The Chevalley-Shephard-Todd theorem

Arun Ram Department of Mathematics University of Wisconsin Madison, WI 53706 ram@math.wisc.edu

Abstract

Abstract.

1 Definition of a reflection group

Let \mathfrak{h}^* be a vector space over a field \mathbb{F} and let $n = \dim(\mathfrak{h}^*)$. A reflection is an element $s_{\alpha} \in GL(\mathfrak{h}^*)$ such that

 $\dim((\mathfrak{h}^*)^{s_\alpha}) = n - 1, \qquad \text{where} \quad (\mathfrak{h}^*)^{s_\alpha} = \{x \in \mathfrak{h}^* \mid s_\alpha x = x\}.$

A reflection group is a finite subgroup W of $GL(\mathfrak{h}^*)$ generated by reflections.

Theorem 1.1. Let \mathfrak{h}^* be a vector space and let W be a finite subgroup of $GL(\mathfrak{h}^*)$. The following are equivalent

- (a) W is a reflection group, $W = \langle s_{\alpha} | s_{\alpha} \in W$ is a reflection \rangle .
- (b) $S(\mathfrak{h}^*)^W$ is a polynomial ring, $S(\mathfrak{h}^*)^W = \mathbb{C}[f_1, f_2, \dots, f_n].$
- (c) $S(\mathfrak{h}^*)$ is a free $S(\mathfrak{h}^*)^W$ -module.

References

[Dr1] .G. Drinfel'd, A new realization of Yangians and quantized affine algebras, Soviet Math. Dokl. 36 No, 2 (1998), 212–216.

Keywords:

MSC 2000: 20C08 (05E10)

Research supported in part by National Security Agency grant MDA904-01-1-0032 and NSF Grant ????.