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1 The symmetric groups Sn

Let
h∗ = span{x1, . . . , xn} and W = Sn,

acting by permuting x1, x2, . . . , xn. The reflections in Sn are the transpositions sij = (i, j),
1 ≤ i < j ≤ n, and

S(h∗)W = C[x1, . . . , xn]Sn = C[e1, . . . , en], where
n∏

i=1

(1 + txi) = 1 +
n∑

i=1

trer.

A partition is a collection of boxes in a corner,

λ = PICTURE = (λ1, . . . , λn), with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0,

where λi = (number of boxes in row i).
The group

G = GLn(C) acts on g = Mn(C) by conjugation.

The nilpotent cone is
N = {x ∈ g | x is nilpotent} =

⊔
λ

G · xλ,

where the orbits G · xλ are indexed by the partitions with n boxes. Define

µ ≤ λ if G · xµ ⊆ G · xλ.

Let
Mλ = IndSn

Sλ
, where Sλ = Sλ1 × · · · × Sλn ,

and define
Kλµ ∈ Z≥0 by Mλ =

∑
µ

KλµSµ
n ,

where Sµ
n are the simple Sn-modules. Then the matrix K = (Kλµ) is

(a) square,

(b) upper triangular,

(c) has diagonal entries 1.
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Let µ = (µ1 ≤ µ2 ≤ . . . ≤ µn) be a partition and let µ′ = (µ′1 ≤ µ′2 ≤ · · · ) be the conjugate
partition. Let

dk(µ) = µ′1 + µ′2 + · · ·+ µ′k, for 1 ≤ k ≤ n.

and define

Iµ = 〈er(S) | k − dk(µ) < r ≤ k, S ⊆ {x1, . . . , xn}, Card(S) = k〉.

Then, as a graded ring,

H∗(Bµ) ∼=
C[x1, . . . , xn]

Iµ
.

2 The groups Gr,p,n

The group Gr,p,n is the group of n× n matrices with

(a) exactly one non zero entry in each row and each column,

(b) rth roots of unity as nonzero entries,

(c)
( ∏

nonzero entries

aij

)
= 1.

The exact sequence

1 −→ Gr,p,n −→ Gr,1,n −→ Z/pZ −→ 1
tλw 7−→ |λ|

where
tλw = tλ1

1 · · · tλn
n w, for w ∈ Sn, ti = diag(1, . . . , 1, e2πi/r, 1, . . . , 1)

is conceptually helpful since it shows that Gr,p,n is a normal subgroup of index p in Gr,1,n.
Let x1, . . . , xn be the orthonormal basis of V where xi is the column vector with 1 in the ith

spot and 0 elsewhere. Then, if W = Gr,p,n

S(V )W = C[pi(xr
1, . . . , x

r
n), (x1x2 · · ·xn)r/p | 1 ≤ i ≤ n− 1],

so that the generators of S(V )W are

pi(xr
1, . . . , x

r
n), 1 ≤ i ≤ n− 1, and (x1x2 · · ·xn)r/p,

and the degrees of W are
r, 2r, . . . , (n− 1)r, n(

r

p
).

3 Type A1: the group G(2, 1, 1)

In this case W = 〈s1〉 with s2
1 = 1 and h∗ = C-span{x1} with s1x1 = −x1. Then

H = CW ⊗ C[x1].

The module
M(γ) has basis {vγ , ts1vγ}
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with
x1vγ = γvγ .

Then
x1ts1vγ = −ts1γvγ + 2cvγ .

Thus the matrix of x1 has eigenvalues γ and −γ and satisfies the equation x2
1 − γ2 = 0.

Let
v+ =

1
2
(vγ + ts1vγ) and v− =

1
2
(vγ − ts1vγ).

Then

ts1v
± = ±v± and x1v

+ =
1
2
(2cv+ + (2c + 2γ)v−), x1v

− =
1
2
((2γ − 2c)v+ − 2cv−).

Hence v− spans a submodule if 2γ = 2c and v+ spans a submodule if 2γ = −2c. If γ = −c then

x1v
+ = −γv+ = cv+, and, in the quotient x1v

− = γv− = −cv−,

so that (x1 − γ)v− = (x1 + c)v− = 0. On the quotient, all eigenvalues of x1 are negative.
If γ = 0 then

x1v
+ = c(v+ + v−) and x1v

− = −c(v+ + v−),

so that x2v− = 0 and all eigenvalues of x1 are 0.

4 The groups T , O and I

The rank 2 exceptional complex reflection groups, G4, . . . , G22 in the list of Shephard and Todd,
are all built from the 4 basic groups,

I2(4) = the dihedral group of order 8

The tetrahedral group
T = the tetrahedral group (order 24) ∼= S4

is generated by the matrices

S1 =
(

i 0
0 −i

)
, T1 =

1√
2

(
ε ε3

ε ε7

)
, S1T1 =

1√
2

(
ε3 ε5

ε7 ε5

)
where i = e2πi/4 and ε = e2πi/8. These matrices satisfy the relations

S2
1 = T 3

1 = −1, (S1T1)3 = 1.

The octahedral group,

O = the octahedral group (order 48) ∼= WB3,

is generated by the matrices

S1 =
1√
2

(
i 1
−1 −i

)
, T1 =

1√
2

(
ε ε
ε3 ε7

)
, S1T1 =

(
ε3 0
0 ε5

)
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where i = e2πi/4 and ε = e2πi/8. These matrices satisfy the relations

S2
1 = T 3

1 = (S1T1)4 = −1.

The icosahedral group,
I = the icosahedral group (order 120),

is generated by the matrices

S1 =
1√
5

(
η4 − η η2 − η3

η2 − η3 η − η4

)
, T1 =

1√
5

(
η2 − η4 η4 − 1
1− η η3 − η

)
, S1T1 =

(
−η3 0
0 −η2

)
where η = e2πi/5. These matrices satisfy the relations

S2
1 = −1, T 3

1 = 1, (S1T1)5 = −1.

It is useful to note that
(a) As given, these all consist of unitary matrices (please check) so that they are subgroups of
U2(C). This means that they preserve the usual hermitian inner product on V and so we can
take x1, x2 as an orthonormal basis of V .
I ∼= WH3 is a twofold cover of the alternating group A5 and

I2(4) / T / O.

Apparently the generating invariants for T , O and I were given by F. Klein around 1900, I
think they can be found in the book of Orlik and Terao. Each of T , O and I have three basic
invariants

f, h = Hessian of f, t = Jacobian of f and h.

which have degrees
case T case O case I

4 6 12
4 8 20
6 12 30

In terms of these three invariants of T , O, or I, we can specify the generating invariants of
G4, . . . , G22:
Case T :

Group Generating invariants degrees
G4 f, t 4, 6
G5 f3, t 12, 6
G6 f, t2 4, 12
G7 f3, t2 12, 12

Case O:
Group Generating invariants degrees

G8 h, t 8, 12
G9 h, t2 8, 24
G10 h3, t 24, 12
G11 h3, t2 24, 24
G12 f, h 6, 8
G13 f2, h 12, 8
G14 f, t2 6, 24
G15 f2, t2 12, 24
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Case I:
Group Generating invariants degrees

G16 h, t 20, 30
G17 h, t2 20, 60
G18 h3, t 60, 30
G19 h3, t2 60, 60
G20 f, t 12, 30
G21 f, t2 12, 60
G22 f, h 12, 20

The groups which are exceptional real reflection groups are

Group degrees
G23 = WH3 2, 6, 10
G28 = WF4 2, 6, 8, 12
G30 = WH4 2, 12, 20, 30
G35 = WE6 2, 5, 6, 8, 9, 12
G36 = WE7 2, 6, 8, 10, 12, 14, 18
G37 = WE8 2, 8, 12, 14, 18, 20, 24, 30

Shephard-Todd refer to Coxeter, Duke Math. J, 18 (1951), 765-782, for the invariants. Are
these in Orlik-Terao? It would be good to use orthonormal bases for V as in Bourbaki Chapt.
4-6. (Group G37 is the last group in the Shephard-Todd list).

The McKay correspondence works for finite subgroups G of SL2(C) so we should work with
these to start (the rank 2 complex reflection groups are semidirect products of these by cyclic
groups). One associates a simply laced affine Dynkin diagram to each of these by making the
graph with vertices indexed by the simple G-modules and an edge from Li to Lj if Lj appears
in Li ⊗ V (note that this is a special kind of translation functor) where V is the 2 dimensional
representation of G obtained from the fact that G is a subgroup of SL2(C). If one labels the
nodes by the dimension of the irreducible then this gives the coefficients of the highest root of
the root system in terms of the simple roots.

For the cyclic group of order r

G =
{(

ξj 0
0 ξ−j

) ∣∣∣ 0 ≤ j ≤ r − 1
}

where ξ = e2πi/r,

gives the affine Dynkin diagram of type Ãr

◦ ◦ ◦ ◦

◦
1

1 1 1 1...........................................................................................................................................................................................

...........................................................................................................................................................................................
(An) (n + 1 vertices, n ≥ 2),

since it has irreducible representations Lj , 0 ≤ j ≤ r − 1, and V = L1 ⊕ L−1 and the tensor
product rule is Li ⊗ Lj = Li+j (where the indices are taken mod r. From this Dynkin diagram
one builds the Bratelli diagram of the tantalizer. For r large the tantalizer

Tk = EndG(V ⊗k)

has irreducible representations indexed by

T̂k = {k, k − 2, . . . ,−(k − 2),−k} with dim(T±(k−2j)) =
(

k

j

)
, for 0 ≤ j ≤ bk

2c.
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This seems to be isomorphic to the algebra you were looking at (rook monoid algebra for GL1?)
at the AMS meeting in Chicago (and with your student?) For r not large one should take the
piece of paper for the r large Bratelli diagram and roll it up so it becomes a cylinder with r
columns. This is the equivalent of taking the labels on the Li mod r. I haven’t thought about
what the dimension of the algebra is.

For the two fold cover of the dihedral group I2(r) of order 2r,

G =
{(

ξj 0
0 ξ−j

)
,

(
0 ξj

ξ−j 0

) ∣∣∣ 0 ≤ j ≤ r − 1
}

where ξ = e2πi/r,

(did I get this right? it should be a group of order 4r) we get the affine Dynkin diagram of type
D̃r

◦

◦

◦ ◦ ◦ ◦

◦

◦

1

1

2222

1

1

........................................................................

.......................
.......................

.......................
...

.......................
.......................

.......................
...

........................................................................

(Dn, n ≥ 5)

since G has irreducible representations
???

and
V = L1

2

and the tensor product rule is
???

For I2(4), T and I we should get the affine E6, E7 and E8 Dynkin diagrams respectively.

◦◦◦◦◦

◦

◦

12321

2

1

E6

◦◦◦◦◦◦◦

◦

123432

2

1

E7

◦◦◦◦◦◦◦◦

◦

123456

3

42

E8

These McKay tantalizers should be the algebras which give the towers for type II1 subfactors
in Ocneanu’s classification (is this in the book of Jones and Sunder on subfactors??)

5 The group G4

The complex reflection group G4 is the subgroup of GL2(C) generated by the elements

S =
(
−i 0
0 i

)
and T =

−ω2

√
2

(
ε ε3

ε ε7

)
, where ε = e2πi/8 and ω = e2πi/3.
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These elements satisfy the relations

S2 = −1, T 3 = 1, (ST )3 = 1.

The invariants are

f = x4
1 + 2i

√
3 x2

1x
2
2 + x4

2 and x1x2(x4
1 − x4

2).

The group G4 is order 24 and the elements are

G4 =


1, −1, T, −T, T 2, −T 2

S, −S, ST, −ST, ST 2, −ST 2

TS, −TS, T 2S, −T 2S, T 2ST, −T 2ST
TST −TST STS −STS TST 2 −TST 2

 .

It is useful to use the following additional relations

TSTST = −S, TSTS = −ST 2, TST = ST 2S,
STSTS = T 2, STST = −T 2S, STS = −T 2ST 2.

The conjugacy classes are

C1 = {1}, CT = {T, TS, ST,−STS}, CT 2 = {T 2,−TST,−T 2S,−ST 2},

C−1 = {−1}, C−T = {−T,−TS,−ST, STS}, C−T 2 = {−T 2, TST, T 2S, ST 2}.

CS = {S, TST 2, T 2ST,−TST 2,−T 2ST,−S},

where CT and CT 2 are the conjugacy classes of reflections. The character table of G4 is

C1 C−1 CS CT C−T CT 2 C−T 2

χ1 1 1 1 1 1 1 1
χ2 1 1 1 ω2 ω2 ω ω
χ3 1 1 1 ω ω ω2 ω2

χ4 2 −2 0 −ω2 ω2 −ω ω
χ5 2 −2 0 −1 1 −1 1
χ6 3 3 −1 0 0 0 0
χ7 2 −2 0 −ω ω −ω2 ω3

The ring

S(h∗)
〈f, t〉

has basis

1,
x1, x2,
x2

1, x1x2, x
2
2,

x3
1, x

2
1x2, x1x

2
2, x

3
2,

x4
1, x

3
1x2, x

2
1x

2
2, x1x

3
2,

x5
1, x

4
1x2, x

3
1x

2
2, x

2
1x

3
2,

x6
1, x

5
1x2, x

4
1x2,

x7
1, x

6
1x2,

x8
1,
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and relations

x4
2 = −x4

1 −Nx2
1x

2
2

x1x
4
2 = −x5

1 −Nx3
1x

2
2, x5

2 = −x4
1x2 −Nx2

1x
3
2,

x3
1x

3
2 = −2

N x5
1x2, x2

1x
4
2 = −x6

1 −Nx4
1x

2
2, x1x

5
2 = x5

1x2, x6
2 = Nx6

1 − 13x4
1x

2
2,

x5
1x

2
2 = N

2 x7
1, x4

1x
3
2 = −2

N x6
1x2, x3

1x
4
2 = −1

7 x7
1, x2

1x
5
2 = x6

1x2, x1x
6
2 = N

14x7
1, x7

2 = 14
N x6

1x2,

x7
1x2 = 0, x6

1x
2
2 = N

14x8
1, x5

1x
3
2 = 0, x4

1x
4
2 = −1

7 x8
1, x3

1x
6
2 = N

14x8
1, x1x

7
2 = 0, x8

2 = x8
1.

The graded character table of this module is

C1 C−1 CS CT C−T CT 2 C−T 2

η0 1 1 1 1 1 1 1
η1 2 −2 0 −ω2 ω2 −ω ω
η2 3 3 −1 0 0 0 0
η3 4 −4 0 1 −1 1 −1
η4 4 4 0 ω ω ω2 ω2

η5 4 −4 0 ω2 −ω2 ω −ω
η6 3 3 −1 0 0 0 0
η7 2 −2 0 −1 1 −1 1
η8 1 1 1 ω2 ω2 ω ω

which shows that
η0 = χ1,
η1 = χ4,
η2 = χ6,
η3 = χ4 + χ7,
η4 = χ3 + χ6

η5 = χ5 + χ7,
η6 = χ6,
η7 = χ5,
η8 = χ2.

Let
N = 2i

√
3, so that N2 = −

√
12.

Then, in the basis above, the representations in each degree of the coinvariant algebra are given
by:

ρ1(S) =
(
−i 0
0 i

)
,

ρ2(S) =

−1 0 0
0 1 0
0 0 1



ρ3(S) =


i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i


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ρ4(S) =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1



ρ5(S) =


−i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 i


ρ6(S) =

−1 0 0
0 1 0
0 0 −1


ρ7(S) =

(
i 0
0 −i

)
ρ8(S) = (1)

ρ1(T ) =
−ω2ε√

2

(
1 i
1 −i

)

ρ2(T ) =
ωε2

2

1 i −1
2 0 2
1 −i −1

 ,

ρ3(T ) =
ε

2
√

2


−i 1 i −1
−3i 1 −i 3
−3i −1 −i −3
−3i −1 −i −3
−i −1 i 1



ρ4(T ) =
ω2

4


0 −2i 0 2i
−4 −2i 0 −2i

−6 + N −Ni −2−N Ni
−4 2i 0 2i



ρ5(T ) =
ωε

4
√

2


−4 4i 0 0
4 4i 0 0

10− 5N (2 + 3N)i 2 + N (2 + N)i
10−N (−2 + N)i 2 + N (−2−N)i


ρ6(T ) =

1
8

(−14 + N)(−i) 6−N (−2−N)(−i)
(−40

N + 12)(−i) 0 (−4− 8
N )(−i)

(2− 15N)(−i) 18 + 5N (14−N)(−i)


ρ7(T ) =

(
ω2ε3

8
√

2
− 4 + 2N (−12

7 − 2
7N)

28− 56
N −4i− 24

N i

)

ρ8(T ) =
ω

16
(−8 + 4N)
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ρ2(T 2) =
ω2

4

−2i −2i −2i
−4 0 4
2i −2i 2i



ρ3(T 2) =
1
8


2 + 2i 2 + 2i 2 + 2i 2 + 2i
2− 2i 2− 2i −2 + 2i −2 + 2i
−2− 2i 2 + 2i 2 + 2i 2− 2i
−2 + 2i 2− 2i −2 + 2i 2− 2i



ρ4(T 2) =
ω2

16


0 −8 0 −8
4i 8i 0 −8i

4 + 4N −4N −8 + 4N −4N
−4i 8i 0 −8i



ρ5(T 2) =
ω2

32


−16(1− i) 16(1− i) 0 0

16(1 + i)− 16(1 + i) 0 0
(−40− 20N)(1− i) (−8 + 12N)(1− i) (8− 4N)(1− i) (8− 4N)(1− i)
(40 + 4N)(1 + i) (−8− 8N)(1 + i) (−8 + 4N)(1 + i) (8− 4N)(1 + i)


ρ6(T 2) =

1
64

 −112− 8Ni 48i + 8Ni 16i− 8Ni
96 + 360

N 0 32− 66
N

−16− 120Ni −144i + 40Ni 112i + 8Ni


ρ7(T 2) =

ω

128

(
32− 48i + 16N + 16Ni −116

7 − 116
7 i + 16N

7 + 16N
7 i

−224 + 224i− 448
N + 448

N i −60 + 60i + 122N
3 − 122N

3 i

)
ρ8(T 2) = ω

6 The dihedral groups G(r, r, 2)

Let r be a positive integer and let

θ = π/r and ξ = ei2θ.

With respect to the orthonormal basis {ε1, ε2} of C2 the dihedral group G(r, r, 2) is the group
of 2× 2 matrices given by

G(r, r, 2) =
{(

− cos 2kθ sin2kθ
sin 2kθ cos 2kθ

)
,

(
cos 2kθ − sin 2kθ
sin 2kθ cos 2kθ

) ∣∣ k = 0, 1, . . . , r − 1
}

.

In this form G(r, r, 2) is the group of symmetries of a regular r-gon (embedded in R2 with its
center at the origin),

ids1 s2

s2s1

s1s2

s1s2s1

s2s1s2s1s2s1s2

...........................................................................................................

...........................................................................................................

...........................................................................................................

...........................................................................................................

....................
....................

....................
....................

....................
.......

....................
....................
....................
....................
....................
.......

....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
....................
........

. . . . . . . . . . . . . . . . . .

..
..
..
..
..
..
..
..
....................

. . . . . . . . . . . . . . .

...............
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with s1 being the reflection in Hα1 and s2 the reflection in Hα2 .
Let x1 and x2 be given by

ε1 =
1√
2
(ξ1/2x1 − ξ−1/2x2),

ε2 =
1√
2
(ξ1/2x1 + ξ−1/2x2),

and

x1 =
ξ−1/2

√
2

(ε1 − iε2),

x2 = −ξ1/2

√
2

(ε1 + iε2).

Then, with respect to the basis {x1, x2},

G(r, r, 2) =
{(

ξk 0
0 ξ−k

)
,

(
0 ξk

ξ−k 0

)
| k = 0, 1, . . . , r − 1

}
.

The roots are

βk = cos(kθ)ε1 + sin(kθ)ε2 =
1

sin θ

(
sin((k + 1)θ)α1 + sin(kθ)α2

)
, 0 ≤ k ≤ 2r − 1,

and if the positive roots are

R+ = {βk | 0 ≤ k ≤ r − 1} then
α1 = β0 = ε1 = 1√

2
(ξ1/2x1 − ξ−1/2x2),

α2 = βr−1 = − cos θε1 + sin θε2 = 1√
2
(x1 − x2),

are the simple roots with

βk =
1

sin θ

(
sin((k + 1)θ)α1 + sin(kθ)α2

)
, 0 ≤ k ≤ 2r − 1.

The simple reflections are

s1 =
(

0 ξ
ξ−1 0

)
and s2 =

(
0 1
1 0

)
, in the basis {x1, x2},

and

s1 =
(
−1 0
0 1

)
and s2 =

(
− cos 2θ sin 2θ
sin 2θ cos 2θ

)
, in the basis {ε1, ε2}.

Thus ε1, ε2 are the eigenvectors of s1 and x1, x2 are the eigenvectors of s1s2. Then

−βk = βr+k, s1βk = βr−k, s2βk = βr−2−k.

The elements s1, s2 satisfy

s1s2s1s2 · · ·︸ ︷︷ ︸
r factors

= s2s1s2s1 · · ·︸ ︷︷ ︸
r factors

, s2
1 = 1, s2

2 = 1,

and t = s1s2 and s = s2 satisfy

tr = 1, s2 = 1, st = t−1s,

The invariants are given by

f1 = xr
1 + xr

2 = Re((ε1 + iε2)r), and f2 = x1x2 = −1
2
(ε2

1 + ε2
2).
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Another choice for the invariant of degree r is

f ′1 =
r−1∏
i=0

(cos(2kθ)ε1 + sin(2kθ)ε2).

The Cartan matrix of I2(m) is

A =
(

2 −2 cos(π/m)
−2 cos(π/m) 2

)
and A−1 =

1
2 sin2(π/m)

(
1 cos(π/m)

cos(π/m) 1

)
.
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