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1 Restriction and Induction

An ezact sequence
fic1 fi

= My = My = My — -

is a sequence of left R-modules and R-module homomorphisms f;: M; — M;11, such that

ker f; = imf;_1 for all i.
A short exact sequence is an exact sequence of the form

0 —-N%mLp_).
A split short exact sequence is a short exact sequence

0 —N2ZmLp (0
if there are are submodules N’ and P’ of M such that N’ =img and M = N' @& P’.

1.1 Adjoint functors

Let C and D be categories and let f,: C — D and f*: D — C be functors. Then f, is a right
adjoint to f* and f* is a left adjoint to f, if, for each D € D and C € C there is a natural vector
space isomorphism

Home (f*D, C)—>Homp(D, £.C).
For C € C and D € D define

70 = ® (ids,¢) € Home(f*f.C,C)  and  ¢p = ®(idsp) € Homp(D, f. f*D).

In general 7¢ and ¢p are neither injective nor surjective, see the examples below in 77?7 and
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1.2 The functors Homp(M, ) and M ® -

Let B and Z be algebras and let M be a left B-module and a right Z-module. If N is a left Z
-module then Homp(M, N) is a left Z-module with Z-action given by

(z¢)(m) = p(mz), for ¢ € Homy(M,N), me M,z € Z.

If P is a left Z-module then M ®z P is the left B-module which as a Z-module is given by
generators m®p, m € M, p € P, and relations

(m1+m2)®p =m1®@p+ma®@p, for my,mg € M, p € P,
m® (p1+p2) =mp;+me pa, for m € M, p1,p2 € P,
rmep =marp=r(mep), forreZ, me M, pée P,

and which has B-action given by
b(m ® p) = bm ® p, formeM,pe P,and b € B.

The covariant functors

Homp(M,-): {left B-modules} — {left Z-modules}
M®gz-: {left Z-modules} — {left B-modules}

are adjoint since the map
Homy (P, Homp(M, N)) — Homp(M ®z P,N)
Yv: P — Homp(M, N)

p ¢p3 M — N —
m = hp(m)

d(y): MozP — N
m®p = ¢p(m)

o 1l(¢): P — Homp(M, N)
p = ¢p: M — N
m — ¢(mep)

¢ M®z;P — N
mep — ¢(m®p)

is a Z-module isomorphism.
The functor Homp (M, —) is very different from the functor Homp(—, M). There is always
a canonical isomorphism

Homp(B,M) — M
¢ — o(1),

can, in general, be much larger than M (take B = C and M an infinite dimensional vector space
over C).

The functor Homp (M, —) is left exact and the functor M ®z — is right exact,
ie. if 0 - P'— P — P” is exact then

but the dual module to M, Homp(M, B),

0 — Hompg(M, P') — Homp(M, P) — Hompg(M, P") is exact,
and if N/ — N — N” — 0 is exact then
M@z N - M@z N—MN"— 0 is exact.

A left A-module M is projective if the functor Hom 4 (M, -) is exact and a right Z-module M is
flat if the functor M ® - is exact.



Proposition 1.1. (a) M is projective if and only if for any surjective 3: N' — N — 0 and
homomorphism o: P — M there exists a map ~v: P — N’ such that 3oy = a.

(b) M is projective as a B-module if and only if there is a B-module M’ such that M & M' =
B®! j.e. M @& M’ is a free B-module.

(¢) M is projective if and only if 1 is in the image of the centralizer map so that there exist
b € M and b; € M* such that

ifmeDM then m= Zb;‘(m)bl

(2

Proof. =>: Let I be a set of generators of M and let ¢: B! — M be the canonical map. Let
K = ker ¢. The exact sequence

0— K — B 201 0 (1.1)
gives an exact sequence
0 — Homp(M, K) — Homp(M, B®')-*Homp (M, M) — 0.

Since ¢* is surjective there is a map ¢: M — B®! such that ¢*(¢)) = idy;. So ¢ ot = idys. So
the first exact sequence splits,

P
0— K — B M —0.

So B =imp e K=2Ma K.
—: If MM = B® and

0—P —P—P'—0
is an exact sequence of B-modules then
0 — Homp(B¥' P') — Homp(B®!, P) — Homp (B, P") — 0
is the same as

0 — [[Homp(B, P') — [ Homp(B, P) — [[Homp(B, P") — 0
1€l el el

0—>HP’—>HP—>HP”—>0

el iel el

which is the same as

which is exact since the first sequence is. So
0 — Homp(M & M', P") — Homp(M & M', P) — Homp(M & M', P") — 0

which is the same as
Homp(M, P") Homp (M, P) Homp(M, P")

00— S — S — S —0

Homp(M', P") Homp(M', P) Homp(M', P")
is exact. This forces that the sequences
0 — Homp (M, P') — Homp(M, P) — Homp(M,P") — 0

and
0 — Homp(M', P') — Homp(M’', P) — Homp(M', P") — 0

are both exact. So both M and M’ are projective. O



Let L be a C module and let
Z = End¢ (L)

so that L is a (C, Z) bimodule. The dual module to L is the (Z,C) bimodule
L* = Hom¢ (L, C).
The evaluation map is the (C,C) bimodule homomorphism

ev: L®zL* — C
X +— A

and the centralizer map is the (Z, Z) bimodule homomorphism

& Lol — z
WA L — L
AL — m —  A(m)l

The module L is projective if and only if there exist b; € L and b] € L* such that

if{e L then (= be(f)bia

(2

so that

M) =D b @b
Define Ext and Tor here.

1.3 Duals and Projectives

Let L be a C-module and let
Z = End¢ (L)

so that L is a (C, Z) bimodule. The dual module to L is the (Z,C) bimodule
L* = Homg (L, C).
The evaluation map is the (C,C) bimodule homomorphism

ev: L®zL* — C
X — A0

and the centralizer map is the (Z, Z) bimodule homomorphism

(& L"®cL — A
WA L — L
AR — m +— A(m){

Recall that [Bou, Alg. II §4.2 Cor.]
(a) L is a projective C-module if and only if 1 € im¢&,

(b) If L is a projective C-module then ¢ is injective,



(c) If L is a finitely generated projective C-module then ¢ is bijective,

(d) If L is a finitely generated free module then
£7M(z) =Y b ®z(b),

where {b1,...,bq} is a basis of L and {b7,...,b}} is the dual basis in M*.

Statement (a) says that L is projective if and only if there exist b; € L and b; € L* such that

ifleL then €= b0 s0 that §(be®bi>:1.

2 Homological algebra

2.1 Categories

A category is a collection ObC of objects and morphisms Home(X,Y'), for each pair of objects
X,Y € C with a composition law Hom(X,Y) x Hom(Y, Z) — Hom(X, Z) such that

(a) composition is associative,
(b) Hom(X, X) contains an identity morphism idx such that idx o ¢ = ¢ and ¥ oidx = 9.
Let C and D be categories. A functor F': C — D is a map such that
F(pov) = F(¢p)o F(1) and F(idx) = idp(x)-

Let f: C — D and g: C — D be functors. A morphism of functors f: FF — G is a family
fx: FX — GX of morphisms in D such that

Fx % ¢x
Fo Jch is commutative.
ax I gy

Two categories C and D are equivalent if there exist morphisms F': C — D and G: D — C such
that GF =2 ide and F'G ¥ idp.

A full subcategory of D is a subcategory C such that if X,Y € C then Hom¢(X,Y) =
Homp(X,Y). A functor F: C — D is full if the maps F': Hom¢(X,Y) — Homp(FX, FY)
are injective, and faithful if the maps F': Hom¢(X,Y) — Homp(F X, FY') are surjective. Fully
faithful functors correspond to embeddings of full subcategories.

An initial object is an object B such that Hom(B, X)) is only one element. A final object is
an object C such that Hom(X, C) is only one element.

A generator of a category C is an object X such that the morphism Hom(X, —) is a faithful
functor from C to the category of sets. Let A and B be rings, and let A-mod be the category of
left A-modules and mod-A the category of right A-modules??? Morita’s theorem says that the
following are equivalent:

(a) A-mod and B-mod are equivalent.

(b) mod-A and mod-B are equivalent.



(c) There exists a finitely generated projective generator P of mod-A and a ring isomorphism
B = Endx(P).

An additive category is a category A such that
(a) The sets Hom(X,Y") are abelian groups and composition is bilinear,
(b) There exists a 0 object in A such that Hom(0,0) = {0},

(c) If X1, X2 € A then there exists
pP1 P2

X1 Y i Xo,
— <
such that
pii1 = idx,, p2i2 =idx,, 41p1 +i2p2 =idy, pot1 = priz = 0.

The third axiom implies that Y is both the direct sum and the direct product of X; and Xo,
i.e. that the diagrams

y 2 X, y & X,
po l and lpz l commute.
X2 i 0 X2 — 0

Let A be an additive category and let ¢: X — Y be a morphism. The kernel of ¢ is an
object K € A and a morphism k,

KX X %Y, suchthat Gok=0,

and, for any morphism k’: K’ — X such that ¢ o k' = 0 there exists a unique morphism
h: K' - K with ¥ = ko h,
PICTURE??

The cokernel of ¢ is a morphism c¢: Y — K’ such that
for any object Z the sequence 0 — Hom(K', Z) — Hom(Y, Z) — Hom(X, Z) is exact,
or equivalently,

cop = 0 and for any morphism ¢;: Y — K such that ¢; o ¢ = 0 there exists a unique
morphism h: K’ — K] with ¢y = hoe,

PICTURE

An additive category is an abelian category A such that if ¢: X — Y is a morphism then there
exists a sequence

ker QDLX %, kerk = cokerc 15 Y — cokeryp such that joi= .

Let A and B be additive categories. An additive functor is a functor F': A — B such that the
maps F': Home(X,Y) — Homp(F X, FY) are homomorphisms of abelian groups.



2.2 Complexes
Let A be an abelian category. The category Kom(.A) is the category of complexes C,

n—1 n m—+1
L om 4 omrd™

, such that d"od" ' =0,

with morphisms f*: B — C,

m—1 m n-4+1
d . Bn d Bn+1 d

Jf" frrt , such that d"o f* = f”+1 od".
qan—1 dn qn+1

-~ on = o ontl
The shift functor is [n]: Kom(A) — Kom(.A) shifts all complexes by n,
(C*m)i=C™™  and  (d[n])" = d"™.
The cone of a morphism f: K* — L*® is the complex C(f) given by

) k.i—O—l _dkki—i-l
C(f)y=K[1]@eL  with d(ﬁi ):(f(k:i+1+d£i)'

The cylinder of a morphism f: K — L is the complex Cyl(f) given by

ki dkz _ ki—i—l
Cyl(f)=Ka@K[l)|eL with d|k+| =] —dkt
Y f(kiJrl _i_dei

There is a canonical diagram

0 —

0 — K 5 Cyl(f) & c(f) — o

K:L %ﬁ

where 7, «, and 3 are defined by

2.3 Cohomology
Let A be an abelian category and let C' be a complex. The cohomology of C' is

ker d”
imdnr—1"

H"(C) =

A complex C'is acylic at n if H"(C) = 0.
A complex C'is exact if all H*(C) = 0 for all n.



An ezact functor is an additive functor F': C — D such that

if 0—X 4, Yy 47 -0 is an exact sequence

then 0 — FXF—f> FY LA FZ — 0 is an exact sequence.

Let A be an abelian category.

An object X in A is projective if the functor Hom 4 (X, —) is exact.

An object X in A is injective if the functor Hom 4(—, X) is exact.

Let A be a ring. A left A-module X is flat if the functor — ®4 X is exact.
If f*: B — C is a morphism in Kom(A) define

H"(f): H"(B) — H"(C)

b —  f(b) mod imd"~!

where b € kerd" is a representative of b.

A quasi-isomorphism is a morphism f: B — C such that H"(f): H"(B) — H"(C) is an
isomorphism for all n.

The derived category of A is the category D(A) with a functor Q: Kom(A) — D(A) such that

(a) If f is a quasi-isomorphism then Q(f) is an isomorphism,

(b) If D is a category with a morphism @Q": Kom(A) — D such that if f is a quasi-isomorphism
then Q'(f) is an isomorphism then there exists a unique functor G: D(A) — D such that
Q =GoQ.

The functor A — D(A) that maps X to the complex with all Os except X in degree 0, is a fully
faithful functor with image equal to the full subcategory of D(A) formed by complexes C' with
H{(C)=0ifi#0.
Let
0— A*~5B* 20 — 0

be an exact sequence and define

¢ € ker d™ is a representative of c,
where b is such that p"(b) = ¢,
a is such that d"b = ("*1(a)..

a(®,p*): H™(C®) — H"1(A®)

c — @ mod im d" !

Then the exact sequence

H(i*)

s (A% e gy D o)

L] (]
A7)
—

)Hn+1(Ao) I

is the corresponding long exact sequence.
The homotopic category K (A) is the category given by

Ob K(A) = Ob Kom(A) and Mor K (A) = (Mor Kom(.A) mod homotopic equivalence).
A triangle is a sequence of morphisms
K—L—M— KI[1].
A distinguished triangle is a triangle isomorphic to

KLCyl(f)LC(f)LK[l], for some morphism f: K — L.



2.4 Ext
Define
Ext’(X,Y) = Homp(4)(X[0],Y[i])  sothat  Ext(X,Y)=Homps)(X,Iyl[i]),
for an injective resolution Iy of Y.
Exty(X,Y) = Homy(X,Y) and  Ext}(X,Y)=0, fori<D0.
An acyclic complex
s 00— Kt S K L K K 00—
I I
Y X
determines a left roof

K'=0and K! = K¢, for { #1,

s =~ f . .

and a corresponding morphism X[0] — Y[i] in the derived category.

2.5 Derived functors

Let F': A — B be a left exact functor. The derived functor is the extension RF: DT(A) —
DT (B) of F to D" (A) determined by

RF(K)' = F(KY for a complex K.
The classical ith derived functor is the functor R'F: A — B given by
R'F = H°((RF)[i]) = H'(RF).

Let R be a class of objects in A.

The category A contains sufficiently many objects from R if every object from A is a subobject
of an object from R.

The class R is adapted to F if A contains sufficiently many objects from R and F' maps any
acyclic complex from Kom™(R) into an acyclic complex.

Theorem 2.1. (a) The derived functor RF exists if F admits an adapted class of objects R.

(b) If A contains sufficiently many injective objects then the injective objects form an adapted
class for every left exact functor F.

(c) If A has sufficiently many injective objects then Ext'(X, —) = R'Hom(X, —).
(d) If A has sufficiently many projective objects then Ext’(—, X) = R'Hom(—, X).
A projective resolution of a complex A is a quasi-isomorphism P — A with P? projective in

A for all i.

A K-projective complex is a complex @) such that if A is an acyclic complex then Hom(P, A) is
an acyclic complex.

A K-projective resolution of a complex A is a quasi-isomorphism P — A with a K-projective
P.

If A has sufficiently many projective objects then any K-projective resolution is a projective
resolution.



2.6 Tor

Let R be a ring with identity and N a right R module. The flat R-modules form an adapted
class for the functor

— ®Rr N, the derived functor is denoted — ®@LN
(a left derived functor), and

Tor(M,N) = H™{(M oF N).

References

[GW1] F. Goodman and H. Wenzl, The Temperley-Lieb algebra at roots of unity, Pacific J.
Math. 161 (1993), no. 2, 307-334.

[GL1] J. Graham and G. Lehrer, Diagram algebras, Hecke algebras and decomposition numbers
at roots of unity, Ann. Sci. Ecole Norm. Sup. (4) 36 (2003), no. 4, 479-524.

[GL2] J. Graham and G. Lehrer, The two-step nilpotent representations of the extended affine
Hecke algebra of type A, Compositio Math. 133 (2002), no. 2, 173-197.

10



