Some homological algebra

Arun Ram Department of Mathematics University of Wisconsin Madison, WI 53706 ram@math.wisc.edu

1 Restriction and Induction

An exact sequence

$$\cdots \to M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{f_i} M_{i+i} \to \cdots$$

is a sequence of left R-modules and R-module homomorphisms $f_i: M_i \to M_{i+1}$, such that

 $\ker f_i = \operatorname{im} f_{i-1} \text{ for all } i.$

A short exact sequence is an exact sequence of the form

$$(0) \to N \xrightarrow{g} M \xrightarrow{f} P \to (0).$$

A split short exact sequence is a short exact sequence

$$(0) \to N \xrightarrow{g} M \xrightarrow{f} P \to (0)$$

if there are submodules N' and P' of M such that $N' = \operatorname{im} g$ and $M = N' \oplus P'$.

1.1 Adjoint functors

Let \mathcal{C} and \mathcal{D} be categories and let $f_* \colon \mathcal{C} \to \mathcal{D}$ and $f^* \colon \mathcal{D} \to \mathcal{C}$ be functors. Then f_* is a *right adjoint* to f^* and f^* is a *left adjoint* to f_* if, for each $D \in \mathcal{D}$ and $C \in \mathcal{C}$ there is a natural vector space isomorphism

$$\operatorname{Hom}_{\mathcal{C}}(f^*D, C) \xrightarrow{\Phi} \operatorname{Hom}_{\mathcal{D}}(D, f_*C).$$

For $C \in \mathcal{C}$ and $D \in \mathcal{D}$ define

$$\tau_C = \Phi^{-1}(\mathrm{id}_{f*C}) \in \mathrm{Hom}_{\mathcal{C}}(f^*f_*C, C) \quad \text{and} \quad \varphi_D = \Phi(\mathrm{id}_{f^*D}) \in \mathrm{Hom}_{\mathcal{D}}(D, f_*f^*D).$$

In general τ_C and ϕ_D are neither injective nor surjective, see the examples below in ??? and ???.

Research supported in part by NSF Grant ????.

1.2 The functors $\operatorname{Hom}_B(M, \cdot)$ and $M \otimes_Z \cdot$

Let B and Z be algebras and let M be a left B-module and a right Z-module. If N is a left Z -module then $\operatorname{Hom}_B(M, N)$ is a left Z-module with Z-action given by

$$(z\phi)(m) = \phi(mz),$$
 for $\phi \in \operatorname{Hom}_A(M, N), m \in M, z \in Z.$

If P is a left Z-module then $M \otimes_Z P$ is the left B-module which as a Z-module is given by generators $m \otimes p$, $m \in M$, $p \in P$, and relations

$$\begin{array}{ll} (m_1 + m_2) \otimes p &= m_1 \otimes p + m_2 \otimes p, \\ m \otimes (p_1 + p_2) &= m \otimes p_1 + m \otimes p_2, \\ rm \otimes p &= m \otimes rp = r(m \otimes p), \end{array} \quad \begin{array}{ll} \text{for } m_1, m_2 \in M, \ p \in P, \\ \text{for } m \in M, \ p_1, p_2 \in P, \\ \text{for } r \in \mathbb{Z}, \ m \in M, \ p \in P, \end{array}$$

and which has *B*-action given by

$$b(m \otimes p) = bm \otimes p$$
, for $m \in M$, $p \in P$, and $b \in B$.

The covariant functors

are adjoint since the map

$$\operatorname{Hom}_{Z}(P, \operatorname{Hom}_{B}(M, N)) \xrightarrow{\Phi} \operatorname{Hom}_{B}(M \otimes_{Z} P, N)$$

is a \mathbb{Z} -module isomorphism.

The functor $\operatorname{Hom}_B(M, -)$ is very different from the functor $\operatorname{Hom}_B(-, M)$. There is always a canonical isomorphism

$$\begin{array}{cccc} \operatorname{Hom}_B(B,M) & \longrightarrow & M \\ \phi & \longmapsto & \phi(1), \end{array} \quad \text{but} \qquad \text{the dual module to } M, \quad \operatorname{Hom}_B(M,B), \end{array}$$

can, in general, be much larger than M (take $B = \mathbb{C}$ and M an infinite dimensional vector space over \mathbb{C}).

The functor $\operatorname{Hom}_B(M, -)$ is left exact and the functor $M \otimes_Z -$ is right exact, i.e. if $0 \to P' \to P \to P''$ is exact then

$$0 \to \operatorname{Hom}_B(M, P') \to \operatorname{Hom}_B(M, P) \to \operatorname{Hom}_B(M, P'')$$
 is exact,

and if $N' \to N \to N'' \to 0$ is exact then

$$M \otimes_Z N' \to M \otimes_Z N \to M \otimes N'' \to 0$$
 is exact.

A left A-module M is projective if the functor $\operatorname{Hom}_A(M, \cdot)$ is exact and a right Z-module M is flat if the functor $M \otimes_Z \cdot$ is exact.

- **Proposition 1.1.** (a) M is projective if and only if for any surjective $\beta: N' \to N \to 0$ and homomorphism $\alpha: P \to M$ there exists a map $\gamma: P \to N'$ such that $\beta \circ \gamma = \alpha$.
 - (b) M is projective as a B-module if and only if there is a B-module M' such that $M \oplus M' = B^{\oplus I}$, i.e. $M \oplus M'$ is a free B-module.
 - (c) M is projective if and only if 1 is in the image of the centralizer map so that there exist $b_i \in M$ and $b_i^* \in M^*$ such that

if
$$m \in M$$
 then $m = \sum_i b_i^*(m)b_i$.

Proof. \Longrightarrow : Let I be a set of generators of M and let $\phi: B^{\oplus I} \to M$ be the canonical map. Let $K = \ker \phi$. The exact sequence

$$0 \longrightarrow K \longrightarrow B^{\oplus I} \xrightarrow{\phi} M \longrightarrow 0 \tag{1.1}$$

gives an exact sequence

$$0 \longrightarrow \operatorname{Hom}_{B}(M, K) \longrightarrow \operatorname{Hom}_{B}(M, B^{\oplus I}) \xrightarrow{\phi^{*}} \operatorname{Hom}_{B}(M, M) \longrightarrow 0.$$

Since ϕ^* is surjective there is a map $\psi: M \to B^{\oplus I}$ such that $\phi^*(\psi) = \mathrm{id}_M$. So $\phi \circ \psi = \mathrm{id}_M$. So the first exact sequence splits,

$$0 \longrightarrow K \longrightarrow B^{\oplus I} \stackrel{\psi}{\underset{\longrightarrow}{\longleftarrow}} M \longrightarrow 0.$$

So $B^{\oplus I} = \operatorname{im} \psi \oplus K \cong M \oplus K$. \Leftarrow : If $M \oplus M' \cong B^{\oplus I}$ and

$$0 \longrightarrow P' \longrightarrow P \longrightarrow P'' \longrightarrow 0$$

is an exact sequence of B-modules then

$$0 \longrightarrow \operatorname{Hom}_{B}(B^{\oplus I}, P') \longrightarrow \operatorname{Hom}_{B}(B^{\oplus I}, P) \longrightarrow \operatorname{Hom}_{B}(B^{\oplus I}, P'') \longrightarrow 0$$

is the same as

$$0 \longrightarrow \coprod_{i \in I} \operatorname{Hom}_{B}(B, P') \longrightarrow \coprod_{i \in I} \operatorname{Hom}_{B}(B, P) \longrightarrow \coprod_{i \in I} \operatorname{Hom}_{B}(B, P'') \longrightarrow 0$$

which is the same as

$$0 \longrightarrow \coprod_{i \in I} P' \longrightarrow \coprod_{i \in I} P \longrightarrow \coprod_{i \in I} P'' \longrightarrow 0$$

which is exact since the first sequence is. So

$$0 \longrightarrow \operatorname{Hom}_B(M \oplus M', P') \longrightarrow \operatorname{Hom}_B(M \oplus M', P) \longrightarrow \operatorname{Hom}_B(M \oplus M', P'') \longrightarrow 0$$

which is the same as

$$0 \longrightarrow \begin{array}{c} \operatorname{Hom}_{B}(M, P') & \operatorname{Hom}_{B}(M, P) & \operatorname{Hom}_{B}(M, P'') \\ \oplus & \oplus & \oplus & \oplus \\ \operatorname{Hom}_{B}(M', P') & \operatorname{Hom}_{B}(M', P) & \operatorname{Hom}_{B}(M', P'') \end{array} \longrightarrow \begin{array}{c} \operatorname{Hom}_{B}(M, P'') \\ \oplus & \oplus \\ \operatorname{Hom}_{B}(M', P') & \operatorname{Hom}_{B}(M', P) \end{array} \longrightarrow \begin{array}{c} \operatorname{Hom}_{B}(M, P'') \\ \oplus & \oplus \\ \operatorname{Hom}_{B}(M', P'') & \operatorname{Hom}_{B}(M', P) \end{array} \longrightarrow \begin{array}{c} \operatorname{Hom}_{B}(M, P'') \\ \oplus & \oplus \\ \operatorname{Hom}_{B}(M', P'') & \operatorname{Hom}_{B}(M', P) & \operatorname{Hom}_{B}(M, P'') \end{array} \longrightarrow \begin{array}{c} \operatorname{Hom}_{B}(M, P'') \\ \oplus & \oplus \\ \operatorname{Hom}_{B}(M', P'') & \operatorname{Hom}_{B}(M', P) & \operatorname{Hom}_{B}(M', P'') \end{array} \longrightarrow \begin{array}{c} \operatorname{Hom}_{B}(M, P'') \\ \oplus & \operatorname{Hom}_{B}(M', P'') & \operatorname{Hom}_{B}(M', P'') \end{array} \longrightarrow \begin{array}{c} \operatorname{Hom}_{B}(M, P'') \\ \operatorname{Hom}_{B}(M', P'') & \operatorname{Hom}_{B}(M', P'') & \operatorname{Hom}_{B}(M', P'') \end{array} \longrightarrow \begin{array}{c} \operatorname{Hom}_{B}(M, P'') \\ \operatorname{Hom}_{B}(M', P'') & \operatorname{Hom}_{B}(M', P'') & \operatorname{Hom}_{B}(M', P'') \end{array} \longrightarrow \begin{array}{c} \operatorname{Hom}_{B}(M, P'') \\ \operatorname{Hom}_{B}(M', P'') & \operatorname{Hom}_{B}(M', P'') & \operatorname{Hom}_{B}(M', P'') \end{array} \longrightarrow \begin{array}{c} \operatorname{Hom}_{B}(M, P'') \\ \operatorname{Hom}_{B}(M', P'') & \operatorname{Hom}_{B}(M', P'') \end{array} \longrightarrow \begin{array}{c} \operatorname{Hom}_{B}(M, P'') \\ \operatorname{Hom}_{B}(M', P'') & \operatorname{Hom}_{B}(M', P'') \end{array} \longrightarrow \begin{array}{c} \operatorname{Hom}_{B}(M, P'') \\ \operatorname{Hom}_{B}(M', P'') & \operatorname{Hom}_{B}(M', P'') \end{array} \longrightarrow \begin{array}{c} \operatorname{Hom}_{B}(M, P'') \\ \operatorname{Hom}_{B}(M', P'') & \operatorname{Hom}_{B}(M', P'') \end{array} \longrightarrow \begin{array}{c} \operatorname{Hom}_{B}(M, P'') \\ \operatorname{Hom}_{B}(M', P'') & \operatorname{Hom}_{B}(M', P'') \end{array} \longrightarrow \begin{array}{c} \operatorname{Hom}_{B}(M, P'') \\ \operatorname{Hom}_{B}(M, P'') \\ \operatorname{Hom}_{B}(M, P'') \\ \operatorname{Hom}_{B}(M, P'') \\ \operatorname{Hom}_{B}(M, P'') \end{array} \longrightarrow \begin{array}{c} \operatorname{Hom}_{B}(M, P'') \\ \operatorname{Hom}_{B}(M$$

is exact. This forces that the sequences

$$0 \longrightarrow \operatorname{Hom}_B(M, P') \longrightarrow \operatorname{Hom}_B(M, P) \longrightarrow \operatorname{Hom}_B(M, P'') \longrightarrow 0$$

and

$$0 \longrightarrow \operatorname{Hom}_B(M', P') \longrightarrow \operatorname{Hom}_B(M', P) \longrightarrow \operatorname{Hom}_B(M', P'') \longrightarrow 0$$

are both exact. So both M and M' are projective.

Let L be a C module and let

$$Z = \operatorname{End}_C(L)$$

so that L is a (C, Z) bimodule. The dual module to L is the (Z, C) bimodule

$$L^* = \operatorname{Hom}_C(L, C).$$

The evaluation map is the (C, C) bimodule homomorphism

$$\begin{array}{rcccc} \operatorname{ev} \colon & L \otimes_Z L^* & \longrightarrow & C \\ & \ell \otimes \lambda & \longmapsto & \lambda(\ell) \end{array}$$

and the *centralizer map* is the (Z, Z) bimodule homomorphism

The module L is projective if and only if there exist $b_i \in L$ and $b_i^* \in L^*$ such that

if
$$\ell \in L$$
 then $\ell = \sum_{i} b_i^*(\ell) b_i$,

so that

$$\xi^{-1}(1) = \sum_i b_i^* \otimes b_i.$$

Define Ext and Tor here.

1.3 Duals and Projectives

Let L be a C-module and let

$$Z = \operatorname{End}_C(L)$$

so that L is a (C, Z) bimodule. The dual module to L is the (Z, C) bimodule

$$L^* = \operatorname{Hom}_C(L, C).$$

The evaluation map is the (C, C) bimodule homomorphism

$$\begin{array}{rccc} \mathrm{ev} \colon & L \otimes_Z L^* & \longrightarrow & C \\ & \ell \otimes \lambda & \longmapsto & \lambda(\ell) \end{array}$$

and the *centralizer map* is the (Z, Z) bimodule homomorphism

Recall that [Bou, Alg. II §4.2 Cor.]

- (a) L is a projective C-module if and only if $1 \in im \xi$,
- (b) If L is a projective C-module then ξ is injective,

(c) If L is a finitely generated projective C-module then ξ is bijective,

(d) If L is a finitely generated free module then

$$\xi^{-1}(z) = \sum_{i} b_i^* \otimes z(b_i),$$

where $\{b_1, \ldots, b_d\}$ is a basis of L and $\{b_1^*, \ldots, b_d^*\}$ is the dual basis in M^* .

Statement (a) says that L is projective if and only if there exist $b_i \in L$ and $b_i^* \in L^*$ such that

if
$$\ell \in L$$
 then $\ell = \sum_{i} b_i^*(\ell) b_i$, so that $\xi \left(\sum_{i} b_i^* \otimes b_i \right) = 1$.

2 Homological algebra

2.1 Categories

A category is a collection $Ob\mathcal{C}$ of objects and morphisms $Hom_{\mathcal{C}}(X, Y)$, for each pair of objects $X, Y \in \mathcal{C}$ with a composition law $Hom(X, Y) \times Hom(Y, Z) \to Hom(X, Z)$ such that

- (a) composition is associative,
- (b) Hom(X, X) contains an *identity morphism* id_X such that id_X $\circ \varphi = \varphi$ and $\psi \circ id_X = \psi$.

Let \mathcal{C} and \mathcal{D} be categories. A functor $F: \mathcal{C} \to \mathcal{D}$ is a map such that

$$F(\phi \circ \psi) = F(\phi) \circ F(\psi)$$
 and $F(\operatorname{id}_X) = \operatorname{id}_{F(X)}$.

Let $f: \mathcal{C} \to \mathcal{D}$ and $g: \mathcal{C} \to \mathcal{D}$ be functors. A *morphism* of functors $f: F \to G$ is a family $f_X: FX \to GX$ of morphisms in \mathcal{D} such that

$$\begin{array}{cccc} FX & \xrightarrow{f_X} & GX \\ & \downarrow F\varphi & & \downarrow G\varphi \\ GX & \xrightarrow{f_Y} & GY \end{array}$$
 is commutative.

Two categories \mathcal{C} and \mathcal{D} are *equivalent* if there exist morphisms $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ such that $GF \cong id_{\mathcal{C}}$ and $FG \cong id_{\mathcal{D}}$.

A full subcategory of \mathcal{D} is a subcategory \mathcal{C} such that if $X, Y \in \mathcal{C}$ then $\operatorname{Hom}_{\mathcal{C}}(X,Y) = \operatorname{Hom}_{\mathcal{D}}(X,Y)$. A functor $F: \mathcal{C} \to \mathcal{D}$ is full if the maps $F: \operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{\mathcal{D}}(FX,FY)$ are injective, and faithful if the maps $F: \operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{\mathcal{D}}(FX,FY)$ are surjective. Fully faithful functors correspond to embeddings of full subcategories.

An *initial object* is an object B such that Hom(B, X) is only one element. A *final object* is an object C such that Hom(X, C) is only one element.

A generator of a category C is an object X such that the morphism Hom(X, -) is a faithful functor from C to the category of sets. Let A and B be rings, and let A-mod be the category of left A-modules and mod-A the category of right A-modules??? Morita's theorem says that the following are equivalent:

- (a) A-mod and B-mod are equivalent.
- (b) mod-A and mod-B are equivalent.

(c) There exists a finitely generated projective generator P of mod-A and a ring isomorphism $B \cong \operatorname{End}_A(P)$.

An *additive category* is a category \mathcal{A} such that

- (a) The sets Hom(X, Y) are abelian groups and composition is bilinear,
- (b) There exists a 0 object in \mathcal{A} such that $\operatorname{Hom}(0,0) = \{0\},\$
- (c) If $X_1, X_2 \in \mathcal{A}$ then there exists

$$X_1 \underbrace{\stackrel{p_1}{\longleftarrow}}_{i_1} Y \underbrace{\stackrel{p_2}{\longleftarrow}}_{i_2} X_2,$$

such that

$$p_1i_1 = id_{X_1}, \quad p_2i_2 = id_{X_2}, \quad i_1p_1 + i_2p_2 = id_Y, \quad p_2i_1 = p_1i_2 = 0.$$

The third axiom implies that Y is both the direct sum and the direct product of X_1 and X_2 , i.e. that the diagrams

Let \mathcal{A} be an additive category and let $\varphi \colon X \to Y$ be a morphism. The *kernel* of φ is an object $K \in \mathcal{A}$ and a morphism k,

$$K \xrightarrow{k} X \xrightarrow{\varphi} Y, \qquad \text{such that} \qquad \phi \circ k = 0,$$

and, for any morphism $k' \colon K' \to X$ such that $\varphi \circ k' = 0$ there exists a unique morphism $h \colon K' \to K$ with $k' = k \circ h$,

PICTURE??

The cokernel of φ is a morphism $c: Y \to K'$ such that

for any object Z the sequence $0 \to \operatorname{Hom}(K', Z) \to \operatorname{Hom}(Y, Z) \to \operatorname{Hom}(X, Z)$ is exact,

or equivalently,

 $c \circ \varphi = 0$ and for any morphism $c_1 \colon Y \to K'_1$ such that $c_1 \circ \varphi = 0$ there exists a unique morphism $h \colon K' \to K'_1$ with $c_1 = h \circ c$,

PICTURE

An *additive category* is an abelian category \mathcal{A} such that if $\varphi \colon X \to Y$ is a morphism then there exists a sequence

$$\ker \varphi \xrightarrow{k} X \xrightarrow{i} \ker k = \operatorname{coker} c \xrightarrow{j} Y \longrightarrow \operatorname{coker} \varphi \quad \text{such that} \quad j \circ i = \varphi.$$

Let \mathcal{A} and \mathcal{B} be additive categories. An *additive functor* is a functor $F: \mathcal{A} \to \mathcal{B}$ such that the maps $F: \operatorname{Hom}_{\mathcal{C}}(X, Y) \to \operatorname{Hom}_{\mathcal{D}}(FX, FY)$ are homomorphisms of abelian groups.

2.2 Complexes

Let \mathcal{A} be an abelian category. The category $\operatorname{Kom}(\mathcal{A})$ is the category of *complexes* C,

$$\cdots \xrightarrow{d^{n-1}} C^n \xrightarrow{d^n} C^{n+1} \xrightarrow{d^{n+1}} \cdots, \qquad \text{such that} \quad d^n \circ d^{n-1} = 0,$$

with morphisms $f^{\bullet} \colon B \to C$,

The shift functor is $[n]: \operatorname{Kom}(\mathcal{A}) \to \operatorname{Kom}(\mathcal{A})$ shifts all complexes by n,

$$(C^{\bullet}[n])^{i} = C^{i+n} \qquad \text{and} \qquad (d[n])^{i} = d^{i+n}.$$

The *cone* of a morphism $f \colon K^{\bullet} \to L^{\bullet}$ is the complex C(f) given by

$$C(f) = K[1] \oplus L$$
 with $d\binom{k^{i+1}}{\ell^i} = \binom{-d_k k^{i+1}}{f(k^{i+1} + d\ell^i)}.$

The cylinder of a morphism $f: K \to L$ is the complex Cyl(f) given by

$$\operatorname{Cyl}(f) = K \oplus K[1] \oplus L \quad \text{with} \quad d \begin{pmatrix} k^i \\ k^{i+1} \\ \ell^i \end{pmatrix} = \begin{pmatrix} dk^i - k^{i+1} \\ -d_k k^{i+1} \\ f(k^{i+1} + d\ell^i) \end{pmatrix}.$$

There is a canonical diagram

where π , α , and β are defined by

$$\beta \begin{pmatrix} k^i \\ k^{i+1} \\ \ell^i \end{pmatrix} = f(k^i) + \ell^i.$$

2.3 Cohomology

Let \mathcal{A} be an abelian category and let C be a complex. The *cohomology* of C is

$$H^n(C) = \frac{\ker d^n}{\operatorname{im} d^{n-1}}.$$

A complex C is *acylic* at n if $H^n(C) = 0$.

A complex C is exact if all $H^n(C) = 0$ for all n.

An *exact functor* is an additive functor $F: \mathcal{C} \to \mathcal{D}$ such that

if $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$ is an exact sequence

then $0 \to FX \xrightarrow{Ff} FY \xrightarrow{Fg} FZ \to 0$ is an exact sequence.

Let \mathcal{A} be an abelian category.

An object X in \mathcal{A} is *projective* if the functor $\operatorname{Hom}_{\mathcal{A}}(X, -)$ is exact.

An object X in \mathcal{A} is *injective* if the functor $\operatorname{Hom}_{\mathcal{A}}(-, X)$ is exact.

Let A be a ring. A left A-module X is *flat* if the functor $-\otimes_A X$ is exact.

If $f^{\bullet} \colon B \to C$ is a morphism in $\operatorname{Kom}(\mathcal{A})$ define

$$\begin{array}{rccc} H^n(f)\colon & H^n(B) & \longrightarrow & H^n(C) \\ & b & \longmapsto & f^n(\tilde{b}) \bmod \operatorname{im} d^{n-1} \end{array}$$

where $\tilde{b} \in \ker d^n$ is a representative of b.

A quasi-isomorphism is a morphism $f: B \to C$ such that $H^n(f): H^n(B) \to H^n(C)$ is an isomorphism for all n.

The derived category of \mathcal{A} is the category $D(\mathcal{A})$ with a functor $Q: \operatorname{Kom}(\mathcal{A}) \to D(\mathcal{A})$ such that

- (a) If f is a quasi-isomorphism then Q(f) is an isomorphism,
- (b) If \mathcal{D} is a category with a morphism $Q' \colon \operatorname{Kom}(\mathcal{A}) \to \mathcal{D}$ such that if f is a quasi-isomorphism then Q'(f) is an isomorphism then there exists a unique functor $G \colon D(\mathcal{A}) \to \mathcal{D}$ such that $Q' = G \circ Q$.

The functor $\mathcal{A} \to D(\mathcal{A})$ that maps X to the complex with all 0s except X in degree 0, is a fully faithful functor with image equal to the full subcategory of $D(\mathcal{A})$ formed by complexes C with $H^i(C) = 0$ if $i \neq 0$.

Let

$$0 \longrightarrow A^{\bullet} \xrightarrow{\iota} B^{\bullet} \xrightarrow{p} C^{\bullet} \longrightarrow 0$$

be an exact sequence and define

 $\begin{array}{cccc} \delta^n(\iota^{\bullet},p^{\bullet})\colon & H^n(C^{\bullet}) & \longrightarrow & H^{n+1}(A^{\bullet}) \\ c & \longmapsto & \tilde{a} \bmod \operatorname{im} d^{n+1} \end{array} \quad \text{where} & \begin{array}{c} \tilde{c} \in \ker d^n \text{ is a representative of } c, \\ \tilde{b} \text{ is such that } p^n(\tilde{b}) = \tilde{c}, \\ \tilde{a} \text{ is such that } d^m \tilde{b} = \iota^{n+1}(\tilde{a}).. \end{array}$

Then the exact sequence

$$\cdots \longrightarrow H^n(A^{\bullet}) \xrightarrow{H^n(i^{\bullet})} H^n(B^{\bullet}) \xrightarrow{H^n(p^{\bullet})} H^n(C^{\bullet}) \xrightarrow{\delta^n(\iota^{\bullet}, p^{\bullet})} H^{n+1}(A^{\bullet}) \longrightarrow \cdots$$

is the corresponding *long exact sequence*.

The homotopic category $K(\mathcal{A})$ is the category given by

Ob $K(\mathcal{A}) = \text{Ob Kom}(\mathcal{A})$ and Mor $K(\mathcal{A}) = (\text{Mor Kom}(\mathcal{A}) \text{ mod homotopic equivalence}).$

A *triangle* is a sequence of morphisms

$$K \longrightarrow L \longrightarrow M \longrightarrow K[1].$$

A distinguished triangle is a triangle isomorphic to

$$K \xrightarrow{f} Cyl(f) \xrightarrow{\pi} C(f) \xrightarrow{\delta} K[1],$$
 for some morphism $f: K \to L$

2.4 Ext

Define

$$\operatorname{Ext}_{\mathcal{A}}^{i}(X,Y) = \operatorname{Hom}_{D(\mathcal{A})}(X[0],Y[i]) \quad \text{so that} \quad \operatorname{Ext}^{i}(X,Y) = \operatorname{Hom}_{D(\mathcal{A})}(X,I_{Y}[i]),$$

for an injective resolution I_Y of Y.

$$\operatorname{Ext}^{0}_{\mathcal{A}}(X,Y) = \operatorname{Hom}_{\mathcal{A}}(X,Y) \quad \text{and} \quad \operatorname{Ext}^{i}_{\mathcal{A}}(X,Y) = 0, \text{ for } i < 0.$$

An acyclic complex

determines a left roof

$$X[0] \stackrel{s}{\longleftarrow} \tilde{K} \stackrel{f}{\longrightarrow} Y[i] \quad \text{with} \quad \begin{array}{l} \tilde{K}^1 = 0 \text{ and } \tilde{K}^\ell = K^\ell, \quad \text{for } \ell \neq 1, \\ s^0 = d_K^0, \quad f^{-i} = \mathrm{id}_Y, \end{array}$$

and a corresponding morphism $X[0] \to Y[i]$ in the derived category.

2.5 Derived functors

Let $F: \mathcal{A} \to \mathcal{B}$ be a left exact functor. The *derived functor* is the extension $RF: D^+(\mathcal{A}) \to D^+(\mathcal{B})$ of F to $D^+(\mathcal{A})$ determined by

$$RF(K)^i = F(K^i)$$
 for a complex K.

The classical ith derived functor is the functor $R^i F \colon \mathcal{A} \to \mathcal{B}$ given by

$$R^i F = H^0((RF)[i]) = H^i(RF).$$

Let \mathcal{R} be a class of objects in \mathcal{A} .

The category \mathcal{A} contains sufficiently many objects from \mathcal{R} if every object from \mathcal{A} is a subobject of an object from \mathcal{R} .

The class \mathcal{R} is *adapted* to F if \mathcal{A} contains sufficiently many objects from \mathcal{R} and F maps any acyclic complex from Kom⁺(\mathcal{R}) into an acyclic complex.

Theorem 2.1. (a) The derived functor RF exists if F admits an adapted class of objects \mathcal{R} .

- (b) If \mathcal{A} contains sufficiently many injective objects then the injective objects form an adapted class for every left exact functor F.
- (c) If \mathcal{A} has sufficiently many injective objects then $\operatorname{Ext}^{i}(X, -) \cong R^{i}\operatorname{Hom}(X, -)$.
- (d) If \mathcal{A} has sufficiently many projective objects then $\operatorname{Ext}^{i}(-, X) \cong R^{i}\operatorname{Hom}(-, X)$.

A projective resolution of a complex A is a quasi-isomorphism $P \to A$ with P^i projective in \mathcal{A} for all i.

A K-projective complex is a complex Q such that if A is an acyclic complex then Hom(P, A) is an acyclic complex.

A K-projective resolution of a complex A is a quasi-isomorphism $P \to A$ with a K-projective P.

If \mathcal{A} has sufficiently many projective objects then any K-projective resolution is a projective resolution.

2.6 Tor

Let R be a ring with identity and N a right R module. The flat R-modules form an adapted class for the functor

 $-\otimes_R N$, the derived functor is denoted $-\otimes^L N$

(a left derived functor), and

$$\operatorname{Tor}_{i}^{R}(M, N) = H^{-i}(M \otimes^{L} N).$$

References

- [GW1] F. Goodman and H. Wenzl, The Temperley-Lieb algebra at roots of unity, Pacific J. Math. 161 (1993), no. 2, 307–334.
- [GL1] J. Graham and G. Lehrer, Diagram algebras, Hecke algebras and decomposition numbers at roots of unity, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 4, 479–524.
- [GL2] J. Graham and G. Lehrer, The two-step nilpotent representations of the extended affine Hecke algebra of type A, Compositio Math. 133 (2002), no. 2, 173–197.