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Abstract
Abstract.

1 Introduction

2 Preliminaries:

Let h* be a vector space over a field F and let n = dim(h*). A reflection is an element s, € GL(h*)

such that
dim((h*)**) =n—1, where (§*)%" = {z € b* | sqz = z}.

A reflection group is a finite subgroup W of GL(h*) generated by reflections.

Theorem 2.1. Let h* be a vector space and let W be a finite subgroup of GL(h*). The following
are equivalent

(a) W is a reflection group, W = (sq | So € W is a reflection).
(b) S(6*)W is a polynomial ring,  S(H*)V = C[f1, fa, ..., fnl-
(c) S(h*) is a free S(h*)W -module.
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3 The symmetric groups 9,

Let
h* =span{xy,...,zn} and W =5,,

acting by permuting z1,2,...,2,. The reflections in S, are the transpositions s;; = (4, ),
1<i<j<n,and

n

S =Cla, ..., 2, =Cleq, ..., en], where H(l—i—twi) = l—i—ZtreT.

i=1 i=1
A partition is a collection of boxes in a corner,

A=PICTURE = (\,...,\n),  withA\; > X >---> A, >0,

where \; = (number of boxes in row 7).
The group
G =GL,(C) actson g= M,(C) by conjugation.

The nilpotent cone is

N ={x € g | z is nilpotent} = |_|G'ZL‘)\,
A

where the orbits G - x) are indexed by the partitions with n boxes. Define
<A if G-z, CG-xy.

Let
M’\:Indg’;, where S\ = Sy, x--- xSy,

and define
Ky €Zz by M =Y Ky.Sk
m
where S}, are the simple S,-modules. Then the matrix K = (K),) is
(a) square,
(b) upper triangular,
(c) has diagonal entries 1.

Let p= (1 < p2 < ... < pyp) be a partition and let ' = () < pfy <---) be the conjugate
partition. Let
di(p) = py + ph+ -+ + for 1 <k <n.

and define
I,=(e.(S) | k—dp(p) <r <k, SC{xy,...,2,}, Card(S) = k).

Then, as a graded ring,



4 The reflection groups G(r,1,n)
The invariants are given by

fi:ei(xﬁq,...,x;% for1 <¢<n.

5 Type A;: the group G(2,1,1)

In this case W = (s1) with s? = 1 and h* = C-span{z;} with s;71 = —z1. Then

H = (CW & C[a:l]
The module
M(~) has basis {vy,tsv,}
with
T1Vy = Yy.
Then
T1ts, Uy = —Tg YUy + 2C05.

Thus the matrix of z; has eigenvalues v and —v and satisfies the equation 7 — 4% = 0.
Let

1
vt = —(

_ 1
2vv—l—t51v7) and v :§(v7—tslvy).

1 1
ts, vt = +oF and rvt = 5(20v+ + (2¢+27y)v7), rvT = 5((2’y —2c)vt —2cv7).

Hence v~ spans a submodule if 2y = 2c and v™ spans a submodule if 2y = —2¢. If v = —c then
zvt = —yvt =™, and, in the quotient TV =yv = —cv,
so that (1 —y)v™ = (21 + ¢)v~ = 0. On the quotient, all eigenvalues of x; are negative.
If v = 0 then
rvt =clvt +v7) and zvT = —clvT +v7),
so that 22v~ = 0 and all eigenvalues of x; are 0.

6 The reflection groups G(r,p,n)
The invariants are

fi=ei(z],...,x;), forl<i<n-—1, and fnzen(xg/p,...,xg/p).



7 The group G,

The complex reflection group Gy is the subgroup of GL2(C) generated by the elements

S = <_OZ S) and T = _\7; (i ?) , where e=e¥/8 and w=e?/3,
These elements satisfy the relations
S?=—-1, T3=1, (ST)®=1.
The invariants are
f =t +2iv3a2al + ) and z1xo(x] — 3).
The group Gy is order 24 and the elements are

1, -1, T, -T, T2, —T?

S, -5, ST, —ST, ST?  —ST?
TS, -TS, T?%S, —-T2S, T?ST, —T%ST
TST —-TST STS —-STS TST?> —TST?

Gy =

It is useful to use the following additional relations

TSTST =-S5, TSTS=-ST?  TST =ST?S,
STSTS = T2, STST = —T28, STS = —T2ST2.

The conjugacy classes are
G = {1}, Cr={T,TS,ST,—STS}, Cr2 = {T?,-TST,-T?S,-ST?},
Ci1={-1}, Cr={-T,-TS,—ST,STS}, C_p2={-T%TST,T?S,ST?}.

Cs = {S,TST? T?ST, ~TST? ~T?ST, S},
where C7 and Cp2 are the conjugacy classes of reflections. The character table of G4 is

Ci C.i Cs Cr Cop Cpo Cogpo

x1 1 1 1 1 1 1 1
xe 1 1 1 w2 Ww? w w
xs 1 1 1 w w w? w?
xa 2 -2 0 —w? W @ —w w
xs 2 -2 0 -1 1 -1 1
x6 3 3 -1 0 0 0 0
xr 2 -2 0 —w w —w? W
The ring
L,
€1, X2,
x%vxll?ym%?
S(h*) 58%,&7%1132,33113%,1‘%,
has basis  z%, 2320, 2323, 2123,
(f,t) T S N S
15 X112, 1T, T1T3,
x?,xi’xg,x%xg,
xiﬂﬂ?l’g,
z3,
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and relations

vy = —x] — Naiz3

175 = —xf — Nxja3, x5 = —afry — Naiad,

rixd = _WQ.I'l.%'Q, 2y = —a — Nofad, 2123 = 2fm0, 2§ = Na§ — 132123,

ia = Faf,  afad = Fale,, 282 = _711}{, wiad = alzs, 2§ = N2l 2l = Laba,,
J)ng =0, x?m% = %x?, x‘;’x% =0, x%m% = _7130?, x:{’xg = %x?, xlmg =0, x% =5

The graded character table of this module is

Ci Cq4 Cs Cp C_p Cp2 C_p2
no 1 1 1 1 1 1 1
m 2 -2 0 —w W v w
2 3 3 -1 0 0 0 0
ng 4 —4 0 1 -1 1 -1
m 4 4 0 w w o w? o W?
ns 4 -4 0 W W o w —w
n 3 3 -1 0 0 0 0
o 2 =2 -1 1 -1 1
ng 1 1 1w W w w

which shows that
o = X1,
m = X4,
M2 = Xe,
N3 = X4 + X7,
N4 = X3+t X6
N5 = X5 + X7,
N6 = X6,
N7 = X5,
18 = X2-

Let
N =2iV3, sothat N?=—V12.

Then, in the basis above, the representations in each degree of the coinvariant algebra are given

by: |
ns)= (3 7).

= O O
OO O —

)
%
—
n
N—
Il
OO O =
o |
-
O = O O



1 0 0 O
0 -1 0 O
0 0 0 -1
- 0 0 O
0 - 0 O
0O 0 0 =

. -3t 1 - 3
p3(T) = —— | -3i -1 —i -3
V2 g 1 L 3
i -1 i 1
0 —9; 0 %
2 . .
w —4 —21 0 —21
pa(T) = —6+N ~Ni —2—N Ni
% 0 %

10-N (-24+N)i 2+N (=2—N)i

| ((FLEN) (=) 6N (=2 N)(=i)
po(T) = +12>< )0 (4= $)(-i)
@ 15N)(—i) 1845N (14— N)(—i)

43 0 0
44 0 0
4 V2 10—5N 2+3N) 24+ N (2+N)i
(—
(—3

w2e3 ( 12 )
T) = | 8v2 7T
pr(T) ( 28 — 56 ie )



—2 -2 —2i
p(T?)=="| -4 0 4
2% -2 2

[\

242 242 242 2+2i
1| 222 2-2 —2+42 —2+42

2 —
P =3 9 9; 949 249 29
_9492i 2-92 —2492 2-2

0 —8 0 -8
2 . . .
2y _ W 47 81 0 —8i
PAT) =Tl 4 AN AN 814N _4N
_4i 8i 0 —8i

_16(1 — ) 16(1 — ) 0 0

T2y _ w? [ 16(1 +14) — 16(1 + 1) 0 0
i(T) =35 | (C40—20N)(1—i) (-8+12N)(1—4) (S—AN)(1—1i) (8—4N)(1—1i)
(40 +4N)(1+4) (=8 —8N)(1+14) (-8+4N)(1+17) (8—4N)(1+1)

—112—-8Ni  48i+8Ni  16i —8Ni
p6(T2):a 96 + 380 0 32— ¢
—16 — 120Ni —144i + 40Ni 112i + 8N

(7?) = 2 (32~ 48i + 16N +16Ni —16 _ 16; 168 4 10N,
PR = 198 \ 224 12240 — 48 4 48, 60 1 60; + 122V 122N,

ps(T?) = w

8 The dihedral groups G(r,r,2)
Let r be a positive integer and let
0=m/r and £=e?,

With respect to the orthonormal basis {e1,e2} of C? the dihedral group G(r,r,2) is the group
of 2 x 2 matrices given by

—cos2kf sin2k0 cos2kf —sin 2k0
G(r,r2) = {( sin 2k6 cos2k9> ’ (sin2k9 cos 2k6 ) ‘ k=0,1,...,r- 1}'

In this form G(r,r,2) is the group of symmetries of a regular r-gon (embedded in R? with its
center at the origin),




with s; being the reflection in H,, and s3 the reflection in H,,.
Let x1 and x5 be given by

1 —1/2
and
Ly ~1/2 1/2
= — —|— s - _> y
€2 \/5(5 x1+¢§ r2) 9 7 (e1 + ig2).

Then, with respect to the basis {z1, x2},

G(r,r,Q)z{(%€ §9k>7 <£9k £0k> ]k:zO,l,...,r—l}.

The roots are

1
B = cos(kB)e1 + sin(kf)ey = _—H(sin((k + 1)8)ay + sin(kf)az), 0<k<2r-1,
sin

and if the positive roots are

ap =pfy=¢e1= %(51/2961 — £ 2g9),

+ — <k<r-—
R B |0<k<r—1} then ay = (r_1 = —cosbeq + sinfey = %(161 — Z2),

are the simple roots with

1
sin @ (sin((k +1)0)a1 +sin(kf)az), 0<k<2r—1.

Br =

The simple reflections are

0 ¢ 01 . .
5 = <§1 0) and Sg = <1 0) , in the basis {x1, 22},
and

-10 —cos26 sin26 . )
S§1 = ( 0 1> and S = < <in 20 cos29> , in the basis {e1,e2}.

Thus €1, €9 are the eigenvectors of s; and x1, x2 are the eigenvectors of s1s9. Then
=Bk = Brk, 518k = Br—k; 520k = Br—2—k-
The elements s1, so satisfy

2
51528182 "+ = 52515251 ", s1 =1, s5 =1,

Vo Ve
r factors r factors

and t = s1s9 and s = so satisfy
t" =1, 2 =1, st =t"1s,

The invariants are given by

fi =21+ x5 =Re((e1 +ie2)"), and  fo=mzmz=—7(c] +&3).



Another choice for the invariant of degree r is

r—1
1= ] (cos(2k0)ey + sin(2k0)es).
=0

The Cartan matrix of Io(m) is

A= 2 —2cos(m/m) and A1 — 1 1 cos(m/m)Y
( ) ( )

—2cos(m/m) 2 ~ 2sin®(w/m) \cos(m/m) 1

9 Computation of the degree filtration for M,
In the graded Hecke algebra
T = f_ltslwgtsl + \@5_1/2 s, and T1 =ty Tals, + \@tSQ.

If A1 and A, are the BGG operators,

Alp:p;slp and Agp:p_aSQP,
1 2
then
k ek k k/2.k _ ¢—(k/2). .k
k_ xy —§ "y _ —k/2 a7 = ¢ L k_ ¢k k
A = (1/V2)(V2x) — €1/229) V2t < §Pxy — 12y )7 Aury =~ A,
ko k ko k
Agzh = 21— % z\/§<x1x2>, Aoxh = —Agah,
T V) (e - 1) 1 — a2 e

Let v~ be the vector in M, such that
ts, 07 = —v" and ts, 0 = —v .

Assume that
dim(My) =2({-1)+1=2(—1.

Then

{v™, zv™, x0T, 20T 250, . ,:U[i_lv_,:cg_lv_} is a basis of M,.

Suppose that
-1 -1
zivT = (ao +Y auzi + azmé) v, and  zfT = (bO + D b + bz””é) v

We want to solve for the constants ag, by and a1;, ag; and by4, bo;. The polynomial x1x9 acts by
a constant zp on M, since it is in the center of H. Also

—21(AqaiTh) — V2e D2 = (Aga).



As operators on v,

xli = xle !

= (5 1t81$2t51 + \/55_1/2t51)$€71

= (€7 oz + V2T (E T ay e, + AT

= ¢ Mg w4+ V2672 (—em N A ]

= &y, ah + €7 o (Daay s, + €N (V262 (Aray ) = V2E DT 1 Vg (AT
/-1

= —¢hy, (bo +) b + bgia:é) — (Agzh)

=1

/—1 —1
= ¢t <—b0 — Zbli{%g +b2i§ix§> -t ( bii(Arzh) +b2,(A1x2)> — (A1)

-1

=& %o+zbus ()2 + byg UZ bui — §'bo) (Ara)) — (Agaf)
=1 =1
{—1 o

=&+ ) bt a4 byt
i=1

i z_: \/i(é»ib% _ bli)(g—(%ﬂ)/%zfl i g—(2é+2i—1)/2$z;1 i 5—(2z+3)/222xzf3 i 6—(2€+2i—3)/222$z;3 T

_ \/5(5—1/2%—1 I 5—(2@—1)/21,%—1 4 5_3/2@95?_3 I é»—(2@—3)/222355—3 o)

A similar computation using that
—1 (Do ™h) — V2257 = —(Agaf),
gives that, as operators on v—,

xf = :Ulmlfl = (ts,zots, + \/§t82)m€ 1
/-1
= by + Z bul‘% + bgll’zl
i=1

+Z\fb2z—bu)( Tl bzt a3 )
—\f( Vbl b opad 3 b zpal 3 4+ 0).

Comparing coeflicients of xf_l in these two expressions gives

_ _ V2
£ oy 1 — V26V = by g — V2, so that  byy 1 = T+
Comparing coefficients of xéfl in these two expressions gives
2
e = V22 = V2, so that by 1 = v2

1+¢-C-n2

10



Comparing coefficients of xli_Z gives
boe—2 + V2(boe—1 — bre—1) = by 2 + (€ o1 — bre1)V2E D2
and, solving for by oo gives

25—1/2(1 _ 5—8-1—1)
P S e eI (L e (- )

Comparing coefficients of xé‘Z gives
bio—o+ V2(bap1 —bie 1) =bog o8 X2 4 V2>V 2y, — D2y, ),
and, solving for by oo gives

25—1/2
bio—2 = (1+ € CED/2)(1 4 ¢-1/2)

10 The graded Hecke algebra

The graded Hecke algebra is
H=CW® S(he)

with multiplication determined by the multiplication in S(hg) and the multiplication in CW
and the relations
Tts, = ts,5i(T) + Ca; (T, ), for x € pg, (10.1)

where o, ..., @, € hr are the simple co-roots. More generally, it follows that for any p € S(b.),
pts; = ts;(sip) + ca, Ni(p) and ts;p = (8ip)ts; + ca; Ai(p),

where A; : S(hg) — S(he) is the BGG-operator given by

Aip) == forpe S(h).

Q;
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