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1 Definition of a reflection group

Let V be a finite dimensional complex vector space of dimension n > 0. Let (,): V xV — C be
a Hermitian form on V, i.e. such that

<$,y> = <y7$>7 for all T,y € v,

(az +by,z) = alw,z) + by, 2)  (z,ay +bzL = afz,y) + bz, 2),

where a is the complex conjugate of a.
Let o € V and let s, 5: V' — V be the reflection in the hyperplane

Hy={z€eV | (z,a) =0}

with eigenvalue A\. Then

x, Q)

(1) Sa,A(x):x+(>‘_1)<a a>

(2) SarSau = Sarus
(3) (8aT,sany) = (z,y) for all z,y € V if and only if AX = 1.
(4) Let f: V — V be such that (fz, fy) = (z,y) for all z,y € V. Then
Sfayn = fsanf .
Proof. (1) Write & = z1a + 2 with 21 € C and 29 € (Ca)’. Then
Sax(x) = Az + 22

and

—~

x, Q)
(o, q)

(z, @)

r+(A—1) a=xr1a+ 9+ (A —1) o0=1Ti00+To + A1 — T = AT100 + X9,

—~

a, o)

(2) sarSau(®) = sar(pria 4+ x2) = Apzia 4+ 22 = so,2, (7).
(3) (A\z1a+m2, Ay1aty2) = Ao, )r1y1+(22, y2) and (z1a+z2, y1a+y2) = 21y1(0, @) +(T2,Y2).
If xo =yo=0and z1y1 =1 we get AX = 1.

(4) foanf = F(f @) + (A= 1)L 2%0) = 2 4 (A — 1)%;afa>fa = Sfa - O

(a,@)




Let b* be a vector space over a field F and let n = dim(h*). A reflection is an element
Sq € GL(H*) such that

dim((h*)*) =n -1, where (h*)° ={x € §* | sqz = z}.

A reflection group is a finite subgroup W of GL(h*) generated by reflections. If W is a reflection
group the set
A ={H, | sq is a reflection in W'}

is the hyperplane arrangement corresponding to G. Since H is codimension 1
H, = kera where a:V —C

is a linear form on V. The form « € C* is determined up to constant multiples.
A linear form «: V — C determines a hyperplane

H,={veV|alw) =0}
and a reflection s: V — V by

(v,a)
(a, )

Sac(v) =v+ (1)

Let V' be a complex vector space of dimension n. A reflection is an element s € GL(V') such
that
codim(V?) = 1.

Let M = (g;j) be such that
() qij € Z>2,
(ii) M is symmetric,
(iii) if g;; is odd then g;; = gjj;.

Let D be the graph with vertices indexed by 1,2,...,n with edges labeled ¢;; and the label g;;

are vertex 1.
qij
O—0
qii q;5j

If ¢;j = 2 we do not draw the edge between vertex i and vertex j. The Cartan matriz A = (a;;
is given by setting

Qg5 — sin (1), aij =0if qij = 2,
qi;
T T T
a;j; = —, [cos?(—) — sin? - , if g;; > 2.
1j \/ (Qij) (2(]7,7, 2%],) v

Since cos?(7/3) = 3/2 and sin?(7/4) = 1/2 we have that

9, T L9, T ™
COS — ) — SIn —
(Qij ) (2% 2qi;

1 :
)ZZ 1fqij>2.



So A is a real symmetric matrix. The matrix A is irreducible if we cannot partition the index
set {1,2,...,n} into two proper subsets I and J such that a;; =0 forallie I, j € J,

I/ 0

J\O
(also figure out how to get TeX to label the columns I and J). A is irreducible if and only if D
is connected. The matrix A is of affine type if there is a vector of positive real numbers

my
m=| : such that Am = 0.

mn,
A subdiagram of D is any diagram obtained from D by

(a) deleting some vertices (and the edges issuing from them),

(b) decreasing the labels on some of the edges (¢;j — q;;)-

(c) decreasing the labels on some of the vertices (g;; — ¢;) such that

1

1 1
if q§j>2 then > ———‘
qii 45

— / /! :
G 9y

The graph D is of affine type if the corresponding Cartan matrix is of affine type.

Lemma 1.1. Let d be a diagram of affine type. Then no proper subdiagram of D is of affine
type.

Proof. (a) Reducing numbers on edges of D corresponds to increasing off diagonal entries a;; of
A (decreasing (ai;)).

(b) Reducing numbers in vertices of D corresponds to increasing diagonal entries a;; of A.

(c) Deleting vertices of D corresponds to passing to a principal submatrix.

Hence the Cartan matrix of D’ is of the form B; where B > A (take B = A outside I). By
Lemma 2, By is nonsingular, hence D’ is not of affine type. O

We can use the graph D (or the matrix M) to define a group W by generators ry,..., 7,
and relations
r;lu — 17 T’L'Tjri . — Tjrirj e
—— ——
qi; mathrmfactors gi; mathrmfactors

We will define a representation of W on a space V' by reflections. Let
V =span{ai,...,an}
so that the symbols aq,...,a, are a basis of V. Define a Hermitian form on V by

LT
<O¢i,Oéi> = Q4 = Sln(f),
qi;

(i, o) = ag; = —\/COSQ(W) — sin® (

Qi 2qii  2qi)

s s




In general the formula so: V — V,

8047)\(5[,‘) =x+ ()\ o 1) <IE,04>

a, o)
defines the reflection in the hyperplane
Hy={zeV | (z,a) =0}

with eigenvalue A\. The endomorphism s, ) is an isometry if and only if A\ = 1.
Define a representation of W on V' by

o: W — GL(V)

where \; = 2™/ 455
Tj L — Sa].7)\j

This representation has (,) as a W-invariant form and it is faithful if ®(W) is finite. This
happens exactly when the form (,) is positive definite. (The proof of this in Koster refers to
Coxeter’s classifications and presentations for one direction. This is unpleasant.)

1.1 Classification of diagrams of affine type

Let D be an affine diagram.
(1) Suppose D contains a cycle (with > 3 vertices). Then D has a subdiagram of the form

(A,) (n+1 vertices, n > 2),

(2) D has a branch of order > 4. Then D has a subdiagram of the form

1 1 (D4)

(3) Suppose that D has 2 or more branch points of order 3. The D has a subdiagram of the

form
2 1

’ " (Dp,n > 5)

(4) Suppose that D has one branch point of order 3 and at least one multiple bond. Then D



has a subdiagram of the form

sin(m/p) a
—a 1 -1
2
1 1
2 1o
-z 1 )
1 1
-1 1 -1 0 o
1 4 1 1
2 2 2
0 -2 1 0
0 -3 0 1

where

(5) Suppose D has one branch point or order 3 and no mulitple bonds. Then D has a subdiagram
of the form

1 2 3 2 1
O
Es
2
1
1 2 3 4 3 2 1
O O
Er
2
2 4 6 5 4 3 2 1
O O
Eg
3
1
3
1 V3
3 3 3

(6) We have exhausted the possibilities where D has a branch point. Assume now that D is a



chain. If D has at least two multiple bonds it will contain one of the following diagrams

1

/2 sin(m/p) 1

where a = Singﬂ and b = \/@‘

1 1
\/ZSin(‘rr/p) 1 \/2511’1(7\'/1)’)
Oo0———0o0——0
o 4 4 pl

where a = —\/Ln(g/p).

1
1 /2sin(xw/p’)

4p/

_1
S
1 =3
-1 1 —b
—b sin(w/p’)
—a 0

—a sin(w/p) —a

—a 1

(7) Assume now that D is a chain with just one multiple bond.

C A

(a) strength 6 23
1 91/4
(b) strength 4 4
(c) strength 3
1

31/4
T 91/2
31/4 31/2

T o1/2 2

_2—1/4
_2—1/4 2—1/2 >

(CBY n > 2)

(C3.p>3)



(d) strength 2

1 -+ 0 0 o0
-1 -2 0 0
wonz 3 3 | A=lo - 1 -1 o
o o -3 1 -3
0 0 0 -3 1
g =5 0 0
gi/4 334 2 1 a-|-3 B3
s 3 1 ’ 0 —# 1 -3
0 0 -1 1
vi 1 0
1 V32 31/4 A= -1 § -1 0
o o ¥ 1
1 V3 V2 VAR
3 3 4 3 A= (é @ \/g)
0 -3 ¢
LI (;; o)
4 a4t A=|_1 1 _2u
2 2 2
o -2 1
o \ﬁ 1
4 44 e 2 V2
_Jr )t
2 2
1 31/4
e 4

I W N

3 3 3 3 3
R sin(r/4)
4 4 4 A= | —cos(r/3)

0

—cos(m/3)
sin(7/4)
—cos(m/3)

-1 0 0 0
V3 1
Ely 0 0
1 1
-3 3 —3 00
o -1 V3 _1
2 2 \/%
1
0 - -3 7
V2 1
0 2 T2
—cos(m/3) | = | —3 3
sin(m/4) 0o -1



e A (et - (B

N[
DO —
N—

(note that all the numbers on the vertices must be equal in this case).

2 The Chevalley-Shephard-Todd theorem

Theorem 2.1. Let h* be a vector space and let W be a finite subgroup of GL(h*). The following
are equivalent

(a) W is a reflection group, W = (sq | So € W is a reflection).

(b) S(6*)V is a polynomial ring,  S(H*)V = C[f1, fa, ..., fn]-

(c) S(b*) is a free S(b*)WV -module.

Let R be a local regular ring,
fm a maximal ideal, and K = R/m the residue field.
The R is a local ring with maximal ideal
m% =mn RY.

Assume that

(a) RY is noetherian and R is a finite type R module, and

(b) The composition RY < R — k is surjective.

Define
V =m/m? (a k vector space: the tangent space).

The action of G on R define a homomorphism e: G — GL(V).

(a) Let p be a prime ideal of height 1 in R and let s € G be such that s(p) = p and s operates
trivially on R/p. Show that £(s) is a pseudoreflection in V. (Remark taht the image of p in
m/m? is of dimension 0 or 1.

2.1 Structure theorems

Theorem 2.2.

(a) (Chevalley, Shephard-Todd) A finite group W C GL(b*) is generated by reflections if and

only if
S =ClI,...,1,]

where I, ..., 1. are algebraically independent and homogeneous.

(b) (Solomon) Let W be a finite reflection group. Then
(S(h) @ AD)Y =Clh,.... L] @ A(dL, ... dI)

(see Benson page 86).
(c) S(h*) =H & S(H")".



Some additional remarks:

(a)

det (gijj) = Ap, where p= H «
a€Rt

and A € R, A # 0.
(b) H has basis {h,, = A} (1) | w € W} where A,, are the BGG operators and deg(h,,) = ¢(w).

Theorem 2.3. (Molien theorems)

(a)
P((S(67) @ A) " 30.1) = o7 w;V det(l—wt)
(b) 1 1
«\W', _ —
P(S(b ) 7t) - Wu;/det(l _wt)
Proof.
> @ Tr(w, Ah) = [J(1+ A 'q) =det(1 +w g, 7).
J€Z>o Lt
Z thr(w Sjb) = ! = f[ !
. ’ det(l - ’UJt, b*) i (1 - )\zt) .
j€Z>0 i=1
Now apply

1
w2 "
to S(h*) ® A(h):

P((S(h*) @ A(h)5q,t) = V1V|Trq,t( > w,S(h*) @ A(h))) = |1W| > Trga(w, S(h*) @ A(h)).

weWw weW

O]

Theorem 2.4.

and
T

P((S(h") @ A)"5q.6) = [

=1

1+ qtd—1
1 —tdi

Proof. (a) is clear. (b) follows from Chevalley’s theorem. (c) follows from part (c) of the
structure theorem since it implies

P(S(h*);t) = P(H:)P(S(h")";1).

(d) follows from Solomon’s theorem. O



Let

d(w) = dim(V") = multiplicity of 1 as an eigenvalue of w,

2mi/m

dp (w) = multiplicity of e as an eigenvalue of w,

1, if m divides d;,
x(mld;) = . .

0, if m does not divide d;.
Corollary 2.5.
(a)

thm :HtX(mld)+d —1).

weW i=1
(b)

S ) (¢4 d, — 1)
=1

weW

(¢) The number of reflections in W is > ;_,(d; — 1).
(d) W] =Tli= di-
Proof. (b) follows from (a) by putting m = 1. (c) follows from taking the coefficient of t"~! on
both sides of the identity in (b). (d) follows by putting ¢ = 1 in (b).
(a) (following Macdonald) Replace ¢ and t with ¢/¢ and t/&, where € = €2™/™. Then

Z det(§ +quw) H ¢ 4 gtdi—1

|W | =, det(€ — tw) £di — di

=1

from

Z det(1 + qw) :f[ 14 qtdi—1
|W| det(l—tw) 23\ 1 — tdi

Now let ¢ = (1 —¢)X — 1 Then

det(§ +qw) 17 E+X((1-H)X —1))
det (€ — tw) Zl_Il (&= \it) '

So, now take the limit as ¢t — 1. When we do this we get the result we want but we will need

[1d:= 1wl
=1

To get this set ¢ = 0 and multiply by (1 —¢)" in the Molien formula to get

r

(1—-t) 1-t¢
\W\ Z det 1 — tw) _gl—tdi'

Now set ¢t = 1. Then
1

1
LHS = 1+ 0 and RHS=1][-=.
IWI Z — W H d;

10



3 Nice formulas

3.1 Symmetric and determinantal functions
Let S(h*) be the symmetric algebra of h*. Then

uS(h*) = symmetric polynomials

u~S(h*) = determinant symmetric polynomials

and, as vector spaces ,
stm

utS(h) — u”S(hY)
f — fap
3.2 Weyl denominators
Theorem 3.1.

Sl IT 5250 ) = 3 thw

weWw aERT weW

where {t, | « € Rt} are indeterminates

tp = H ta, for EC RT, and
acl

R(w)={a € R" |wa e R }.

Corollary 3.2.

1) w11 ﬁifa =3 v,

weW a€Rt weW
1— t1+ht Z
(2) H EErToN Z ) where ht(a) = (p¥, ).
a€ERT weW

(3) If h; is the number of roots of height i then

(i, ha,...) = (dy — 1,dy — 1,...)".

11
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