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1 Schur functions
The group algebra of P is the ring
Z[P] with basis {X* |\ € P} and product XAXH = X MH
for A\, u € P. The group W acts on C[P] by
wX = XA, for w e W, \ € P.

The ring of symmetric functions and Fock space are

Z[PWV ={fe€ZP]|wf=fforalwe W}  and 11
ZIP%t = {f € Z[P] | wf = det(w)f, for all w € W}, (1.1)

respectively. For A € P define

my = Z X7 and ay = Z det (w1 X WA, (1.2)
yEWA weW

The straightening laws for these elements are
M) = M), and aywy = det(w)ay, for w € W and A\ € P. (1.3)

The second relation implies that ay = 0 if there exists w € W) with det(w) # 1, and it follows
from the straightening laws that

Z[PIY  hasbasis  {my | A € Pt}, and

Z[P)%  hasbasis  {axi, | A€ PT}. (1.4)
Then
The Weyl characters or Schur functions are defined by
3)\:%, for A € P. (1.5)
ap
The following theorem shows that the sy are elements of Z[P] and that
Z[P)"  hasbasis  {sy | Ae P} (1.6)



Theorem 1.1. Fock space Z[P]%" is a free Z[P]" module with generator

Z[PWV — z[P)det
a, =z H (I—279) and the map f —  a,f (1.7)

a€ERt SA\ L Ax+p

is a Z[P]"' module isomorphism.

Proof. Let f € Z[P]%" and let o € R*. If f. is the coefficient of 27 in f then

Do fa=f=saf =) —fa*7, andso f= ) [fy(a7 - ),

YeEP YEP (%ALGVP))ZO
since fs, = —fy. Since each term z7 — 27 is divisible 1 — 2%, f is divisible by 1 — 2™, and
thus
each f € Z[P]%° is divisible by 2 H (1—279) (1.8)
a€ERt

since the polynomials 1—x~% o € R™ are coprime in Z[P] (and 2* is a unit in Z[P]). Comparing
coefficients of the maximal terms in a, and 2 [[ cp+ (1 — 27%) shows that

a, =2’ H (1—279).
a€Rt

Thus each f € Z[P]® is divisible by a, and so the inverse of the multiplication by a, is well
defined. O

The dot action of S, on P is given by
wopu=w(u+p)—p, for w e Sy, u € P. (1.9)

The straightening law
Swop = det(w)s,, forpe P,weW. (1.10)

for the Schur functions follows from the straightening law for the a, in (1.3).

Lemma 1.2. Let f € Z[P]" and write f = vaxv so that f is the coefficient of 7 in f.
¥

[= Z Jumy = Z 77>\3>\a where 77>\ = Z det(w_l)fA—i-p—wp-

peP+ \epP+t weWw

Then

Proof. The first equality is immediate from the definition of m,,. Since f € Z[P]" and the sy,
X € P, are a basis of Z[P]W, the element f can be written as a linear combination of sy. Then

nx = (coefficient of sy in f) = (coefficient of ay;, in fa,)

= | coefficient of e’* in Z Z (—1)1®) f, ertwe,
pneEP weW



Proposition 1.3. If v € hi and f = Z fue! € Z[P] define f(e Z fue wv) Let A e Pt
nepP neP
and let ¢ = e'. Then

sx(¢”) = H [+ pal)] and  s\(1) = H At pa’)

AL an) RS My

where [k] = (¢° —1)/(q — 1) for an integer k # 0.

Proof.
Z (—1)tw) g{wtp).to) Z (—1) W) glpwtAtp))
P\ — tpy _ Urtp (6 p) _ weWw _ weWw
() =D = () (@) (@)
ap(et(k"'p)) - €<pvt(/\+p)> 1 — e<70{,t()\+p)>
ap(et?)  elpto) weR 1 — el~astp)
_ e—(pt(A+p)) H elast(Ap)) _q _ 0 H |
e—(o:tp) elontp) — 1 glra) — 1
a€ER* a€ER*
Then 0\ /2)
: +pa
sa(1) = limsy(¢”) = [[ S5
o L)
O
The weight multiplicities are the integers Ky,, A € P*, v € P, defined by the equations
S\ = Z K,Waﬂ = Z K)\#mu. (1.11)
vEP pePt
The tensor product multiplicities are the integers cl);,/, u, v, A € P, defined by the equations
S8, = Z czys)\. (1.12)
AepPt+
The partition function is the function p: P — Zx>( defined by the equation
— =Y p(y)z". (1.13)

acRt YEP

Proposition 1.4. Let \, u,v € PT.
(a) Kxn =1, Kyyu= Ky, forweW, and Ky, =0 unless g <\,

(b) K=Y det(w)p(w(A+p) = (1 + p)).
weW

(c) cw,— Z det(vw)p(v(p + p) + w(v + p) — (A +p) — p).
v,weW



Proof. (a) The equality K ., = K, follows from the definition. If w # 1 then w(A+p) < A+p
so that w(A + p) — p < A and

1
S\ = ( Z det(w):cw()‘“)p) . H = 2 4 (lower terms in dominance order).

1—gx—@
weW aceRt

Thus Ky =1 and K, = 0 unless px < A.
(b) The coefficient of z* in

1
Sy = (Z det(w);pw(/\ﬂ')—p) H ——— Z det(w)p()z?AHP=P=7,

weW a€ERT weW
veQt

has a contribution det(w)p(y) when w(A + p) — p — v = p so that vy =w(A+p) — (L + p).

(c) Since cf;l, is the coefficient of ¥ in

g(mlH-P)g(xu-i-p) ) 1

- = det v(pt+p)+w(v+p)—p

SpuSylp o Z et(vw)z H L
vwEW o

= 3 det(vw)p(y)at it ruto s,
v,weW
yeQT

there is a contribution det(vw)p(7y) to the coefficient Cf\w when A\ +p=v(u+p)+wlv+p)—v—p
so that vy = v(p+ p) + w(p + p) — (A + p) — p. O

Fix J C {1,2,...,n}. The subgroup of W generated by the reflections in the hyperplanes
Ha;, 5 € J,

Wy=(sj|j€J), actsonbg,  with Cy={pebg] (na])>0forjecJ}
as a fundamental chamber. The group W; acts on P and
C[PI"7 ={f e C[P] | wf = f for w € Wy}

is a subalgebra of C[P] which contains C[P]". If

Pf=PnCy, ps= wj
jeJ
as
ai = Z det(w)wX*, for u € P, and sy = %, for A € P,
weW s pPJ

then

{s{ | A € Pf} is a basis of C[P]"".
The restriction multiplicities are the integers ¢, given by

S\ = Z c}l,sl{. (1.14)

VEP;
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