The path model 12.01.05

Arun Ram
Department of Mathematics
University of Wisconsin
Madison, WI 53706
ram@math.wisc.edu

February 17, 2005

1 Crystals

1.1 Paths

Let $\lambda \in P$. The straight line path to λ is the map

$$p_{\lambda} \colon [0,1] \to \mathfrak{h}_{\mathbb{R}}^*$$
 given by $p_{\lambda}(t) = \lambda t$.

Let $\ell_1, \ell_2 \in \mathbb{R}_{\geq 0}$. The concatenation of maps $p_1 : [0, \ell_1] \to \mathfrak{h}_{\mathbb{R}}^*$ and $p_2 : [0, 1] \to \mathfrak{h}_{\mathbb{R}}^*$ is the map $p_1 \otimes p_2 : [0, \ell_1 + \ell_2] \to \mathfrak{h}_{\mathbb{R}}^*$ given by

$$(p_1 \otimes p_2)(t) = \begin{cases} p_1(t), & \text{for } t \in [0, \ell_1], \\ p_1(\ell_1) + p_2(t - \ell_1), & \text{for } t \in [\ell_1, \ell_1 + \ell_2]. \end{cases}$$

Let $r, \ell \in \mathbb{R}_{\geq 0}$. The r-stretch of a map $p: [0, \ell] \to \mathfrak{h}_{\mathbb{R}}^*$ is the map $p: [0, \ell] \to \mathfrak{h}_{\mathbb{R}}^*$ given by

$$(rp)(t) = r \cdot p(t/r).$$

The reverse of a map $p \colon [0,\ell] \to \mathfrak{h}_{\mathbb{R}}^*$ is the map $p^* \colon [0,\ell] \to \mathfrak{h}_{\mathbb{R}}^*$ given by

$$p^*(t) = p(\ell - t) - p(\ell).$$

The weight of a map $p: [0,\ell] \to \mathfrak{h}_{\mathbb{R}}^*$ is the endpoint of p,

$$\operatorname{wt}(p) = p(\ell).$$

Let $B_{\rm univ}$ be the set of maps generated by the straight line paths under concatenation, reversing and stretching. A path is an element of $B_{\rm univ}$. A crystal is a set of paths B that is closed under the action of the root operators

$$\tilde{e}_i \colon B_{\mathrm{univ}} \longrightarrow B_{\mathrm{univ}} \cup \{0\}$$
 and $\tilde{f}_i \colon B_{\mathrm{univ}} \longrightarrow B_{\mathrm{univ}} \cup \{0\},$ $1 \le i \le n$,

which are defined and constructed below, in Theorem ??? and in ???, respectively.

Let B be a set of paths (a subset of B_{univ}). The crystal graph of B is the graph with

vertices B

edges
$$p' \stackrel{i}{\longleftarrow} p$$
 if $p' = \tilde{f}_i p$.

The *character* of B is

$$\mathrm{char}(B) = \sum_{p \in B} X^{\mathrm{wt}(p)}.$$

Research supported in part by NSF Grant ????.

1.2 i-strings

Let B be a crystal. Let $p \in B$ and fix $i \ (1 \le i \le n)$. The *i-string* of p is the set of paths $S_i(p)$ generated from p by applications of the operators \tilde{e}_i and \tilde{f}_i . The head of $S_i(p)$ is $h \in S_i(p)$ such that $\tilde{e}_i h = 0$. The tail of $S_i(p)$ is $t \in S_i(p)$ such that $\tilde{f}_i t = 0$. The crystal graph of $S_i(p)$ is

$$t \stackrel{i}{\longleftarrow} \tilde{e}_i t \stackrel{i}{\longleftarrow} \cdots \stackrel{i}{\longleftarrow} \tilde{f}_i p \stackrel{i}{\longleftarrow} p \stackrel{i}{\longleftarrow} \tilde{e}_i p \stackrel{i}{\longleftarrow} \cdots \stackrel{i}{\longleftarrow} \tilde{f}_i h \stackrel{i}{\longleftarrow} h$$

and the weights of the paths in $S_i(p)$ are

$$\operatorname{wt}(t) = s_i \operatorname{wt}(h) = \operatorname{wt}(h) - \langle \operatorname{wt}(h), \alpha_i^{\vee} \rangle \alpha_i, \ldots, \operatorname{wt}(h) - 2\alpha_i, \operatorname{wt}(h) - \alpha_i, \operatorname{wt}(h).$$

Let

$$d_{+}(p_{\alpha_i}) = (\text{distance from } h \text{ to } p)$$
 and $d_{-}(p_{\alpha_i}) = (\text{distance from } p \text{ to } t),$

where distance is measured in number of edges.

1.3 Highest weight paths

A highest weight path is a path p such that

$$\tilde{e}_i p = 0$$
, for all $1 \le i \le n$.

A highest weight path is a path p such that for each $1 \le i \le n$, p is the head of the i-string $S_i(p)$. Thus $\langle p(t), \alpha_i^{\vee} \rangle > -1$ for all t and all $1 \le i \le n$ (CAN WE PUT \ge HERE?). So a path p is a highest weight path if and only if

$$p \subseteq C - \rho$$
, where $C - \rho = \{\mu - \rho \mid \mu \in C\}$.

PICTURES

If p is a highest weight path with $\operatorname{wt}(p) \in P$ then, necessarily, $\operatorname{wt}(p) \in P^+$. The following theorem gives an expression for the character of a crystal in terms of the basis $\{s_{\lambda} \mid \lambda \in P^+\}$ of $\mathbb{C}[P]^W$.

Theorem 1.1. Let B be a crystal. Then

$$\operatorname{char}(B) = \sum_{\substack{p \in B \\ p \subseteq C - \rho}} s_{\operatorname{wt}(p)},$$

where the sum is over highest weight paths $p \in B$.

Proof. Fix $i, 1 \le i \le n$. If $p \in B$ let $s_i p$ be the element of the *i*-string of p which satisfies

$$\operatorname{wt}(s_i p) = s_i \operatorname{wt}(p).$$

Then $s_i(s_i p) = p$ and

$$s_i \operatorname{char}(B) = \sum_{p \in B} X^{s_i \operatorname{wt}(p)} = \sum_{p \in B} X^{\operatorname{wt}(s_i p)} = \operatorname{char}(B).$$

Hence

$$\mathrm{char}(B) \in \mathbb{C}[P]^W.$$

Let

$$\varepsilon = \sum_{w \in W} \det(w)w$$
, so that $a_{\mu} = \varepsilon(X^{\mu})$, for $\mu \in P$.

Since $char(B) \in \mathbb{C}[P]^W$,

$$\operatorname{char}(B)a_{\rho} = \operatorname{char}(B)\varepsilon(X^{\rho}) = \varepsilon(\operatorname{char}(B)X^{\rho})$$

and

$$\operatorname{char}(B) = \frac{1}{a_{\rho}} \operatorname{char}(B) a_{\rho} = \frac{\varepsilon(\operatorname{char}(B)X^{\rho})}{a_{\rho}}$$
$$= \sum_{p \in B} \frac{\varepsilon(X^{\operatorname{wt}(p)+\rho})}{a_{\rho}} = \sum_{p \in B} \frac{a_{\operatorname{wt}(p)+\rho}}{a_{\rho}}$$
$$= \sum_{p \in B} s_{\operatorname{wt}(p)}.$$

There is some cancellation which can occur in this sum. If $p \in B$ such that $p \not\subseteq C - \rho$ let t be the first time that p leaves the cone $C - \rho$. In other words let $t \in \mathbb{R}_{>0}$ be minimal such that there exists an i with

$$p(t) \in H_{\alpha_i - \delta} \qquad (\langle p(t), \alpha_i^{\vee} \rangle = -1).$$

Let i be the minimal index such that the point $p(t) \in H_{\alpha_i - \delta}$ and let $s_i \circ p$ be the element of the i-string of p such that

$$wt(s_i \circ p) = s_i \circ p.$$

$$PICTURE$$

Note that since $\langle p_i(t), \alpha_i^{\vee} \rangle = -1$, p is not the head of its i-string and $s_i \circ p$ is well defined. If $q = s_i \circ p$ then the first time t that q leaves the cone $C - \rho$ is the same as the first time that p leaves the cone $C - \rho$ and p(t) = q(t). Thus $s_i \circ q = p$ and $s_i \circ (s_i \circ p) = p$. Since

$$s_{\text{wt}(s_i \circ p)} = s_{s_i \circ \text{wt}(p)} = -s_{\text{wt}(p)}$$

the terms $s_{\text{wt}(s_i \circ p)}$ and $s_{\text{wt}(p)}$ cancel in the sum (*) and so

$$\operatorname{char}(B) = \sum_{\substack{p \in B \\ p \subseteq C - \rho}} s_{\operatorname{wt}(p)}.$$

If $\lambda \in P^+$ let $B(\lambda)$ be the crystal generated by the straight line path p_{λ} with endpoint λ .

Corollary 1.2. $s_{\lambda} = \operatorname{char}(B(\lambda))$.

Proof. The path p_{λ} is the unique highest weight path in $B(\lambda)$. Thus, by Theorem ???, $\operatorname{char}(B(\lambda)) = s_{\lambda}$.

Corollary 1.3. Let $\mu, \nu \in P^+$. Then

$$s_{\mu}s_{\nu} = \sum_{\substack{q \in B(\nu) \\ p_{\mu} \otimes q \subseteq C - \rho}} s_{\mu + \operatorname{wt}(q)}.$$

3

Proof. By (???) the set

$$B(\mu) \otimes B(\nu) = \{ p \otimes q \mid p \in B(\mu), q \in B(\nu) \}$$

is a crystal. Since $\operatorname{wt}(p \otimes q) = \operatorname{wt}(p) + \operatorname{wt}(q)$,

$$s_{\mu}s_{\nu} = \operatorname{char}(B(\mu))\operatorname{char}(B(\nu)) = \operatorname{char}((B(\mu) \otimes B(\nu))$$

$$= \sum_{\substack{p \otimes q \in B(\mu) \times B(\nu) \\ p \otimes q \subseteq C - \rho}} s_{\operatorname{wt}(p) + \operatorname{wt}(q)} = \sum_{\substack{q \in B(\nu) \\ p_{\mu} \otimes q \subseteq C - \rho}} s_{\mu + \operatorname{wt}(q)},$$

where the third equality is from Theorem ??? and the last equality is because the path p_{μ} has $\operatorname{wt}(p_{\mu}) = \mu$ and is the only highest weight path in $B(\mu)$.

Fix $J \subseteq \{1, 2, ..., n\}$. The subgroup of W generated by the reflections in the hyperplanes H_{α_j} $(j \in J)$,

$$W_J = \langle s_j \mid j \in J \rangle$$
, acts on $\mathfrak{h}_{\mathbb{R}}^*$, with $C_J = \{ \mu \in \mathfrak{h}_{\mathbb{R}}^* \mid \langle \mu, \alpha_i^{\vee} \rangle \geq 0 \text{ for } j \in J \}$

as a fundamental chamber. The group W_J acts on P and

$$\mathbb{C}[P]^{W_J} = \{ f \in \mathbb{C}[P] \mid wf = f \text{ for } w \in W_J \}$$

is a subalgebra of $\mathbb{C}[P]$ which contains $\mathbb{C}[P]^W.$ If

$$P_J^+ = P \cap \overline{C_J}, \qquad \rho_J = \sum_{j \in J} \omega_j,$$

and

$$a^J_{\mu} = \sum_{w \in W_J} \det(w) w X^{\mu}, \quad \text{for } \mu \in P, \quad \text{and} \quad s^J_{\lambda} = \frac{a^J_{\lambda + \rho_J}}{a^J_{\rho_J}}, \quad \text{for } \lambda \in P,$$

then

$$\{s_{\lambda}^{J} \mid \lambda \in P_{J}^{+}\}\$$
is a basis of $\mathbb{C}[P]^{W_{J}}.$

A *J-crystal* is a set of paths B which is closed under the operators \tilde{e}_j , \tilde{f}_j , for $j \in J$.

Corollary 1.4. Let $\lambda \in P^+$. Then

$$s_{\lambda} = \sum_{\substack{p \in B(\lambda) \\ p \subseteq C_I - \rho_I}} s_{\text{wt}(p)}^{I}.$$

Proof. Since $s_{\lambda} = \operatorname{char}(B(\lambda))$ this corollary follows by applying Theorem ??? to $B(\lambda)$ viewed as a J-crystal.

1.4 The root operators

If $p: [0.\ell] \to \mathfrak{h}_{\mathbb{R}}^*$ and α_i is a simple root define

$$p_{\alpha_i} \colon [0,\ell] \to \mathbb{R}$$
 given by $p_{\alpha_i}(t) = \langle p(t), \alpha_i^{\vee} \rangle$.

Theorem 1.5. There are unique operators \tilde{e}_i and \tilde{f}_i such that

(1) If $p \in B_{\text{univ}}$ and $\tilde{f}_i p \neq 0$ then $\tilde{e}_i \tilde{f}_i p = p$.

If $p \in B_{\text{univ}}$ and $\tilde{e}_i p \neq 0$ then $\tilde{f}_i \tilde{e}_i p = p$.

(2) If $\lambda \in P$ and $\langle \lambda, \alpha_i^{\vee} \rangle \in \mathbb{Z}_{>0}$ then

$$\tilde{f}_i^{\langle \lambda, \alpha_i^{\vee} \rangle} p_{\lambda} = p_{s_i \lambda}.$$

(3) If $p, q \in B_{\text{univ}}$ then

$$\tilde{f}_i(p \otimes q) = \begin{cases} \tilde{f}_i p \otimes q, & \text{if } d_-(p_{\alpha_i}) > d_+(q_{\alpha_i}), \\ p \otimes \tilde{f}_i q, & \text{if } d_-(p_{\alpha_i}) \leq d_+(q_{\alpha_i}), \end{cases} \quad and$$

$$\tilde{e}_i(p \otimes q) = \begin{cases} \tilde{e}_i p \otimes q, & \text{if } d_-(p_{\alpha_i}) \ge d_+(q_{\alpha_i}), \\ p \otimes \tilde{e}_i q, & \text{if } d_-(p_{\alpha_i}) < d_+(q_{\alpha_i}). \end{cases}$$

(4) If $p \in B_{\text{univ}}$ and $r \in \mathbb{Z}_{\geq 0}$ then

$$\tilde{f}_i^r(rp) = r(\tilde{f}_i p)$$
 and $\tilde{e}_i^r(rp) = r(\tilde{e}_i p)$.

(5) If $p \in B_{\text{univ}}$ then

$$\tilde{f}_i(p^*) = (\tilde{e}_i p)^*$$
 and $\tilde{e}_i(p^*) = (\tilde{f}_i p)^*$.

(6) If $p \in B_{\text{univ}}$ and $\tilde{f}_i p \neq 0$ then $\operatorname{wt}(\tilde{f}_i p) = \operatorname{wt}(p) - \alpha_i$.

If $p \in B_{\text{univ}}$ and $\tilde{e}_i p \neq 0$ then $\operatorname{wt}(\tilde{e}_i p) = \operatorname{wt}(p) + \alpha_i$.

1.5 The rank 1 case

Let

$$B^{\otimes k} = \{b_1 \otimes \cdots \otimes b_k \mid b_i \in B\}, \quad \text{where} \quad B = \{+1, -1, 0\}.$$

Define

$$\tilde{f} \colon B^{\otimes k} \to B^{\otimes k} \cup \{0\} \quad \text{and} \quad \tilde{e} \colon B^{\otimes k} \to B^{\otimes k} \cup \{0\}$$

as follows. Let $b = b_1 \otimes \cdots \otimes b_k \in B^{\otimes k}$. Ignoring 0s successively pair adjacent unpaired (-1, +1) pairs to obtain a sequence of unpaired +1s and -1s

$$+1$$
 $+1$ $+1$ $+1$ $+1$ $+1$ $+1$ -1 -1 -1

(after pairing and ignoring 0s). Then

 $\tilde{f}b = \text{same as } b \text{ except the rightmost unpaired } + 1 \text{ is changed to } -1, \tilde{e}b = \text{same as } b \text{ except the leftmost unpaired}$

If there is no unpaired +1 after pairing then $\tilde{f}b = 0$. If there is no unpaired -1 after pairing then $\tilde{e}b = 0$.

Let $\mathfrak{h}_{\mathbb{R}}^* = \mathbb{R}$. By identifying +1, -1, 0 with the straight line paths

respectively, the set $B^{\otimes k}$ is viewed as a set of maps $p:[0,k]\to \mathfrak{h}_{\mathbb{R}}^*$. Let $B^{\otimes 0}=\{\phi\}$ with $\tilde{f}\phi=0$ and $\tilde{e}\phi=0$. Then

$$T_{\mathbb{Z}}(B) = \bigsqcup_{k \in \mathbb{Z}_{\geq 0}} B^{\otimes k}$$

is a set of paths closed under products, reverses and r-stretches $(r \in \mathbb{Z}_{\geq 0})$ and the action of \tilde{e} and \tilde{f} . For $p \in B$ let

 $d_{+}(p) = \text{(number of unpaired } +1\text{s after pairing)}, d_{-}(p) = \text{(number of unpaired } -1\text{s after pairing)},$

These are the nonnegative integers such that

$$\begin{split} \tilde{f}^{d_+(p)} p &\neq 0 \quad \text{and} \quad \tilde{f}^{d_+(p)+1} p = 0, \quad \text{and} \\ \tilde{e}^{d_-(p)} p &\neq 0 \quad \text{and} \quad \tilde{e}^{d_-(p)+1} p = 0. \end{split}$$

Proposition 1.6. (1) If $p \in B$ and $\tilde{f}p \neq 0$ then $\tilde{e}\tilde{f}p = p$.

If $p \in B$ and $\tilde{e}p \neq 0$ then $\tilde{e}\tilde{e}p = p$.

(2) If $p \in B$ and $r \in \mathbb{Z}_{\geq 0}$ then

$$\tilde{f}^r(rp) = r(\tilde{f}p)$$
 and $\tilde{e}^r(rp) = r(\tilde{e}p)$.

(3) If $p, q \in B$ then

$$\tilde{f}(p \otimes q) = \begin{cases} \tilde{f}p \otimes q, & \text{if } d_{-}(p) > d_{+}(q), \\ p \otimes \tilde{f}q, & \text{if } d_{-}(p) \leq d_{+}(q), \end{cases} \quad \text{and} \quad \tilde{e}(p \otimes q) = \begin{cases} \tilde{e}p \otimes q, & \text{if } d_{-}(p) \geq d_{+}(q), \\ p \otimes \tilde{e}q, & \text{if } d_{-}(p) < d_{+}(q). \end{cases}$$

(4) If $p \in B$ and $r \in \mathbb{Z}_{\geq 0}$ then

$$\tilde{f}(p^*)(\tilde{p})^*$$
 and $\tilde{e}(p^*)(\tilde{f}p)^*$.

Proof. (1), (2) and (4) are direct consequences of the definition of the operators \tilde{e} and \tilde{f} and the definitions of r-stretching and reversing.

(3) View p and q as paths. After pairing, p and q have the form

$$p = PICTURE$$
 and $q = PICTURE$

where the left traveling portion of the path corresponds to -1s and the right traveling portion of the path corresponds to +1s. Then

$$\tilde{f}(p \otimes q) = \begin{cases} \tilde{f}p \otimes q, & \text{if } p \otimes q = PICTURE, \text{ i.e. } d_{-}(p) > d_{+}(q), \\ p \otimes \tilde{f}q, & \text{if } p \otimes q = PICTURE, \text{ i.e. } d_{-}(p) \leq d_{+}(q), \end{cases}$$

since, in the first case the leftmost unpaired +1 is from p and, in the second case it is from q. \square

Use property (2) in Proposition ??? to extend the operators \tilde{e} and \tilde{f} to operators on $T_{\mathbb{Q}}(B)$, the set of maps $p:[0,\ell]\to\mathbb{R}$ generated by B under the operations of concatentation, reversing and r-stretching $(r\in\mathbb{Q}_{\geq 0})$. Then, by completion, the operators \tilde{e} and \tilde{f} extend to operators on

 $T_{\mathbb{R}}(B)$, the set of maps $p \colon [0,\ell] \to \mathbb{R}$ generated by B under concatenation, reversing and rstretching $(r \in \mathbb{R}_{\geq 0})$.

A rank 1 path is an element of $T_{\mathbb{R}}(B)$.

1.6 The general case

Let

 B_{univ} be the set of maps generated by the straight line paths under concatenation, reversing and stretching.

A path is an element $p: [0, \ell] \to \mathfrak{h}_{\mathbb{R}}^*$ in B_{univ} .

Let $p:[0,\ell]\to\mathbb{R}$ be a path and let $\alpha\in R^+$ be a positive root. The map

$$p_{\alpha} \colon [0, \ell] \to \mathbb{R}$$
 given by $p_{\alpha}(t) = \langle p(t), \alpha^{\vee} \rangle$

is a rank 1 path. Define operators

$$\tilde{e}_{\alpha} \colon B_{\mathrm{univ}} \to B_{\mathrm{univ}} \cup \{0\}$$
 and $\tilde{f}_{\alpha} \colon B_{\mathrm{univ}} \to B_{\mathrm{univ}} \cup \{0\}$

by

$$\tilde{e}_{\alpha}p = p + \frac{1}{2}(\tilde{e}p_{\alpha} - p_{\alpha})\alpha$$
 and $\tilde{f}_{\alpha}p = p - \frac{1}{2}(p_{\alpha} - \tilde{f}p_{\alpha})\alpha$,

and set

$$\tilde{e}_i = \tilde{e}_{\alpha_i}$$
 and $\tilde{f}_i = \tilde{f}_{\alpha_i}$, for $1 \le i \le n$.

1.7 Tableaux

A letter is an element of $B(\varepsilon_1) = \{\varepsilon_1, \dots, \varepsilon_n\}$ and a word of length k is an element of

$$B(\varepsilon_1)^{\otimes k} = \{ \varepsilon_{i_1} \otimes \cdots \varepsilon_{i_k} \mid 1 \leq i_1, \dots, i_k \leq n \}.$$

For $1 \le i \le n-1$ define

$$\tilde{f}_i \colon B(\varepsilon_1)^{\otimes k} \longrightarrow B(\varepsilon_1)^{\otimes k} \cup \{0\} \quad \text{and} \quad \tilde{e}_i \colon B(\varepsilon_1)^{\otimes k} \longrightarrow B(\varepsilon_1)^{\otimes k} \cup \{0\}$$

as follows. For $b \in B(\varepsilon_1)^{\otimes k}$,

place +1 under each ε_i in b,

place -1 under each ε_{i+1} in b, and

place 0 under each ε_j , $j \neq i, i + 1$.

Ignoring 0s, successively pair adjacent (-1, +1) pairs to obtain a sequence of unpaired +1s and -1s

$$+1$$
 $+1$ $+1$ $+1$ $+1$ $+1$ $+1$ -1 -1 -1

(after pairing and ignoring 0s). Then

 $\tilde{f}_i b = \text{same as } b \text{ except the letter corresponding to the rightmost unpaired } + 1 \text{ is changed to } \varepsilon_{i+1},$ $\tilde{e}_i b = \text{same as } b \text{ except the letter corresponding to the leftmost unpaired } - 1 \text{ is changed to } \varepsilon_i.$

If there is no unpaired +1 after pairing then $\tilde{f}_i b = 0$. If there is no unpaired -1 after pairing then $\tilde{e}_i b = 0$.

Let λ be a partition with k bokes and let

$$B(\lambda) = \{\text{column strict tableaux of shape } \lambda\}.$$

The set $B(\lambda)$ is a subset of $B(\varepsilon_1)^{\otimes k}$ via the injection

$$\begin{array}{ccc} B(\lambda) & \hookrightarrow & B(\varepsilon_1)^{\otimes k} \\ p & \longmapsto & \text{(the arabic reading of } p) \\ PICTURE & \longmapsto & \varepsilon_{i_1} \varepsilon_{i_2} \cdots \varepsilon_{i_k} \end{array}$$

where the arabic reading of p is $\varepsilon_{i_1}\varepsilon_{i_2}\cdots\varepsilon_{i_k}$ if the entries of p are i_1,i_2,\ldots,i_k read right to left by rows with the rows read in sequence beginning with the first row.

Proposition 1.7. Let $\lambda = (\lambda_1, \dots, \lambda_n)$ be a partition with k boxes. Then $B(\lambda)$ is the subset of $B(\varepsilon_1)^{\otimes k}$ generated by

$$p_{\lambda} = \underbrace{\varepsilon_{1}\varepsilon_{1}\cdots\varepsilon_{1}}_{\lambda_{1} \text{ factors}} \underbrace{\varepsilon_{2}\varepsilon_{2}\cdots\varepsilon_{2}}_{\lambda_{2} \text{ factors}} \cdots \underbrace{\varepsilon_{n}\varepsilon_{n}\cdots\varepsilon_{n}}_{\lambda_{n} \text{ factors}}$$

under the action of the operators \tilde{e}_i , \tilde{f}_i , $1 \leq i \leq n$.

2 The nil-affine Hecke algebra

The nil-affine Hecke algebra is the algebra K_T given by

generators
$$T_w$$
, $w \in W$, and X^{λ} , $\lambda \in P$

and relations

$$\begin{split} T_{s_i}T_w &= \begin{cases} T_{s_iw}, & \text{if } s_iw > w, \\ T_w, & \text{if } s_iw < w, \end{cases} \\ X^\lambda X^\mu &= X^{\lambda+\mu}, \\ X^\lambda T_{s_i} &= T_{s_i}X^{s_i\lambda} + \frac{X^\lambda - X^{s_i\lambda}}{1 - X^{-\alpha_i}}. \end{split}$$

Make a "change of variable" and let

$$\tilde{T}_{s_i} = q^{-1} T_{s_i}$$

in the affine Hecke algebra \tilde{H} . For $w \in W$ let $\tilde{T}_w = q^{-\ell(w)}T_w$ so that $\tilde{T}_w = \tilde{T}_{s_{i_1}}\tilde{T}_{s_{i_2}}\cdots\tilde{T}_{s_{i_p}}$ for a reduced expression $w = s_{i_1}s_{i_2}\cdots s_{i_p}$. In terms of the generators

$$T_w, w \in W, \text{ and } X^{\lambda}, \lambda \in P,$$

the affine Hecke algebra H is given by the relations

$$\tilde{T}_{s_i}\tilde{T}_w = \begin{cases} \tilde{T}_{s_iw}, & \text{if } s_iw > w, \\ q^{-2}\tilde{T}_{s_iw} + (1 - q^{-2})\tilde{T}_w, & \text{if } s_iw < w, \end{cases}$$
$$X^{\lambda}X^{\mu} = X^{\lambda+\mu},$$
$$X^{\lambda}\tilde{T}_{s_i} = \tilde{T}_{s_i}X^{s_i\lambda} + (1 - q^{-2})\frac{X^{\lambda} - X^{s_i\lambda}}{1 - X^{-\alpha_i}}.$$

Thus the nil-affine Hecke algebra K_T is the algebra \tilde{H} at $q^{-2} = 0$.

2.1 The commutation formula

Let S_i be an *i*-string with head h and tail t. The initial and final directions of the paths in the string S_i satisfy

- (1) Either $s_i \iota(h) = \iota(t) = \iota(\tilde{e}_i t) = \dots = \iota(\tilde{f}_i h) > \iota(h)$ or $s_i \iota(h) > \iota(t) = \iota(\tilde{e}_i t) = \dots = \iota(\tilde{f}_i h) = \iota(h)$.
- (2) Either $s_i \varphi(h) = \varphi(t) > \varphi(\tilde{e}_i t) = \dots = \varphi(h)$ or $\varphi(t) = \varphi(\tilde{e}_i t) = \dots = \varphi(h) > s_i \varphi(h)$.
- (3) $\varphi(p) = \iota(p^*)w_0$.
- (4) If p is a highest weight path then iota(p) = 1 and $\varphi(p) = 1$.

Theorem 2.1. Let $\lambda \in P^+$ and $w \in W$. Then

$$X^{\lambda} T_w = \sum_{\substack{p \in B(\lambda) \\ \iota(p) < w}} T_{\varphi(p)^{-1}} X^{\mathrm{wt}(p)}.$$

Proof. The proof is by induction on $\ell(w)$. Let $w = vs_i$ with $\ell(v) = \ell(w) - 1$. Case 1: $s_i\varphi(h) = \varphi(t) > \varphi(\tilde{e}_i t) = \cdots = \varphi(h)$.

$$\left(\sum_{p \in S_i(h)} T_{\varphi(p)} X^{\operatorname{wt}(p)}\right) T_{s_i} = T_{\varphi(h)} \left(T_{s_i} X^{\operatorname{wt}(t)} + \left(X^{\operatorname{wt}(\tilde{e}_i t)} + \dots + X^{\operatorname{wt}(h)}\right)\right)$$

$$= T_{\varphi(h)} X^{\operatorname{wt}(h)} T_{s_i} T_{s_i} = T_{\varphi(h)} X^{\operatorname{wt}(h)} T_{s_i}$$

$$= \sum_{p \in S_i(h)} T_{\varphi(p)} X^{\operatorname{wt}(p)}$$

Case 2: $\varphi(t) = \cdots \varphi(\tilde{f}_i h) = \varphi(h) > s_i \varphi(h)$

$$\left(\sum_{p \in S_i(h)} T_{\varphi(p)^{-1}} X^{\operatorname{wt}(p)}\right) T_{s_i} = T_{\varphi(h)^{-1}} (X^{\operatorname{wt}(t)} + \dots + X^{\operatorname{wt}(h)}) T_{s_i}$$

$$= T_{\varphi(h)^{-1}} T_{s_i} (X^{\operatorname{wt}(t)} + \dots + X^{\operatorname{wt}(h)})$$

$$= T_{\varphi(h)^{-1}} (X^{\operatorname{wt}(t)} + \dots + X^{\operatorname{wt}(h)})$$

2.2 Demazure operators

The Iwahori-Hecke algebra is the subalgebra of \tilde{H} given by

$$H = \operatorname{span}\{\tilde{T}_w \mid w \in W\}.$$

Let $\mathbf{1}_0$ be the element of H determined by the conditions

$$\mathbf{1}_0^2 = \mathbf{1}_0$$
 and $\tilde{T}_{s_i} \mathbf{1}_0 = \mathbf{1}_0$, for $1 \le i \le n$.

A formula for $\mathbf{1}_0$ is

$$\mathbf{1}_0 = \frac{1}{P_W(q^2)} \sum_{w \in W} \tilde{T}_w, \quad \text{where} \quad P_W(t) = \sum_{w \in W} t^{\ell(w)}$$

is the Poincaré polynomial of W. The map

$$\Phi \colon \quad \mathbb{C}[P] \quad \xrightarrow{\sim} \quad \mathbf{1}_0 \tilde{H}$$

$$f \quad \longmapsto \quad \mathbf{1}_0 f$$

is a vector space isomorphism.

Let $w \in W$. The *Demazure operator* $\tilde{\Delta}_w$ is the operator on $\mathbb{C}[P]$ corresponding to the operator on $\mathbf{1}_0 \tilde{H}$ given by right multiplication by $\tilde{T}_{w^{-1}}$,

$$\tilde{\Delta}_w f = \Phi^{-1}(\Phi(f)\tilde{T}_{w^{-1}}), \quad \text{for } f \in \mathbb{C}[P].$$

For a reduced expression $w = s_{i_1} s_{i_2} \cdots s_{i_p}$,

$$\tilde{\Delta}_w = \tilde{\Delta}_{s_{i_1}} \cdots \tilde{\Delta}_{s_{i_p}}, \quad \text{since} \quad \tilde{T}_{w^{-1}} = \tilde{T}_{s_{i_p}} \cdots \tilde{T}_{s_{i_1}}.$$

As operators on $\mathbb{C}[P]$,

$$\tilde{\Delta}_i = X^{-\rho} \Delta_i X^{\rho} - q^{-2} \Delta_i, \quad \text{where} \quad \begin{array}{ccc} \Delta_i \colon & \mathbb{C}[P] & \longrightarrow & \mathbb{C}[P] \\ & f & \longmapsto & \frac{f - s_i f}{1 - X^{-\alpha_i}} \,, \end{array}$$

because

$$(\mathbf{1}_{0}X^{\lambda})\tilde{T}_{s_{i}} = \mathbf{1}_{0} \left(\tilde{T}_{s_{i}}X^{s_{i}\lambda} + (1 - q^{-2}) \frac{X^{\lambda} - X^{s_{i}\lambda}}{1 - X^{-\alpha_{i}}} \right)$$

$$= \mathbf{1}_{0} \left(X^{s_{i}\lambda} + (1 - q^{-2}) \frac{X^{\lambda} - X^{s_{i}\lambda}}{1 - X^{-\alpha_{i}}} \right)$$

$$= \mathbf{1}_{0} \left(\frac{X^{s_{i}\lambda} - X^{s_{i}\lambda - \alpha_{i}} + X^{\lambda} - X^{s_{i}\lambda} - q^{-2}(X^{\lambda} - X^{s_{i}\lambda})}{1 - X^{-\alpha_{i}}} \right)$$

$$= \mathbf{1}_{0} \left(\frac{X^{-\rho}(X^{\lambda + \rho} - X^{s_{i}\lambda - \alpha_{i} + \rho}) - q^{-2}(X^{\lambda} - X^{s_{i}\lambda})}{1 - X^{-\alpha_{i}}} \right)$$

$$= \mathbf{1}_{0} \left(X^{-\rho} \frac{X^{\lambda + \rho} - X^{s_{i}(\lambda + \rho)}}{1 - X^{-\alpha_{i}}} - q^{-2} \frac{X^{\lambda} - X^{s_{i}\lambda}}{1 - X^{-\alpha_{i}}} \right)$$

$$= \left((X^{-\rho}\Delta_{i}X^{\rho} - q^{-2}\Delta_{i})(X^{\lambda}) \right).$$

When $q^{-2} = 0$, in the algebra K_T ,

 $\mathbf{1}_0 = T_{w_0}$, where w_0 is the longest element of W,

$$\tilde{\Delta}_w = \tilde{\Delta}_{s_{i_1}} \cdots \tilde{\Delta}_{s_{i_p}}$$
, for a reduced word $w = s_{i_1} \cdots s_{i_p}$, and

$$\tilde{\Delta}_{s_i} = X^{-\rho} \Delta_i X^{\rho}$$
, as operators on $\mathbb{C}[P]$.

Theorem 2.2. Let $\lambda \in P+$ and $w \in W$. Then

(a)
$$\tilde{\Delta}_w X^{\lambda} = \sum_{\substack{p \in B(\lambda) \\ \iota(p) \le w}} X^{\text{wt}(p)}.$$

(b)
$$s_{\lambda} = \tilde{\Delta}_{w_0} X^{\lambda}$$
,

where w_0 is the longest element of W.

Proof. Since $\mathbf{1}_0 \tilde{T}_v = \mathbf{1}_0$, for $v \in W$, Theorem CF??? gives that

$$\mathbf{1}_0 X^{\lambda} T_{w^{-1}} = \mathbf{1}_0 \left(\sum_{\substack{p \in B(\lambda) \\ \iota(p) \le w}} T_{\phi(p)^{-1}} X^{\mathrm{wt}(p)} \right) = \mathbf{1}_0 \sum_{\substack{p \in B(\lambda) \\ \iota(p) \le w}} X^{\mathrm{wt}(p)},$$

which establishes (a). Combining (a) with Corollary BC??? and the fact that $B(\lambda) = \{p \in B(\lambda) \mid \iota(p) \leq w_0\}$ gives (b).

2.3 Example

The following example illustrates the connection between

(1) the affine Hecke algebra relation

$$T_{s_i}X^{\lambda} = X^{s_i\lambda}T_{s_i} + (q - q^{-1})\frac{X^{\lambda} - X^{s_i\lambda}}{1 - X^{-\alpha_i}},$$

- (2) the root operators \tilde{f}_i ,
- (3) paths, and
- (4) tableaux.

Working in type A_2 , if

$$\varepsilon_1 = \omega_1, \quad \varepsilon_2 = \omega_2 - \omega_1, \quad \varepsilon_3 = -\omega_2,$$

$$PICTURE$$

then, in the affine Hecke algebra,

$$T_{s_1}X^{\varepsilon_1} = X^{\varepsilon_2}T_{s_1} + (q - q^{-1})X^{\varepsilon_1}, \quad T_{s_1}X^{\varepsilon_2} = X^{\varepsilon_1}T_{s_1} - (q - q^{-1})X^{\varepsilon_1}, \quad T_{s_1}X^{\varepsilon_3} = X^{\varepsilon_3}T_{s_1},$$
 and

$$T_{s_2}X^{\varepsilon_1} = X^{\varepsilon_1}T_{s_2}, \quad T_{s_2}X^{\varepsilon_2} = X^{\varepsilon_3}T_{s_2} + (q - q^{-1})X^{\varepsilon_2}, \quad T_{s_2}X^{\varepsilon_3} = X^{\varepsilon_2}T_{s_2} - (q - q^{-1})X^{\varepsilon_2}.$$

Then $2\rho = 2(\omega_1 + \omega_2) = \varepsilon_1 + \varepsilon_1 + \varepsilon_1 + \varepsilon_1 + \varepsilon_2 + \varepsilon_2$, and

$$\begin{split} T_{s_1}X^{2\rho} &= T_{s_1}X^{\varepsilon_1}X^{\varepsilon_1}X^{\varepsilon_1}X^{\varepsilon_2}X^{\varepsilon_2} \\ &= X^{\varepsilon_2}T_{s_1}X^{\varepsilon_1}X^{\varepsilon_1}X^{\varepsilon_2}X^{\varepsilon_2} + (q-q^{-1})X^{\varepsilon_1}X^{\varepsilon_1}X^{\varepsilon_1}X^{\varepsilon_2}X^{\varepsilon_2} \\ &= X^{\varepsilon_2}X^{\varepsilon_2}T_{s_1}X^{\varepsilon_1}X^{\varepsilon_2}X^{\varepsilon_2} + (q-q^{-1})(X^{\varepsilon_2}X^{\varepsilon_1}X^{\varepsilon_1}X^{\varepsilon_2}X^{\varepsilon_2} + X^{\varepsilon_1}X^{\varepsilon_1}X^{\varepsilon_1}X^{\varepsilon_2}X^{\varepsilon_2}) \\ &= X^{\varepsilon_2}X^{\varepsilon_2}X^{\varepsilon_1}X^{\varepsilon_1}X^{\varepsilon_2}X^{\varepsilon_2}T_{s_1} + (q-q^{-1})(X^{\varepsilon_2}X^{\varepsilon_1}X^{\varepsilon_1}X^{\varepsilon_2}X^{\varepsilon_2} + X^{\varepsilon_1}X^{\varepsilon_1}X^{\varepsilon_1}X^{\varepsilon_1}X^{\varepsilon_2}X^{\varepsilon_2}) \end{split}$$

since $T_{s_1}X^{\varepsilon_1}X^{\varepsilon_1}X^{\varepsilon_2}X^{\varepsilon_2} = X^{\varepsilon_1}X^{\varepsilon_1}X^{\varepsilon_2}X^{\varepsilon_2}T_{s_1}$. In terms of words,

$$\tilde{f}_1^3(\varepsilon_1\varepsilon_1\varepsilon_1\varepsilon_1\varepsilon_2\varepsilon_2) = \tilde{f}_1^2(\varepsilon_2\varepsilon_1\varepsilon_1\varepsilon_1\varepsilon_2\varepsilon_2) = \tilde{f}_1(\varepsilon_2\varepsilon_2\varepsilon_1\varepsilon_1\varepsilon_2\varepsilon_2) = 0;$$

in terms of paths

$$\tilde{f}_1^3\left(PICTURE\right) = \tilde{f}_1^2\left(PICTURE\right) = \tilde{f}_1\left(PICTURE\right) = 0;$$

in terms of tableaux,

$$\tilde{f}_1^3 \left(PICTURE \right) = \tilde{f}_1^2 \left(PICTURE \right) = \tilde{f}_1 \left(PICTURE \right) = 0.$$

References

[Dr1] .G. Drinfel'd, A new realization of Yangians and quantized affine algebras, Soviet Math. Dokl. $\bf 36$ No, 2 (1998), 212–216.