Reflection groups

Arun Ram
Department of Mathematics
University of Wisconsin
Madison, WI 53706
ram@math.wisc.edu

1 Definition of a reflection group

Let V be a finite dimensional complex vector space of dimension n > 0. Let $\langle , \rangle \colon V \times V \to \mathbb{C}$ be a Hermitian form on V, i.e. such that

$$\langle x, y \rangle = \overline{\langle y, x \rangle}, \qquad \text{for all } x, y \in V,$$

$$\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle \qquad \langle x, ay + bz \angle = \bar{a} \langle x, y \rangle + \bar{b} \langle x, z \rangle,$$

where \bar{a} is the complex conjugate of a.

Let $\alpha \in V$ and let $s_{\alpha,\lambda} \colon V \to V$ be the reflection in the hyperplane

$$H_{\alpha} = \{ x \in V \mid \langle x, \alpha \rangle = 0 \}$$

with eigenvalue λ . Then

(1)
$$s_{\alpha,\lambda}(x) = x + (\lambda - 1) \frac{x,\alpha}{\langle \alpha, \alpha \rangle} \alpha$$

- (2) $s_{\alpha,\lambda}s_{\alpha,\mu} = s_{\alpha,\lambda\mu}$,
- (3) $\langle s_{\alpha,\lambda}x, s_{\alpha,\lambda}y\rangle = \langle x,y\rangle$ for all $x,y \in V$ if and only if $\lambda\bar{\lambda} = 1$.
- (4) Let $f: V \to V$ be such that $\langle fx, fy \rangle = \langle x, y \rangle$ for all $x, y \in V$. Then

$$s_{f(\alpha),\lambda} = f s_{\alpha,\lambda} f^{-1}.$$

Proof. (1) Write $x = x_1 \alpha + x_2$ with $x_1 \in \mathbb{C}$ and $x_2 \in (\mathbb{C}\alpha)^{\perp}$. Then

$$s_{\alpha,\lambda}(x) = \lambda x_1 + x_2$$

and

$$x + (\lambda - 1)\frac{\langle x, \alpha \rangle}{\langle \alpha, \alpha \rangle}\alpha = x_1\alpha + x_2 + (\lambda - 1)\frac{\langle x, \alpha \rangle}{\langle \alpha, \alpha \rangle}\alpha = x_1\alpha + x_2 + \lambda x_1\alpha - x_1\alpha = \lambda x_1\alpha + x_2.$$

- (2) $s_{\alpha,\lambda}s_{\alpha,\mu}(x) = s_{\alpha,\lambda}(\mu x_1\alpha + x_2) = \lambda \mu x_1\alpha + x_2 = s_{\alpha,\lambda\mu}(x)$.
- (3) $\langle \lambda x_1 \alpha + x_2, \lambda y_1 \alpha + y_2 \rangle = \lambda \bar{\lambda} \langle \alpha, \alpha \rangle x_1 y_1 + \langle x_2, y_2 \rangle$ and $\langle x_1 \alpha + x_2, y_1 \alpha + y_2 \rangle = x_1 y_1 \langle \alpha, \alpha \rangle + \langle x_2, y_2 \rangle$. If $x_2 = y_2 = 0$ and $x_1 y_1 = 1$ we get $\lambda \bar{\lambda} = 1$.

$$(4) f s_{\alpha,\lambda} f^{-1} = f \left(f^{-1}(x) + (\lambda - 1) \frac{f^{-1}x,\alpha}{\langle \alpha,\alpha \rangle} \alpha \right) = x + (\lambda - 1) \frac{f^{-1}x,f^{-1}f\alpha}{\langle f\alpha,f\alpha \rangle} f \alpha = s_{f\alpha,\lambda}.$$

Let \mathfrak{h}^* be a vector space over a field \mathbb{F} and let $n = \dim(\mathfrak{h}^*)$. A reflection is an element $s_{\alpha} \in GL(\mathfrak{h}^*)$ such that

$$\dim((\mathfrak{h}^*)^{s_{\alpha}}) = n - 1, \quad \text{where} \quad (\mathfrak{h}^*)^{s_{\alpha}} = \{x \in \mathfrak{h}^* \mid s_{\alpha}x = x\}.$$

A reflection group is a finite subgroup W of $GL(\mathfrak{h}^*)$ generated by reflections. If W is a reflection group the set

$$\mathcal{A} = \{ H_{\alpha} \mid s_{\alpha} \text{ is a reflection in } W \}$$

is the hyperplane arrangement corresponding to G. Since H_s is codimension 1

$$H_{\alpha} = \ker \alpha$$
 where $\alpha \colon V \to \mathbb{C}$

is a linear form on V. The form $\alpha \in \mathbb{C}^*$ is determined up to constant multiples.

A linear form $\alpha \colon V \to \mathbb{C}$ determines a hyperplane

$$H_{\alpha} = \{ v \in V \mid \alpha(v) = 0 \}$$

and a reflection $s_{\alpha} \colon V \to V$ by

$$s_{\alpha,\xi}(v) = v + (\xi - 1) \frac{\langle v, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha^{\vee}$$

Let V be a complex vector space of dimension n. A reflection is an element $s \in GL(V)$ such that

$$\operatorname{codim}(V^s) = 1.$$

Let $M = (q_{ij})$ be such that

- (i) $q_{ij} \in \mathbb{Z}_{\geq 2}$,
- (ii) M is symmetric,
- (iii) if q_{ij} is odd then $q_{ii} = q_{jj}$.

Let D be the graph with vertices indexed by 1, 2, ..., n with edges labeled q_{ij} and the label q_{ii} are vertex i.

$$q_{ij}$$
 q_{ii}
 q_{jj}

If $q_{ij} = 2$ we do not draw the edge between vertex i and vertex j. The Cartan matrix $A = (a_{ij}$ is given by setting

$$a_{ii} = \sin\left(\frac{\pi}{q_{ii}}\right),$$
 $a_{ij} = 0 \text{ if } q_{ij} = 2,$ $a_{ij} = -\sqrt{\cos^2(\frac{\pi}{q_{ij}}) - \sin^2\left(\frac{\pi}{2q_{ii}} - \frac{\pi}{2q_{ij}}\right)},$ if $q_{ij} > 2.$

Since $\cos^2(\pi/3) = 3/2$ and $\sin^2(\pi/4) = 1/2$ we have that

$$\cos^2\left(\frac{\pi}{q_{ij}}\right) - \sin^2\left(\frac{\pi}{2q_{ii}} - \frac{\pi}{2q_{ij}}\right) \ge \frac{1}{4}$$
 if $q_{ij} > 2$.

So A is a real symmetric matrix. The matrix A is *irreducible* if we cannot partition the index set $\{1, 2, ..., n\}$ into two proper subsets I and J such that $a_{ij} = 0$ for all $i \in I$, $j \in J$,

$$\begin{array}{ccc}
I & * & 0 \\
J & 0 & *
\end{array}$$

(also figure out how to get TeX to label the columns I and J). A is irreducible if and only if D is connected. The matrix A is of affine type if there is a vector of positive real numbers

$$m = \begin{pmatrix} m_1 \\ \vdots \\ m_n \end{pmatrix}$$
 such that $Am = 0$.

A subdiagram of D is any diagram obtained from D by

- (a) deleting some vertices (and the edges issuing from them),
- (b) decreasing the labels on some of the edges $(q_{ij} \mapsto q'_{ij})$.
- (c) decreasing the labels on some of the vertices $(q_{ii} \mapsto q'_{ii})$ such that

if
$$q'_{ij} > 2$$
 then $\left| \frac{1}{q_{ii}} - \frac{1}{q_{jj}} \right| \ge \left| \frac{1}{q'_{ii}} - \frac{1}{q'_{jj}} \right|$.

The graph D is of affine type if the corresponding Cartan matrix is of affine type.

Lemma 1.1. Let d be a diagram of affine type. Then no proper subdiagram of D is of affine type.

Proof. (a) Reducing numbers on edges of D corresponds to increasing off diagonal entries a_{ij} of A (decreasing (a_{ij})).

- (b) Reducing numbers in vertices of D corresponds to increasing diagonal entries a_{ii} of A.
- (c) Deleting vertices of D corresponds to passing to a principal submatrix.

Hence the Cartan matrix of D' is of the form B_I where $B \geq A$ (take B = A outside I). By Lemma 2, B_I is nonsingular, hence D' is not of affine type.

We can use the graph D (or the matrix M) to define a group W by generators r_1, \ldots, r_n and relations

$$r_i^{q_{ii}} = 1,$$

$$\underbrace{r_i r_j r_i \cdots}_{q_{ij} \ mathrmfactors} = \underbrace{r_j r_i r_j \cdots}_{q_{ij} \ mathrmfactors}.$$

We will define a representation of W on a space V by reflections. Let

$$V = \operatorname{span}\{\alpha_1, \dots, \alpha_n\}$$

so that the symbols $\alpha_1, \ldots, \alpha_n$ are a basis of V. Define a Hermitian form on V by

$$\langle \alpha_i, \alpha_i \rangle = a_{ii} = \sin(\frac{\pi}{q_{ii}}),$$

$$\langle \alpha_i, \alpha_j \rangle = a_{ij} = -\sqrt{\cos^2(\frac{\pi}{q_{ij}}) - \sin^2(\frac{\pi}{2q_{ii}} - \frac{\pi}{2q_{ij}})}$$

In general the formula $s_{\alpha}: V \to V$,

$$s_{\alpha,\lambda}(x) = x + (\lambda - 1) \frac{\langle x, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha, \qquad \alpha \in V, \lambda \in \mathbb{C}^*,$$

defines the reflection in the hyperplane

$$H_{\alpha} = \{ x \in V \mid \langle x, \alpha \rangle = 0 \}$$

with eigenvalue λ . The endomorphism $s_{\alpha,\lambda}$ is an isometry if and only if $\lambda \bar{\lambda} = 1$. Define a representation of W on V by

$$\begin{array}{cccc} \Phi \colon & W & \longrightarrow & GL(V) \\ & r_j & \longmapsto & s_{\alpha_j,\lambda_j} \end{array} \quad \text{where} \quad \lambda_j = e^{2\pi i/q_{jj}}.$$

This representation has \langle , \rangle as a W-invariant form and it is faithful if $\Phi(W)$ is finite. This happens exactly when the form \langle , \rangle is positive definite. (The proof of this in Koster refers to Coxeter's classifications and presentations for one direction. This is unpleasant.)

1.1 Classification of diagrams of affine type

Let D be an affine diagram.

(1) Suppose D contains a cycle (with ≥ 3 vertices). Then D has a subdiagram of the form

$$(A_n)$$
 $(n+1 \text{ vertices}, n \ge 2),$

(2) D has a branch of order ≥ 4 . Then D has a subdiagram of the form

(3) Suppose that D has 2 or more branch points of order 3. The D has a subdiagram of the form

(4) Suppose that D has one branch point of order 3 and at least one multiple bond. Then D

has a subdiagram of the form

$$A = \begin{pmatrix} \sin(\pi/p) & a & & & & & & \\ -a & 1 & -\frac{1}{2} & & & & & \\ & -\frac{1}{2} & 1 & -\frac{1}{2} & & & & \\ & & -\frac{1}{2} & 1 & -\frac{1}{2} & & & & \\ & & & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 \\ & & & & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 \\ & & & & & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 \\ & & & & & 0 & -\frac{1}{2} & 1 & 0 \\ & & & & 0 & -\frac{1}{2} & 1 & 0 \\ & & & & 0 & -\frac{1}{2} & 0 & 1 \end{pmatrix}$$

where

$$a = \sqrt{\frac{\sin(\pi/p)}{2}}.$$

(5) Suppose D has one branch point or order 3 and no mulitple bonds. Then D has a subdiagram of the form

(6) We have exhausted the possibilities where D has a branch point. Assume now that D is a

chain. If D has at least two multiple bonds it will contain one of the following diagrams

where $a = \sqrt{\frac{\sin(\pi/p)}{2}}$ and $b = \sqrt{\frac{\sin(\pi/p')}{2}}$.

where $a = -\sqrt{\frac{\sin(\pi/p)}{2}}$.

(7) Assume now that D is a chain with just one multiple bond.

(a) strength 6
$$\begin{array}{c} \left(\frac{3}{4}\right)^{1/4} \\ \frac{1}{12} \\ \frac{3}{3} \end{array} \qquad A = \begin{pmatrix} 1 & -\frac{3^{1/4}}{2^{1/2}} \\ -\frac{3^{1/4}}{2^{1/2}} & \frac{3^{1/2}}{2} \end{pmatrix}$$

(b) strength 4
$$\begin{array}{c} 1 & 2^{1/4} \\ \circ & 8 & 4 \end{array}$$

$$A = \begin{pmatrix} 1 & -2^{-1/4} \\ -2^{-1/4} & 2^{-1/2} \end{pmatrix}$$

(c) strength 3

$$A = \begin{pmatrix} 1 & -\frac{1}{2} & 0 \\ -\frac{1}{2} & 1 & -\frac{\sqrt{3}}{2} \\ 0 & -\frac{\sqrt{3}}{2} & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{1}{2} & 1 & -\frac{\sqrt{3}}{2} \\ 0 & -\frac{\sqrt{3}}{2} & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{1}{2} \end{pmatrix}$$

$$A = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$$

(d) strength 2

(8) Assume that D has no multiple bonds. Then D has a subdiagram of the form

$$\frac{1}{3} \quad \frac{\sqrt{3}}{3} \quad \frac{2}{3} \quad \frac{\sqrt{3}}{3} \quad \frac{1}{3} \quad A = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{$$

$$\begin{array}{ccc}
1 & 1 \\
6 & 6
\end{array}
\qquad A = \begin{pmatrix} \sin(\pi/6) & -\cos(\pi/3) \\
-\cos(\pi/3) & \sin(\pi/6) \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

(note that all the numbers on the vertices must be equal in this case).

2 The Chevalley-Shephard-Todd theorem

Theorem 2.1. Let \mathfrak{h}^* be a vector space and let W be a finite subgroup of $GL(\mathfrak{h}^*)$. The following are equivalent

- (a) W is a reflection group, $W = \langle s_{\alpha} \mid s_{\alpha} \in W \text{ is a reflection} \rangle$.
- (b) $S(\mathfrak{h}^*)^W$ is a polynomial ring, $S(\mathfrak{h}^*)^W = \mathbb{C}[f_1, f_2, \dots, f_n].$
- (c) $S(\mathfrak{h}^*)$ is a free $S(\mathfrak{h}^*)^W$ -module.

Let R be a local regular ring,

fm a maximal ideal, and $K = R/\mathfrak{m}$ the residue field.

The \mathbb{R}^G is a local ring with maximal ideal

$$\mathbf{m}^G = \mathbf{m} \cap R^G$$

Assume that

- (a) \mathbb{R}^G is noetherian and \mathbb{R} is a finite type \mathbb{R}^G module, and
- (b) The composition $R^G \hookrightarrow R \to k$ is surjective.

Define

$$V = \mathfrak{m}/\mathfrak{m}^2$$
 (a k vector space: the tangent space).

The action of G on R define a homomorphism $\varepsilon \colon G \to GL(V)$.

(a) Let \mathfrak{p} be a prime ideal of height 1 in R and let $s \in G$ be such that $s(\mathfrak{p}) = \mathfrak{p}$ and s operates trivially on R/\mathfrak{p} . Show that $\varepsilon(s)$ is a pseudoreflection in V. (Remark taht the image of \mathfrak{p} in $\mathfrak{m}/\mathfrak{m}^2$ is of dimension 0 or 1.

2.1 Structure theorems

Theorem 2.2.

(a) (Chevalley, Shephard-Todd) A finite group $W \subseteq \operatorname{GL}(\mathfrak{h}^*)$ is generated by reflections if and only if

$$S(\mathfrak{h}^*)^W = \mathbb{C}[I_1, \dots, I_r]$$

where I_1, \ldots, I_r are algebraically independent and homogeneous.

(b) (Solomon) Let W be a finite reflection group. Then

$$(S(\mathfrak{h}^*) \otimes \Lambda(\mathfrak{h}))^W = \mathbb{C}[I_1, \dots, I_r] \otimes \Lambda(dI_1, \dots, dI_r)$$

(see Benson page 86).

(c)
$$S(\mathfrak{h}^*) \cong \mathcal{H} \otimes S(\mathfrak{h}^*)^W$$
.

Some additional remarks:

(a) $\det \left(\frac{\partial I_j}{\partial x_j}\right) = \lambda p, \qquad \text{where} \quad p = \prod_{\alpha \in R^+} \alpha$

(b) \mathcal{H} has basis $\{h_w = \Delta_w^*(1) \mid w \in W\}$ where Δ_w are the BGG operators and $\deg(h_w) = \ell(w)$.

Theorem 2.3. (Molien theorems)

and $\lambda \in \mathbb{R}$, $\lambda \neq 0$.

(a)

$$P((S(\mathfrak{h}^*) \otimes \Lambda(\mathfrak{h}))^W; q, t) = \frac{1}{W} \sum_{w \in W} \frac{\det(1 + wq)}{\det(1 - wt)}$$

(b) $P(S(\mathfrak{h}^*)^W;t) = \frac{1}{W} \sum_{w \in W} \frac{1}{\det(1 - wt)}$

Proof.

$$\sum_{j\in\mathbb{Z}_{\geq 0}}q^{j}\mathrm{Tr}(w,\Lambda^{j}\mathfrak{h})=\prod_{i=1}^{r}(1+\lambda_{i}^{-1}q)=\det(1+w^{-1}q,\mathfrak{h}^{*}).$$

$$\sum_{j \in \mathbb{Z}_{>0}} t^j \operatorname{Tr}(w, S^j \mathfrak{h}) = \frac{1}{\det(1 - wt, \mathfrak{h}^*)} = \prod_{i=1}^r \frac{1}{(1 - \lambda_i t)}.$$

Now apply

$$\frac{1}{|W|} \sum_{w \in W} w$$

to $S(\mathfrak{h}^*) \otimes \Lambda(\mathfrak{h})$:

$$P((S(\mathfrak{h}^*) \otimes \Lambda(\mathfrak{h}))^W; q, t) = \frac{1}{|W|} \operatorname{Tr}_{q, t} \left(\sum_{w \in W} w, S(\mathfrak{h}^*) \otimes \Lambda(\mathfrak{h}) \right) = \frac{1}{|W|} \sum_{w \in W} \operatorname{Tr}_{q, t}(w, S(\mathfrak{h}^*) \otimes \Lambda(\mathfrak{h})).$$

Theorem 2.4.

$$P(S(\mathfrak{h}^*);t) = \prod_{i=1}^r \frac{1}{1-t} \qquad P(S(\mathfrak{h}^*)^W;t) = \prod_{i=1}^r \frac{1}{1-t^{d_i}} \qquad P(\mathcal{H};t) = \prod_{i=1}^r \frac{1-t^{d_i}}{1-t}$$

and

$$P((S(\mathfrak{h}^*)\otimes\Lambda(\mathfrak{h}))^W;q,t)=\prod_{i=1}^rrac{1+qt^{d_i-1}}{1-t^{d_i}}.$$

Proof. (a) is clear. (b) follows from Chevalley's theorem. (c) follows from part (c) of the structure theorem since it implies

$$P(S(\mathfrak{h}^*);t) = P(\mathcal{H};t)P(S(\mathfrak{h}^*)^W;t).$$

(d) follows from Solomon's theorem.

Let

$$d(w) = \dim(V^w) = \text{multiplicity of 1 as an eigenvalue of } w,$$

$$d_m(w) = \text{multiplicity of } e^{2\pi i/m} \text{ as an eigenvalue of } w,$$

$$\chi(m|d_i) = \begin{cases} 1, & \text{if } m \text{ divides } d_i, \\ 0, & \text{if } m \text{ does not divide } d_i. \end{cases}$$

Corollary 2.5.

(a)

$$\sum_{w \in W} t^{d_m(w)} = \prod_{i=1}^r (t^{\chi(m|d_i)} + d_i - 1).$$

(b)

$$\sum_{w \in W} t^{d(w)} = \prod_{i=1}^{r} (t + d_i - 1).$$

- (c) The number of reflections in W is $\sum_{i=1}^{r} (d_i 1)$.
- (d) $|W| = \prod_{i=1}^{r} d_i$.

Proof. (b) follows from (a) by putting m = 1. (c) follows from taking the coefficient of t^{r-1} on both sides of the identity in (b). (d) follows by putting t = 1 in (b).

(a) (following Macdonald) Replace q and t with q/ξ and t/ξ , where $\xi = e^{2\pi i/m}$. Then

$$\frac{1}{|W|} \sum_{w \in W} \frac{\det(\xi + qw)}{\det(\xi - tw)} = \prod_{i=1}^{r} \left(\frac{\xi^{d_i} + qt^{d_i - 1}}{\xi^{d_i} - t^{d_i}} \right)$$

from

$$\frac{1}{|W|} \sum_{w \in W} \frac{\det(1 + qw)}{\det(1 - tw)} = \prod_{i=1}^{r} \left(\frac{1 + qt^{d_i - 1}}{1 - t^{d_i}} \right)$$

Now let q = (1 - t)X - 1 Then

$$\frac{\det(\xi + qw)}{\det(\xi - tw)} = \prod_{i=1}^{r} \frac{(\xi + \lambda_i((1-t)X - 1))}{(\xi - \lambda_i t)}.$$

So, now take the limit as $t \to 1$. When we do this we get the result we want but we will need

$$\prod_{i=1}^{r} d_i = |W|.$$

To get this set q=0 and multiply by $(1-t)^r$ in the Molien formula to get

$$\frac{1}{|W|} \sum_{w \in W} \frac{(1-t)^r}{\det(1-tw)} = \prod_{i=1}^r \frac{1-t}{1-t^{d_i}}.$$

Now set t = 1. Then

$$LHS = \frac{1}{|W|}(1 + \sum_{w \neq 1} 0) = \frac{1}{|W|}$$
 and $RHS = \prod_{i=1}^{r} \frac{1}{d_i}$.

3 Nice formulas

3.1 Symmetric and determinantal functions

Let $S(\mathfrak{h}^*)$ be the symmetric algebra of \mathfrak{h}^* . Then

 $u^+S(\mathfrak{h}^*) = \text{symmetric polynomials}$ $u^-S(\mathfrak{h}^*) = \text{determinant symmetric polynomials}$

and, as vector spaces

$$\begin{array}{ccc}
u^+ S(\mathfrak{h}^*) & \xrightarrow{sim} & u^- S(\mathfrak{h}^*) \\
f & \longmapsto & f a_{\rho}
\end{array}$$

3.2 Weyl denominators

Theorem 3.1.

$$\sum_{w \in W} w \left(\prod_{\alpha \in R^+} \frac{1 - t_\alpha e^{-\alpha}}{1 - e^{-\alpha}} \right) = \sum_{w \in W} t_{R(w)},$$

where $\{t_{\alpha} \mid \alpha \in R^{+}\}\$ are indeterminates

$$t_E = \prod_{\alpha \in E} t_{\alpha}, \quad for \ E \subseteq R^+, \ and$$

$$R(w) = \{\alpha \in R^+ \mid w\alpha \in R^-\}.$$

Corollary 3.2.

(1)
$$\sum_{w \in W} w \left(\prod_{\alpha \in R^+} \frac{1 - te^{-\alpha}}{1 - e^{-\alpha}} \right) = \sum_{w \in W} t^{\ell(w)}.$$

(2)
$$\prod_{\alpha \in R^+} \frac{1 - t^{1 + \operatorname{ht}(\alpha)}}{1 - t^{\operatorname{ht}(\alpha)}} = \sum_{w \in W} t^{\ell(w)} \text{ where } \operatorname{ht}(\alpha) = \langle \rho^{\vee}, \alpha \rangle.$$

(3) If h_i is the number of roots of height i then

$$(h_1, h_2, \ldots) = (d_1 - 1, d_2 - 1, \ldots)^t.$$

References

[Dr1] .G. Drinfel'd, A new realization of Yangians and quantized affine algebras, Soviet Math. Dokl. **36** No, 2 (1998), 212–216.