[P ] with basis {Xλ | λ ∈ P} and product XλXµ = Xλ+µ,

for λ, µ ∈ P . The group W acts on C[P ] by

wXλ = Xwλ, for w ∈ W , λ ∈ P .

The ring of symmetric functions and Fock space are

Z[P ]W = {f ∈ Z[P ] | wf = f for all w ∈ W} and
Z[P ]det = {f ∈ Z[P ] | wf = det(w)f , for all w ∈ W}, (1.1)

respectively. For λ ∈ P define

mλ =
∑

γ∈Wλ

Xγ and aλ =
∑

w∈W

det(w−1)Xwλ. (1.2)

The straightening laws for these elements are

mwλ = mλ and awλ = det(w)aλ, for w ∈ W and λ ∈ P . (1.3)

The second relation implies that aλ = 0 if there exists w ∈ Wλ with det(w) 6= 1, and it follows
from the straightening laws that

Z[P ]W has basis {mλ | λ ∈ P+}, and
Z[P ]det has basis {aλ+ρ | λ ∈ P+}. (1.4)

Then
The Weyl characters or Schur functions are defined by

sλ =
aλ+ρ

aρ
, for λ ∈ P . (1.5)

The following theorem shows that the sλ are elements of Z[P ] and that

Z[P ]W has basis {sλ | λ ∈ P+}. (1.6)
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Theorem 1.1. Fock space Z[P ]det is a free Z[P ]W module with generator

aρ = xρ
∏

α∈R+

(1− x−α) and the map
Z[P ]W −→ Z[P ]det

f 7−→ aρf
sλ 7−→ aλ+ρ

(1.7)

is a Z[P ]W module isomorphism.

Proof. Let f ∈ Z[P ]det and let α ∈ R+. If fγ is the coefficient of xγ in f then∑
γ∈P

fγxγ = f = −sαf =
∑
γ∈P

−fγxsαγ , and so f =
∑
γ∈P

〈γ,α∨〉≥0

fγ(xγ − xsαγ),

since fsαγ = −fγ . Since each term xγ − xsαγ is divisible 1− x−α, f is divisible by 1− x−α, and
thus

each f ∈ Z[P ]det is divisible by xρ
∏

α∈R+

(1− x−α) (1.8)

since the polynomials 1−x−α, α ∈ R+ are coprime in Z[P ] (and xρ is a unit in Z[P ]). Comparing
coefficients of the maximal terms in aρ and xρ

∏
α∈R+(1− x−α) shows that

aρ = xρ
∏

α∈R+

(1− x−α).

Thus each f ∈ Z[P ]ε is divisible by aρ and so the inverse of the multiplication by aρ is well
defined.

The dot action of Sn on P is given by

w ◦ µ = w(µ + ρ)− ρ, for w ∈ Sn, µ ∈ P . (1.9)

The straightening law
sw◦µ = det(w)sµ, for µ ∈ P , w ∈ W . (1.10)

for the Schur functions follows from the straightening law for the aµ in (1.3).

Lemma 1.2. Let f ∈ Z[P ]W and write f =
∑

γ

fγxγ so that fγ is the coefficient of xγ in f .

Then
f =

∑
µ∈P+

fµmµ =
∑

λ∈P+

ηλsλ, where ηλ =
∑

w∈W

det(w−1)fλ+ρ−wρ.

Proof. The first equality is immediate from the definition of mµ. Since f ∈ Z[P ]W and the sλ,
λ ∈ P+, are a basis of Z[P ]W , the element f can be written as a linear combination of sλ. Then

ηλ = (coefficient of sλ in f) = (coefficient of aλ+ρ in faρ)

=

coefficient of eλ+ρ in
∑
µ∈P

∑
w∈W

(−1)`(w)fµeµ+wρ.
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Proposition 1.3. If ν ∈ h∗R and f =
∑
µ∈P

fµeµ ∈ Z[P ] define f(eν) =
∑
µ∈P

fµe〈µ,ν〉. Let λ ∈ P+

and let q = et. Then

sλ(qρ) =
∏

α∈R+

[〈λ + ρ, α∨〉]
[〈ρ, α∨〉]

and sλ(1) =
∏

α∈R+

〈λ + ρ, α∨〉
〈ρ, α∨〉

where [k] = (qk − 1)/(q − 1) for an integer k 6= 0.

Proof.

sλ(qρ) = sλ(etρ) =
aλ+ρ(etρ)
aρ(etρ)

=

∑
w∈W

(−1)`(w)e〈w(λ+ρ),tρ〉

aρ(etρ)
=

∑
w∈W

(−1)`(w)e〈ρ,wt(λ+ρ)〉

aρ(etρ)

=
aρ(et(λ+ρ))

aρ(etρ)
=

e〈ρ,t(λ+ρ)〉

e〈ρ,tρ〉

∏
α∈R+

1− e〈−α,t(λ+ρ)〉

1− e〈−α,tρ〉

=
e−〈ρ,t(λ+ρ)〉

e−〈ρ,tρ〉

∏
α∈R+

e〈α,t(λ+ρ)〉 − 1
e〈α,tρ〉 − 1

= q−〈λ,ρ〉
∏

α∈R+

q〈λ+ρ,α〉 − 1
q〈ρ,α〉 − 1

Then
sλ(1) = lim

q→1
sλ(qρ) =

∏
α∈R+

〈λ + ρ, α/2〉
〈ρ, α/2〉

The weight multiplicities are the integers Kλγ , λ ∈ P+, γ ∈ P , defined by the equations

sλ =
∑
γ∈P

Kλγxγ =
∑

µ∈P+

Kλµmµ. (1.11)

The tensor product multiplicities are the integers cλ
µν , µ, ν, λ ∈ P+, defined by the equations

sµsν =
∑

λ∈P+

cλ
µνsλ. (1.12)

The partition function is the function p : P → Z≥0 defined by the equation∏
α∈R+

1
1− x−α

=
∑
γ∈P

p(γ)x−γ . (1.13)

Proposition 1.4. Let λ, µ, ν ∈ P+.

(a) Kλλ = 1, Kλ,wµ = Kλµ, for w ∈ W , and Kλµ = 0 unless µ ≤ λ.

(b) Kλµ =
∑

w∈W

det(w)p(w(λ + ρ)− (µ + ρ)).

(c) cλ
µν =

∑
v,w∈W

det(vw)p(v(µ + ρ) + w(ν + ρ)− (λ + ρ)− ρ).
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Proof. (a) The equality Kλ,wµ = Kλµ follows from the definition. If w 6= 1 then w(λ+ρ) < λ+ρ
so that w(λ + ρ)− ρ < λ and

sλ =

(∑
w∈W

det(w)xw(λ+ρ)−ρ

)
·
∏

α∈R+

1
1− x−α

= xλ + (lower terms in dominance order).

Thus Kλλ = 1 and Kλµ = 0 unless µ ≤ λ.
(b) The coefficient of xµ in

sλ =

(∑
w∈W

det(w)xw(λ+ρ)−ρ

) ∏
α∈R+

1
1− x−α

=
∑
w∈W
γ∈Q+

det(w)p(γ)xw(λ+ρ)−ρ−γ ,

has a contribution det(w)p(γ) when w(λ + ρ)− ρ− γ = µ so that γ = w(λ + ρ)− (µ + ρ).
(c) Since cλ

µν is the coefficient of xν+ρ in

sµsνaρ =
ε(xµ+ρ)ε(xν+ρ)

aρ
=

 ∑
v,w∈W

det(vw)xv(µ+ρ)+w(ν+ρ)−ρ

 ∏
α∈R+

1
1− x−α


=
∑

v,w∈W

γ∈Q+

det(vw)p(γ)xv(µ+ρ)+w(ν+ρ)−γ−ρ,

there is a contribution det(vw)p(γ) to the coefficient cλ
µν when λ+ρ = v(µ+ρ)+w(ν +ρ)−γ−ρ

so that γ = v(µ + ρ) + w(µ + ρ)− (λ + ρ)− ρ.

Fix J ⊆ {1, 2, . . . , n}. The subgroup of W generated by the reflections in the hyperplanes
Hαj , j ∈ J ,

WJ = 〈sj | j ∈ J〉, acts on h∗R, with CJ = {µ ∈ h∗R | 〈µ, α∨j 〉 ≥ 0 for j ∈ J}

as a fundamental chamber. The group WJ acts on P and

C[P ]WJ = {f ∈ C[P ] | wf = f for w ∈ WJ}

is a subalgebra of C[P ] which contains C[P ]W . If

P+
J = P ∩ CJ , ρJ =

∑
j∈J

ωj ,

aJ
µ =

∑
w∈WJ

det(w)wXµ, for µ ∈ P , and sJ
λ =

aJ
λ+ρJ

aJ
ρJ

, for λ ∈ P ,

then
{sJ

λ | λ ∈ P+
J } is a basis of C[P ]WJ .

The restriction multiplicities are the integers cλ
ν given by

sλ =
∑

ν∈P+
J

cλ
J,νs

J
ν . (1.14)
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(Macdonald, Chapter 1). The element aρ is the Weyl denominator. Lemma 1.2 is a gen-
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dimension formula and the Weyl dimension formula, respectively. The results in Proposition
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formula, respectively.
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