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1 Restriction and Induction

An exact sequence

· · · →Mi−1
fi−1→ Mi

fi→Mi+i → · · ·

is a sequence of left R-modules and R-module homomorphisms fi : Mi →Mi+1, such that

ker fi = imfi−1 for all i.

A short exact sequence is an exact sequence of the form

(0)→ N
g→M

f→ P → (0).

A split short exact sequence is a short exact sequence

(0)→ N
g→M

f→ P → (0)

if there are are submodules N ′ and P ′ of M such that N ′ = img and M = N ′ ⊕ P ′.

1.1 Adjoint functors

Let C and D be categories and let f∗ : C → D and f∗ : D → C be functors. Then f∗ is a right
adjoint to f∗ and f∗ is a left adjoint to f∗ if, for each D ∈ D and C ∈ C there is a natural vector
space isomorphism

HomC(f∗D,C) Φ−→HomD(D, f∗C).

For C ∈ C and D ∈ D define

τC = Φ−1(idf∗C) ∈ HomC(f∗f∗C,C) and ϕD = Φ(idf∗D) ∈ HomD(D, f∗f∗D).

In general τC and φD are neither injective nor surjective, see the examples below in ??? and
???.
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1.2 The functors HomB(M, ·) and M ⊗Z ·

Let B and Z be algebras and let M be a left B-module and a right Z-module. If N is a left Z
-module then HomB(M,N) is a left Z-module with Z-action given by

(zφ)(m) = φ(mz), for φ ∈ HomA(M,N), m ∈M, z ∈ Z.

If P is a left Z-module then M ⊗Z P is the left B-module which as a Z-module is given by
generators m⊗ p, m ∈M , p ∈ P , and relations

(m1 +m2)⊗ p = m1 ⊗ p+m2 ⊗ p,
m⊗ (p1 + p2) = m⊗ p1 +m⊗ p2,

rm⊗ p = m⊗ rp = r(m⊗ p),

for m1,m2 ∈M , p ∈ P ,
for m ∈M , p1, p2 ∈ P ,
for r ∈ Z, m ∈M , p ∈ P ,

and which has B-action given by

b(m⊗ p) = bm⊗ p, for m ∈M , p ∈ P , and b ∈ B.

The covariant functors

HomB(M, ·) : {left B-modules} −→ {left Z-modules}
M ⊗Z · : {left Z-modules} −→ {left B-modules}

are adjoint since the map

HomZ(P,HomB(M,N)) Φ−→ HomB(M ⊗Z P,N)

ψ : P → HomB(M,N)
p 7→ ψp : M → N

m 7→ ψp(m)
7−→ Φ(ψ) : M ⊗Z P → N

m⊗ p 7→ φp(m)

Φ−1(φ) : P → HomB(M,N)
p 7→ φp : M → N

m 7→ φ(m⊗ p)
7−→ φ : M ⊗Z P → N

m⊗ p 7→ φ(m⊗ p)

is a Z-module isomorphism.
The functor HomB(M,−) is very different from the functor HomB(−,M). There is always

a canonical isomorphism

HomB(B,M) −→ M
φ 7−→ φ(1),

but the dual module to M , HomB(M,B),

can, in general, be much larger than M (take B = C and M an infinite dimensional vector space
over C).

The functor HomB(M,−) is left exact and the functor M ⊗Z − is right exact,
i.e. if 0→ P ′ → P → P ′′ is exact then

0→ HomB(M,P ′)→ HomB(M,P )→ HomB(M,P ′′) is exact,

and if N ′ → N → N ′′ → 0 is exact then

M ⊗Z N
′ →M ⊗Z N →M ⊗N ′′ → 0 is exact.

A left A-module M is projective if the functor HomA(M, ·) is exact and a right Z-module M is
flat if the functor M ⊗Z · is exact.
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Proposition 1.1. (a) M is projective if and only if for any surjective β : N ′ → N → 0 and
homomorphism α : P →M there exists a map γ : P → N ′ such that β ◦ γ = α.

(b) M is projective as a B-module if and only if there is a B-module M ′ such that M ⊕M ′ =
B⊕I , i.e. M ⊕M ′ is a free B-module.

(c) M is projective if and only if 1 is in the image of the centralizer map so that there exist
bi ∈M and b∗i ∈M∗ such that

if m ∈M then m =
∑

i

b∗i (m)bi.

Proof. =⇒: Let I be a set of generators of M and let φ : B⊕I →M be the canonical map. Let
K = kerφ. The exact sequence

0 −→ K −→ B⊕I φ−→M −→ 0 (1.1)

gives an exact sequence

0 −→ HomB(M,K) −→ HomB(M,B⊕I)
φ∗−→HomB(M,M) −→ 0.

Since φ∗ is surjective there is a map ψ : M → B⊕I such that φ∗(ψ) = idM . So φ ◦ ψ = idM . So
the first exact sequence splits,

0 −→ K −→ B⊕I
ψ←−
φ−→ M −→ 0.

So B⊕I = imψ ⊕K ∼= M ⊕K.
⇐=: If M ⊕M ′ ∼= B⊕I and

0 −→ P ′ −→ P −→ P ′′ −→ 0

is an exact sequence of B-modules then

0 −→ HomB(B⊕I , P ′) −→ HomB(B⊕I , P ) −→ HomB(B⊕I , P ′′) −→ 0

is the same as

0 −→
∐
i∈I

HomB(B,P ′) −→
∐
i∈I

HomB(B,P ) −→
∐
i∈I

HomB(B,P ′′) −→ 0

which is the same as
0 −→

∐
i∈I

P ′ −→
∐
i∈I

P −→
∐
i∈I

P ′′ −→ 0

which is exact since the first sequence is. So

0 −→ HomB(M ⊕M ′, P ′) −→ HomB(M ⊕M ′, P ) −→ HomB(M ⊕M ′, P ′′) −→ 0

which is the same as

0 −→
HomB(M,P ′)

⊕
HomB(M ′, P ′)

−→
HomB(M,P )

⊕
HomB(M ′, P )

−→
HomB(M,P ′′)

⊕
HomB(M ′, P ′′)

−→ 0

is exact. This forces that the sequences

0 −→ HomB(M,P ′) −→ HomB(M,P ) −→ HomB(M,P ′′) −→ 0

and
0 −→ HomB(M ′, P ′) −→ HomB(M ′, P ) −→ HomB(M ′, P ′′) −→ 0

are both exact. So both M and M ′ are projective.
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Let L be a C module and let
Z = EndC(L)

so that L is a (C,Z) bimodule. The dual module to L is the (Z,C) bimodule

L∗ = HomC(L,C).

The evaluation map is the (C,C) bimodule homomorphism

ev : L⊗Z L
∗ −→ C

`⊗ λ 7−→ λ(`)

and the centralizer map is the (Z,Z) bimodule homomorphism

ξ : L∗ ⊗ L −→ Z

λ⊗ ` 7−→ zλ,` : L → L
m 7→ λ(m)`

The module L is projective if and only if there exist bi ∈ L and b∗i ∈ L∗ such that

if ` ∈ L then ` =
∑

i

b∗i (`)bi,

so that
ξ−1(1) =

∑
i

b∗i ⊗ bi.

Define Ext and Tor here.

1.3 Duals and Projectives

Let L be a C-module and let
Z = EndC(L)

so that L is a (C,Z) bimodule. The dual module to L is the (Z,C) bimodule

L∗ = HomC(L,C).

The evaluation map is the (C,C) bimodule homomorphism

ev : L⊗Z L
∗ −→ C

`⊗ λ 7−→ λ(`)

and the centralizer map is the (Z,Z) bimodule homomorphism

ξ : L∗ ⊗C L −→ Z

λ⊗ ` 7−→ zλ,` : L → L
m 7→ λ(m)`

Recall that [Bou, Alg. II §4.2 Cor.]

(a) L is a projective C-module if and only if 1 ∈ im ξ,

(b) If L is a projective C-module then ξ is injective,
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(c) If L is a finitely generated projective C-module then ξ is bijective,

(d) If L is a finitely generated free module then

ξ−1(z) =
∑

i

b∗i ⊗ z(bi),

where {b1, . . . , bd} is a basis of L and {b∗1, . . . , b∗d} is the dual basis in M∗.

Statement (a) says that L is projective if and only if there exist bi ∈ L and b∗i ∈ L∗ such that

if ` ∈ L then ` =
∑

i

b∗i (`)bi, so that ξ
( ∑

i

b∗i ⊗ bi
)

= 1.

2 Homological algebra

2.1 Categories

A category is a collection ObC of objects and morphisms HomC(X,Y ), for each pair of objects
X,Y ∈ C with a composition law Hom(X,Y )×Hom(Y, Z)→ Hom(X,Z) such that

(a) composition is associative,

(b) Hom(X,X) contains an identity morphism idX such that idX ◦ ϕ = ϕ and ψ ◦ idX = ψ.

Let C and D be categories. A functor F : C → D is a map such that

F (φ ◦ ψ) = F (φ) ◦ F (ψ) and F (idX) = idF (X).

Let f : C → D and g : C → D be functors. A morphism of functors f : F → G is a family
fX : FX → GX of morphisms in D such that

FX
fX−→ GXyFϕ

yGϕ

GX
fY−→ GY

is commutative.

Two categories C and D are equivalent if there exist morphisms F : C → D and G : D → C such
that GF ∼= idC and FG ∼= idD.

A full subcategory of D is a subcategory C such that if X,Y ∈ C then HomC(X,Y ) =
HomD(X,Y ). A functor F : C → D is full if the maps F : HomC(X,Y ) → HomD(FX,FY )
are injective, and faithful if the maps F : HomC(X,Y )→ HomD(FX,FY ) are surjective. Fully
faithful functors correspond to embeddings of full subcategories.

An initial object is an object B such that Hom(B,X) is only one element. A final object is
an object C such that Hom(X,C) is only one element.

A generator of a category C is an object X such that the morphism Hom(X,−) is a faithful
functor from C to the category of sets. Let A and B be rings, and let A-mod be the category of
left A-modules and mod-A the category of right A-modules??? Morita’s theorem says that the
following are equivalent:

(a) A-mod and B-mod are equivalent.

(b) mod-A and mod-B are equivalent.
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(c) There exists a finitely generated projective generator P of mod-A and a ring isomorphism
B ∼= EndA(P ).

An additive category is a category A such that

(a) The sets Hom(X,Y ) are abelian groups and composition is bilinear,

(b) There exists a 0 object in A such that Hom(0, 0) = {0},

(c) If X1, X2 ∈ A then there exists

X1

p1−→
i1←−Y

p2−→
i2←−X2,

such that

p1i1 = idX1 , p2i2 = idX2 , i1p1 + i2p2 = idY , p2i1 = p1i2 = 0.

The third axiom implies that Y is both the direct sum and the direct product of X1 and X2,
i.e. that the diagrams

Y
p1−→ X1yp2

y
X2 −→ 0

and
Y

p1←− X1yp2

y
X2 ←− 0

commute.

Let A be an additive category and let ϕ : X → Y be a morphism. The kernel of ϕ is an
object K ∈ A and a morphism k,

K
k−→X ϕ−→Y, such that φ ◦ k = 0,

and, for any morphism k′ : K ′ → X such that ϕ ◦ k′ = 0 there exists a unique morphism
h : K ′ → K with k′ = k ◦ h,

PICTURE??

The cokernel of ϕ is a morphism c : Y → K ′ such that

for any object Z the sequence 0→ Hom(K ′, Z)→ Hom(Y, Z)→ Hom(X,Z) is exact,

or equivalently,

c ◦ ϕ = 0 and for any morphism c1 : Y → K ′1 such that c1 ◦ ϕ = 0 there exists a unique
morphism h : K ′ → K ′1 with c1 = h ◦ c,

PICTURE

An additive category is an abelian category A such that if ϕ : X → Y is a morphism then there
exists a sequence

kerϕ k−→X i−→ ker k = cokerc
j−→ Y −→ cokerϕ such that j ◦ i = ϕ.

Let A and B be additive categories. An additive functor is a functor F : A → B such that the
maps F : HomC(X,Y )→ HomD(FX,FY ) are homomorphisms of abelian groups.
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2.2 Complexes

Let A be an abelian category. The category Kom(A) is the category of complexes C,

· · · d
n−1

−→Cn dn−→Cn+1dn+1

−→ · · · , such that dn ◦ dn−1 = 0,

with morphisms f• : B → C,

· · · dn−1

−→ Bn dn−→ Bn+1 dn+1

−→ · · ·yfn
yfn+1

· · · dn−1

−→ Cn dn−→ Cn+1 dn+1

−→ · · ·
, such that dn ◦ fn = fn+1 ◦ dn.

The shift functor is [n] : Kom(A)→ Kom(A) shifts all complexes by n,

(C•[n])i = Ci+n and (d[n])i = di+n.

The cone of a morphism f : K• → L• is the complex C(f) given by

C(f) = K[1]⊕ L with d

(
ki+1

`i

)
=

(
−dkk

i+1

f(ki+1 + d`i

)
.

The cylinder of a morphism f : K → L is the complex Cyl(f) given by

Cyl(f) = K ⊕K[1]⊕ L with d

 ki

ki+1

`i

 =

 dki − ki+1

−dkk
i+1

f(ki+1 + d`i

 .

There is a canonical diagram

0 −→ L
ι2−→ C(f) π1−→ K[1] −→ 0yι3

y=

0 −→ K
ι1−→ Cyl(f) π23−→ C(f) −→ 0y=

yβ

K
f−→ L

where π, α, and β are defined by

β

 ki

ki+1

`i

 = f(ki) + `i.

2.3 Cohomology

Let A be an abelian category and let C be a complex. The cohomology of C is

Hn(C) =
ker dn

im dn−1
.

A complex C is acylic at n if Hn(C) = 0.
A complex C is exact if all Hn(C) = 0 for all n.
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An exact functor is an additive functor F : C → D such that

if 0→ X
f−→ Y

g−→ Z → 0 is an exact sequence

then 0→ FX
Ff−→ FY

Fg−→ FZ → 0 is an exact sequence.

Let A be an abelian category.
An object X in A is projective if the functor HomA(X,−) is exact.
An object X in A is injective if the functor HomA(−, X) is exact.
Let A be a ring. A left A-module X is flat if the functor −⊗A X is exact.

If f• : B → C is a morphism in Kom(A) define

Hn(f) : Hn(B) −→ Hn(C)
b 7−→ fn(b̃) mod im dn−1

where b̃ ∈ ker dn is a representative of b.
A quasi-isomorphism is a morphism f : B → C such that Hn(f) : Hn(B) → Hn(C) is an
isomorphism for all n.
The derived category of A is the category D(A) with a functor Q : Kom(A)→ D(A) such that

(a) If f is a quasi-isomorphism then Q(f) is an isomorphism,

(b) If D is a category with a morphism Q′ : Kom(A)→ D such that if f is a quasi-isomorphism
then Q′(f) is an isomorphism then there exists a unique functor G : D(A)→ D such that
Q′ = G ◦Q.

The functor A → D(A) that maps X to the complex with all 0s except X in degree 0, is a fully
faithful functor with image equal to the full subcategory of D(A) formed by complexes C with
H i(C) = 0 if i 6= 0.

Let
0 −→ A•

ι−→B• p−→C• −→ 0

be an exact sequence and define

δn(ι•, p•) : Hn(C•) −→ Hn+1(A•)
c 7−→ ã mod im dn+1 where

c̃ ∈ ker dn is a representative of c,
b̃ is such that pn(b̃) = c̃,
ã is such that dnb̃ = ιn+1(ã)..

Then the exact sequence

· · · −→ Hn(A•)
Hn(i•)−→ Hn(B•)

Hn(p•)−→ Hn(C•)
δn(ι•,p•)−→ Hn+1(A•) −→ · · ·

is the corresponding long exact sequence.
The homotopic category K(A) is the category given by

Ob K(A) = Ob Kom(A) and Mor K(A) = (Mor Kom(A) mod homotopic equivalence).

A triangle is a sequence of morphisms

K −→ L −→M −→ K[1].

A distinguished triangle is a triangle isomorphic to

K
f̄−→Cyl(f) π−→C(f) δ−→K[1], for some morphism f : K → L.
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2.4 Ext

Define

Exti
A(X,Y ) = HomD(A)(X[0], Y [i]) so that Exti(X,Y ) = HomD(A)(X, IY [i]),

for an injective resolution IY of Y .

Ext0A(X,Y ) = HomA(X,Y ) and Exti
A(X,Y ) = 0, for i < 0.

An acyclic complex

· · · → 0→ K−i → K−i+1 → · · · → K0 → K1 → 0→ · · ·
‖ ‖
Y X

determines a left roof

X[0] s←−K̃ f−→Y [i] with K̃1 = 0 and K̃` = K`, for ` 6= 1,
s0 = d0

K , f−i = idY ,

and a corresponding morphism X[0]→ Y [i] in the derived category.

2.5 Derived functors

Let F : A → B be a left exact functor. The derived functor is the extension RF : D+(A) →
D+(B) of F to D+(A) determined by

RF (K)i = F (Ki) for a complex K.

The classical ith derived functor is the functor RiF : A → B given by

RiF = H0((RF )[i]) = H i(RF ).

Let R be a class of objects in A.
The category A contains sufficiently many objects from R if every object from A is a subobject
of an object from R.
The class R is adapted to F if A contains sufficiently many objects from R and F maps any
acyclic complex from Kom+(R) into an acyclic complex.

Theorem 2.1. (a) The derived functor RF exists if F admits an adapted class of objects R.

(b) If A contains sufficiently many injective objects then the injective objects form an adapted
class for every left exact functor F .

(c) If A has sufficiently many injective objects then Exti(X,−) ∼= RiHom(X,−).

(d) If A has sufficiently many projective objects then Exti(−, X) ∼= RiHom(−, X).

A projective resolution of a complex A is a quasi-isomorphism P → A with P i projective in
A for all i.
A K-projective complex is a complex Q such that if A is an acyclic complex then Hom(P,A) is
an acyclic complex.
A K-projective resolution of a complex A is a quasi-isomorphism P → A with a K-projective
P .
If A has sufficiently many projective objects then any K-projective resolution is a projective
resolution.
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2.6 Tor

Let R be a ring with identity and N a right R module. The flat R-modules form an adapted
class for the functor

−⊗R N, the derived functor is denoted −⊗LN

(a left derived functor), and

TorR
i (M,N) = H−i(M ⊗L N).
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