Crystals

Arun Ram
Department of Mathematics
University of Wisconsin
Madison, WI 53706
ram@math.wisc.edu

May 17, 2005

1 The path model

1.1 Paths

Let $\lambda \in P$. The straight line path to λ is the map

$$p_{\lambda} \colon [0,1] \to \mathfrak{h}_{\mathbb{R}}^* \quad \text{given by} \quad p_{\lambda}(t) = \lambda t.$$
 (1.1)

Let $\ell_1, \ell_2 \in \mathbb{R}_{\geq 0}$. The concatenation of maps $p_1 \colon [0, \ell_1] \to \mathfrak{h}_{\mathbb{R}}^*$ and $p_2 \colon [0, \ell_2] \to \mathfrak{h}_{\mathbb{R}}^*$ is the map $p_1 \otimes p_2 \colon [0, \ell_1 + \ell_2] \to \mathfrak{h}_{\mathbb{R}}^*$ given by

$$(p_1 \otimes p_2)(t) = \begin{cases} p_1(t), & \text{for } t \in [0, \ell_1], \\ p_1(\ell_1) + p_2(t - \ell_1), & \text{for } t \in [\ell_1, \ell_1 + \ell_2]. \end{cases}$$
(1.2)

Let $r, \ell \in \mathbb{R}_{\geq 0}$. The r-stretch of a map $p \colon [0, \ell] \to \mathfrak{h}_{\mathbb{R}}^*$ is the map $p \colon [0, r\ell] \to \mathfrak{h}_{\mathbb{R}}^*$ given by

$$(rp)(t) = r \cdot p(t/r). \tag{1.3}$$

The reverse of a map $p \colon [0,\ell] \to \mathfrak{h}_{\mathbb{R}}^*$ is the map $p^* \colon [0,\ell] \to \mathfrak{h}_{\mathbb{R}}^*$ given by

$$p^{*}(t) = p(\ell - t) - p(\ell). \tag{1.4}$$

The weight of a map $p: [0,\ell] \to \mathfrak{h}_{\mathbb{R}}^*$ is the endpoint of p,

$$\operatorname{wt}(p) = p(\ell). \tag{1.5}$$

Let

 B_{univ} be the set of maps generated by the straight line paths by operations of concatenation, reversing and stretching.

A path is an element $p: [0,\ell] \to \mathfrak{h}_{\mathbb{R}}^*$ in B_{univ} . concatenation, reversing and stretching. Let B be a set of paths (a subset of B_{univ}). The character of B is the element of $\mathbb{C}[P]$ given by

$$\operatorname{char}(B) = \sum_{p \in B} X^{\operatorname{wt}(p)}.$$
(1.6)

A crystal is a set of paths B that is closed under the action of the root operators

$$\tilde{e}_i : B_{\text{univ}} \longrightarrow B_{\text{univ}} \cup \{0\}$$
 and $\tilde{f}_i : B_{\text{univ}} \longrightarrow B_{\text{univ}} \cup \{0\}, \quad 1 \leq i \leq n,$

which are defined and constructed below, in Proposition 1.3 and Theorem 1.4. The $crystal\ graph$ of B is the graph with

vertices
$$B$$
 and labeled edges $p' \stackrel{i}{\longleftarrow} p$ if $p' = \tilde{f}_i p$.

1.2 i-strings

Let B be a crystal. Let $p \in B$ and fix i $(1 \le i \le n)$. The *i-string* of p is the set of paths $S_i(p)$ generated from p by applications of the operators \tilde{e}_i and \tilde{f}_i .

The head of $S_i(p)$ is $h \in S_i(p)$ such that $\tilde{e}_i h = 0$.

The tail of $S_i(p)$ is $t \in S_i(p)$ such that $\tilde{f}_i t = 0$.

The weights of the paths in $S_i(p)$ are

$$\operatorname{wt}(t) = s_i \operatorname{wt}(h) = \operatorname{wt}(h) - \langle \operatorname{wt}(h), \alpha_i^{\vee} \rangle \alpha_i, \dots, \operatorname{wt}(h) - 2\alpha_i, \operatorname{wt}(h) - \alpha_i, \operatorname{wt}(h),$$

and if

$$d_{+}(p_{\alpha_{i}}) = (\text{distance from } h \text{ to } p)$$
 and $d_{-}(p_{\alpha_{i}}) = (\text{distance from } p \text{ to } t),$

so that

$$\tilde{e}_i^{d_+(p_{\alpha_i})}p = h$$
 and $\tilde{f}_i^{d_-(p_{\alpha_i})}p = t$,

the crystal graph of $S_i(p)$ is

$$|\longleftarrow \qquad d_{-}(p_{\alpha_{i}}) \qquad \longrightarrow |$$

$$t \stackrel{i}{\leftarrow} \tilde{e}_{i}t \stackrel{i}{\leftarrow} \qquad \cdots \qquad \stackrel{i}{\leftarrow} \tilde{f}_{i}p \stackrel{i}{\leftarrow} p \stackrel{i}{\leftarrow} \tilde{e}_{i}p \stackrel{i}{\leftarrow} \qquad \cdots \qquad \stackrel{i}{\leftarrow} \tilde{f}_{i}h \stackrel{i}{\leftarrow} h$$

$$|\longleftarrow \qquad d_{+}(p_{\alpha_{i}}) \qquad \longrightarrow |$$

1.3 Highest weight paths

A highest weight path is a path p such that

$$\tilde{e}_i p = 0$$
, for all $1 \le i \le n$.

A highest weight path is a path p such that, for each $1 \le i \le n$, p is the head of the i-string $S_i(p)$. Thus $\langle p(t), \alpha_i^{\vee} \rangle > -1$ for all t and all $1 \le i \le n$. So a path p is a highest weight path if and only if

$$p \subseteq C - \rho$$
, where $C - \rho = \{\mu - \rho \mid \mu \in C\}$.

For the root system of type C_2 the picture is

If p is a highest weight path with $\operatorname{wt}(p) \in P$ then, necessarily, $\operatorname{wt}(p) \in P^+$. The following theorem gives an expression for the character of a crystal in terms of the basis $\{s_\lambda \mid \lambda \in P^+\}$ of $\mathbb{C}[P]^W$.

Theorem 1.1. Let B be a crystal. Then

$$\operatorname{char}(B) = \sum_{\substack{p \in B \\ p \subseteq C - \rho}} s_{\operatorname{wt}(p)},$$

 $\operatorname{wt}(s_i p) = s_i \operatorname{wt}(p).$

where the sum is over highest weight paths $p \in B$.

Proof. Fix $i, 1 \le i \le n$. If $p \in B$ let $s_i p$ be the element of the *i*-string of p which satisfies

$$H_{\alpha_i}$$
 $s_i p$
 p
 h

Then $s_i(s_i p) = p$ and

$$s_i \operatorname{char}(B) = \sum_{p \in B} X^{s_i \operatorname{wt}(p)} = \sum_{p \in B} X^{\operatorname{wt}(s_i p)} = \operatorname{char}(B).$$

Hence $char(B) \in \mathbb{C}[P]^W$.

Let

$$\varepsilon = \sum_{w \in W} \det(w)w$$
, so that $a_{\mu} = \varepsilon(X^{\mu})$, for $\mu \in P$.

Since $char(B) \in \mathbb{C}[P]^W$,

$$\operatorname{char}(B)a_{\rho} = \operatorname{char}(B)\varepsilon(X^{\rho}) = \varepsilon(\operatorname{char}(B)X^{\rho})$$

and

$$\operatorname{char}(B) = \frac{1}{a_{\rho}} \operatorname{char}(B) a_{\rho} = \frac{\varepsilon(\operatorname{char}(B)X^{\rho})}{a_{\rho}}$$

$$= \sum_{p \in B} \frac{\varepsilon(X^{\operatorname{wt}(p)+\rho})}{a_{\rho}} = \sum_{p \in B} \frac{a_{\operatorname{wt}(p)+\rho}}{a_{\rho}} = \sum_{p \in B} s_{\operatorname{wt}(p)}.$$
(1.7)

There is some cancellation which can occur in this sum. Assume $p \in B$ such that $p \not\subseteq C - \rho$ let t be the first time that p leaves the cone $C - \rho$. In other words let $t \in \mathbb{R}_{>0}$ be minimal such that there exists an i with

$$p(t) \in H_{\alpha_i - \delta}$$
 where $H_{\alpha_i - \delta} = \{\lambda \in \mathfrak{h}_{\mathbb{R}}^* \mid \langle \lambda, \alpha_i^{\vee} \rangle = -1\}.$

Let i be the minimal index such that the point $p(t) \in H_{\alpha_i - \delta}$ and define $s_i \circ p$ to be the element of the i-string of p such that

$$\operatorname{wt}(s_i \circ p) = s_i \circ p.$$

Note that since $\langle p_i(t), \alpha_i^{\vee} \rangle = -1$, p is not the head of its i-string and $s_i \circ p$ is well defined. If $q = s_i \circ p$ then the first time t that q leaves the cone $C - \rho$ is the same as the first time that p leaves the cone $C - \rho$ and p(t) = q(t). Thus $s_i \circ q = p$ and $s_i \circ (s_i \circ p) = p$. Since

$$s_{\text{wt}(s_i \circ p)} = s_{s_i \circ \text{wt}(p)} = -s_{\text{wt}(p)}$$

the terms $s_{\text{wt}(s,\circ p)}$ and $s_{\text{wt}(p)}$ cancel in the sum (1.7). Thus

$$\operatorname{char}(B) = \sum_{\substack{p \in B \\ p \subseteq C - \rho}} s_{\operatorname{wt}(p)}.$$

Theorem 1.2. Recall the notations from (???) and (???) in the section on Schur functions. For each $\lambda \in P^+$ fix a highest weight path p_{λ}^+ with endpoint λ and let

$$B(\lambda)$$
 be the crystal generated by p_{λ}^{+} ,

Let $\lambda, \mu, \nu \in P^+$ and let $J \subseteq \{1, 2, \dots, n\}$. Then

$$s_{\lambda} = \sum_{p \in B(\lambda)} X^{\operatorname{wt}(p)}, \qquad s_{\mu} s_{\nu} = \sum_{\substack{q \in B(\nu) \\ p_{\mu}^{+} \otimes q \subseteq C - \rho}} s_{\mu + \operatorname{wt}(q)}, \qquad and \qquad s_{\lambda} = \sum_{\substack{p \in B(\lambda) \\ p \subseteq C_{J} - \rho_{J}}} s_{\operatorname{wt}(p)}^{J}.$$

Proof. (a) The path p_{λ}^+ is the unique highest weight path in $B(\lambda)$. Thus, by Theorem 1.1, $\operatorname{char}(B(\lambda)) = s_{\lambda}$.

(b) By Theorem 1.4c the set

$$B(\mu) \otimes B(\nu) = \{ p \otimes q \mid p \in B(\mu), q \in B(\nu) \}$$

is a crystal. Since $\operatorname{wt}(p \otimes q) = \operatorname{wt}(p) + \operatorname{wt}(q)$,

$$s_{\mu}s_{\nu} = \operatorname{char}(B(\mu))\operatorname{char}(B(\nu)) = \operatorname{char}((B(\mu) \otimes B(\nu))$$

$$= \sum_{\substack{p \otimes q \in B(\mu) \otimes B(\nu) \\ p \otimes q \subseteq C - \rho}} s_{\operatorname{wt}(p) + \operatorname{wt}(q)} = \sum_{\substack{q \in B(\nu) \\ p_{\mu}^{+} \otimes q \subseteq C - \rho}} s_{\mu + \operatorname{wt}(q)},$$

where the third equality is from Theorem 1.1 and the last equality is because the path p_{μ}^{+} has $\operatorname{wt}(p_{\mu}^{+}) = \mu$ and is the only highest weight path in $B(\mu)$.

(c) A *J-crystal* is a set of paths B which is closed under the operators \tilde{e}_j , \tilde{f}_j , for $j \in J$. Since $s_{\lambda} = \operatorname{char}(B(\lambda))$ the statement follows by applying Theorem 1.1 to $B(\lambda)$ viewed as a *J*-crystal.

1.4 Root operators for the rank 1 case

Let

$$B^{\otimes k} = \{b_1 \otimes \cdots \otimes b_k \mid b_i \in B\}, \quad \text{where} \quad B = \{+1, -1, 0\}.$$

Define

$$\tilde{f} \colon B^{\otimes k} \to B^{\otimes k} \cup \{0\} \quad \text{and} \quad \tilde{e} \colon B^{\otimes k} \to B^{\otimes k} \cup \{0\}$$

as follows. Let $b = b_1 \otimes \cdots \otimes b_k \in B^{\otimes k}$. Ignoring 0s successively pair adjacent unpaired (-1, +1) pairs to obtain a sequence of unpaired +1s and -1s

$$+1$$
 $+1$ $+1$ $+1$ $+1$ $+1$ $+1$ -1 -1 -1

(after pairing and ignoring 0s). Then

 $\tilde{f}b = \text{same as } b \text{ except the rightmost unpaired } +1 \text{ is changed to } -1,$ $\tilde{e}b = \text{same as } b \text{ except the leftmost unpaired } -1 \text{ is changed to } +1.$

If there is no unpaired +1 after pairing then $\tilde{f}b = 0$. If there is no unpaired -1 after pairing then $\tilde{e}b = 0$. Let $\mathfrak{h}_{\mathbb{R}}^*=\mathbb{R}.$ By identifying +1, -1, 0 with the straight line paths

respectively, the set $B^{\otimes k}$ is viewed as a set of maps $p:[0,k]\to\mathfrak{h}_{\mathbb{R}}^*$. Let $B^{\otimes 0}=\{\phi\}$ with $\tilde{f}\phi=0$ and $\tilde{e}\phi=0$. Then

$$T_{\mathbb{Z}}(B) = \bigsqcup_{k \in \mathbb{Z}_{>0}} B^{\otimes k} \tag{1.8}$$

is a set of paths closed under products, reverses and r-stretches $(r \in \mathbb{Z}_{\geq 0})$ and the action of \tilde{e} and \tilde{f} . For $p \in B$ let

$$d_{+}(p) = \text{(number of unpaired } +1\text{s after pairing)},$$

 $d_{-}(p) = \text{(number of unpaired } -1\text{s after pairing)},$

These are the nonnegative integers such that

$$\tilde{f}^{d_{+}(p)}p \neq 0$$
 and $\tilde{f}^{d_{+}(p)+1}p = 0$, and $\tilde{e}^{d_{-}(p)}p \neq 0$ and $\tilde{e}^{d_{-}(p)+1}p = 0$.

See the picture in (1.9), below.

Proposition 1.3.

- (a) If $p \in T_{\mathbb{Z}}(B)$ and $\tilde{f}p \neq 0$ then $\tilde{e}\tilde{f}p = p$. If $p \in T_{\mathbb{Z}}(B)$ and $\tilde{e}p \neq 0$ then $\tilde{f}\tilde{e}p = p$.
- (b) If $p \in T_{\mathbb{Z}}(B)$ and $r \in \mathbb{Z}_{>0}$ then

$$\tilde{f}^r(rp) = r(\tilde{f}p)$$
 and $\tilde{e}^r(rp) = r(\tilde{e}p)$.

(c) If $p, q \in T_{\mathbb{Z}}(B)$ then

$$\tilde{f}(p \otimes q) = \begin{cases} \tilde{f}p \otimes q, & \text{if } d_{-}(p) > d_{+}(q), \\ p \otimes \tilde{f}q, & \text{if } d_{-}(p) \leq d_{+}(q), \end{cases} \quad \text{and} \quad \tilde{e}(p \otimes q) = \begin{cases} \tilde{e}p \otimes q, & \text{if } d_{-}(p) \geq d_{+}(q), \\ p \otimes \tilde{e}q, & \text{if } d_{-}(p) < d_{+}(q). \end{cases}$$

(d) If $p \in T_{\mathbb{Z}}(B)$ and $r \in \mathbb{Z}_{\geq 0}$ then

$$\tilde{f}(p^*) = (\tilde{e}p)^*$$
 and $\tilde{e}(p^*) = (\tilde{f}p)^*$.

Proof. (a), (b) and (d) are direct consequences of the definition of the operators \tilde{e} and \tilde{f} and the definitions of r-stretching and reversing.

(c) View p and q as paths. After pairing, p and q have the form

where the left traveling portion of the path corresponds to -1s and the right traveling portion of the path corresponds to +1s. Then

$$\tilde{f}(p \otimes q) = \begin{cases} \tilde{f}p \otimes q, & \text{if } p \otimes q = \\ p \otimes \tilde{f}q, & \text{if } p \otimes q = \end{cases}, \text{ i.e. } d_{-}(p) > d_{+}(q),$$

$$\text{, i.e. } d_{-}(p) \leq d_{+}(q),$$

since, in the first case, the leftmost unpaired +1 is from p and, in the second case, it is from q.

Use property (b) in Proposition 1.3 to extend the operators \tilde{e} and \tilde{f} to operators on $T_{\mathbb{O}}(B)$, the set of maps $p:[0,\ell]\to\mathbb{R}$ generated by B under the operations of concatentation, reversing and r-stretching $(r \in \mathbb{Q}_{\geq 0})$. Then, by completion, the operators \tilde{e} and \tilde{f} extend to operators on

the set of maps $p: [0, \ell] \to \mathbb{R}$ generated by B by operations of concatenation, reversing and r-stretching $(r \in \mathbb{R}_{\geq 0})$.

A rank 1 path is an element of $T_{\mathbb{R}}(B)$.

The root operators in the general case

Recall that

is the set of maps generated by the straight line paths by operations of concatenation, reversing and stretching.

and a path is an element $p: [0,\ell] \to \mathfrak{h}_{\mathbb{R}}^*$ in B_{univ} . Let $p: [0,\ell] \to \mathbb{R}$ be a path and let $\alpha \in \mathbb{R}^+$ be a positive root. The map

$$p_{\alpha} \colon [0, \ell] \to \mathbb{R}$$
 given by $p_{\alpha}(t) = \langle p(t), \alpha^{\vee} \rangle$

is a rank 1 path. Define operators

$$\tilde{e}_{\alpha} \colon B_{\mathrm{univ}} \to B_{\mathrm{univ}} \cup \{0\} \quad \text{and} \quad \tilde{f}_{\alpha} \colon B_{\mathrm{univ}} \to B_{\mathrm{univ}} \cup \{0\}$$

by

$$\tilde{e}_{\alpha}p = p + \frac{1}{2}(\tilde{e}p_{\alpha} - p_{\alpha})\alpha$$
 and $\tilde{f}_{\alpha}p = p - \frac{1}{2}(p_{\alpha} - \tilde{f}p_{\alpha})\alpha$, (1.10)

and set

$$\tilde{e}_i = \tilde{e}_{\alpha_i}$$
 and $\tilde{f}_i = \tilde{f}_{\alpha_i}$, for $1 \le i \le n$. (1.11)

The dark parts of the path p are reflected (in a mirror parallel to H_{α_i}) to form the path f_ip . The left dotted line is the affine hyperplane parallel to H_{α_i} which intersects the path p at its leftmost (most negative) point (relative to H_{α_i}) and the distance between the dotted lines is exactly the distance between lines of lattice points in P parallel to H_{α_i} .

Theorem 1.4. There are unique operators \tilde{e}_i and \tilde{f}_i such that

- (a) If $p \in B_{univ}$ and $\tilde{f}_i p \neq 0$ then $\tilde{e}_i \tilde{f}_i p = p$. If $p \in B_{univ}$ and $\tilde{e}_i p \neq 0$ then $\tilde{f}_i \tilde{e}_i p = p$.
- (b) If $\lambda \in P$ and $\langle \lambda, \alpha_i^{\vee} \rangle \in \mathbb{Z}_{>0}$ then

$$\tilde{f}_i^{\langle \lambda, \alpha_i^{\vee} \rangle} p_{\lambda} = p_{s_i \lambda}.$$

(c) If $p, q \in B_{\text{univ}}$ then

$$\tilde{f}_i(p \otimes q) = \begin{cases} \tilde{f}_i p \otimes q, & \text{if } d_-(p_{\alpha_i}) > d_+(q_{\alpha_i}), \\ p \otimes \tilde{f}_i q, & \text{if } d_-(p_{\alpha_i}) \leq d_+(q_{\alpha_i}), \end{cases}$$
 and

$$\tilde{e}_i(p \otimes q) = \begin{cases} \tilde{e}_i p \otimes q, & \text{if } d_-(p_{\alpha_i}) \ge d_+(q_{\alpha_i}), \\ p \otimes \tilde{e}_i q, & \text{if } d_-(p_{\alpha_i}) < d_+(q_{\alpha_i}). \end{cases}$$

(d) If $p \in B_{\text{univ}}$ and $r \in \mathbb{Z}_{\geq 0}$ then

$$\tilde{f}_i^r(rp) = r(\tilde{f}_i p)$$
 and $\tilde{e}_i^r(rp) = r(\tilde{e}_i p)$.

(e) If $p \in B_{\text{univ}}$ then

$$\tilde{f}_i p^* = (\tilde{e}_i p)^*$$
 and $\tilde{e}_i p^* = (\tilde{f}_i p)^*$.

(f) If $p \in B_{\text{univ}}$ and $\tilde{f}_i p \neq 0$ then $\operatorname{wt}(\tilde{f}_i p) = \operatorname{wt}(p) - \alpha_i$. If $p \in B_{\text{univ}}$ and $\tilde{e}_i p \neq 0$ then $\operatorname{wt}(\tilde{e}_i p) = \operatorname{wt}(p) + \alpha_i$.

References

The path model, developed in [Li1-3], was motivated by [La] (Lakshmibai, Hyderabad) and [Ka] (Kashiwara, original crystal papers).