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1 Generalized matrix algebras

Let A be an algebra and fix a € A. The homotope algebra A(a) is the algebra A with a new
multiplication given by
Ty = zay, for xz,y € A.

If p, g are invertible elements of A then the map

A(paq) —  Aa)

- e qrp is an algebra isomorphism.

1.1 The radical of a homotope algebra
Let R be a PID and let A = M,,(R) and let € € A. The Smith normal form says that there exist

p,q € GLy(R) such that peq = diag(ey,e2,...,£,0,0,...,0), with e1les|---|eg.

Thus,
M, (e) =2 M, (0), where 0 = diag(er,€2,...,€%,0,0,...,0),

and

Rad(M,(0)) = {zx € M,, | if zg7 # 0 then S > k or T > k},
Rad?(M,(6)) = {x € M,, | if zg7 #0 then S > k and T >k},  and
Rad?®(M,,(6)) = 0.

Proposition 1.1. Rad(A(a)) = {z € A | aza € Rad(A)} and Rad?®(A(a)) C Rad(A).

Proof. The set I = {x € A | axa € Rad(A)} is an ideal in A since, if y € A then a(z - y)a =
aray € Rad(A). If z,y,z € I then x -y -z = xayaz € Rad(A). Thus I is a nilpotent ideal and
I C Rad(A(a)). Why and when is I = Rad(A4)??? Or do I care? O
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1.2 A C B, both split semisimple
Assume A C B is an inclusion of algebras and that A and B are split semisimple. Let
A be an index set for the irreducible A-modules A",
B be an index set for the irreducible B-modules B*, and let
A# = { p—p } be an index set for a basis of the simple A-module A,
for each p € A (the composite P—pu is viewed as a single symbol). Let I" be the two level graph
vertices on level A: .{1,
vertices on level B: B, and (1.1)
mﬁ edges pu — A if A* appears with multiplicity mf; in Res%(B?).
If A € B then
={P-p—A|peA popecA¥and p — X is an edge in I'} (1.2)

Is an index set for a basis of the irreducible B-module B*. We think of B as the set of paths to
A and A* as the set of “paths to ©” in the graph I'. For example, the graph I' for the symmetric
group algebras A = CS3 and B = (CS4 is
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Since A and B are split semisimple there exist (DOES THIS need proof?) be sets of matrix
units in the algebras A and B,

{apg | p€ A, Pop,@—p € A*Y  and  {bpg | A€ B, P~ — \,@q—v — A € B}, (1.3)
B By

A
respectively, so that
apagsT = 5,LLV5QSGPT and bPQbST = 5A05Q5677bPTa (14)
7 I vy TV
A O )\
and such that
aPQbST =0dgsbpr  and bSTaPQ = d7pbsq- (1.5)
B po BT I T oo
N A N A
Then
1= b 1.6
> ber (1.6)
A
and
apo=1-apg-1= b a b = bpo. 1.7
pe =t = |\ 2t | e | 2t | = 2ty ()

where the sum is over all edges ;# — A in the graph T'.
Now assume that B is a subalgebra of an algebra C' and there is an element e € C such that,
for all b € B,



(a) ebe =e1(b)e, with e1(b) € A, and
(b) e1(aibas) = aje1(b)ag, for all ajas, € A, and
(c) ea = ae, for all a € A.

Note that the map

E: B® B — A

b @bs s e(bib) is an (A, A) bimodule homomorphism.

X Tl}ough is not necessary for the follovxiing it is conceptually helpful to let C = BeB, let
C = A and extend the graph I' to a graph I' with three levels, so that the edges between level B
and level C are the reflections of the edges between level A and level B. In other words, I' has

~

vertices on level C: C, and (1.8)
an edge A — pu, A € B, p e C, for each edge p — A\, p € A, A € B. '
For each v € C define
o peA NeB,veC, popye A* and
{ poamy @w— Xand A — v are edges in I’ (1.9)
so that CV is the set of paths to v in the graph I. In the previous example I is
A |:|:|:|\ P
B Mo O [ Hj E
C oo E
The element of A given by
€1 <pr> =¢&1 (app pr aQQ> = appf€l <bPQ>aQQ
% bookT T I wr/) 7
A A A
equals O unless y = 7 and
€1 (bPQ> =& <aPR brr aRQ) = apReE1 <bRR> ARQ = 5)\ GPQ (1.10)
mh wORE i i

for some constant 5?2 which does not depend on P or @ (since it depends only on R which can
be chosen freely). The element of C' given by

bprebrq =bprarpebrg =bprearpbrq
pp  TU wp p TV wp P TU
A o A o A o

is zero unless R =T and p = 7 and
bprebpq = bPS aspebrg = bPSeaSR brg =bpsebsq

np pv P pv P Py wp  pv
A o >\ o )\ o by o



does not depend on the choice of R. If

cpQ = bprebrq (1.11)
b By v
AO A o
b
then
CpQCRS = (bPT 65TQ> (bRX e bxs) =0grbprer <bTX>€bXS
pv TE ny Yv T & vT MY YT 7r§
Ao pP1 A o p n op A o
Yy ™
= 6QRbPT(S,Yﬂ- 6;CLTX ebXS = 5QR5’Yﬂ'€g bPX ebXS = 5QR5’Y7T 67 Cps
Y mE vT My RES VT ®E
ap A n o p A n o P )\’yn
Define
1
epQ = cpQ, whenever €7 # 0. Then epQ ers = 0QRrOvr €ps (1.12)
nv ’Y nv TE VT %3
Ao Ao )\U pn op AN
Y Y Y ooow Y
so that these are matrix units. Furthermore
bpgers =0qgreps  and  epQbrg = 5QR Oyr€ps (1.13)
py TE vt K& pr TE X3
Aop APoAT ,\a p op Avp

so that the bs are related to the es in the same way that the as are related to the bs. Then

e=1l-e-1= b e b = bpprebpp = Cpp = ele 1.14
Zgg Zgg Zlglg RR ngg szﬁzg (1.14)

A v A Y
p P

In summary
A
ebpge = 0ure, apq-
m

1
€pQ = <€U> bPTebgcg

bv 7%}
NG LAY
¥
bpg = E €pPQ>
Hv 1%
A A=Y AN
5
and
eepq = Oyl g epQ
Ao =TT 7o
¥ v

1.3 R®4 L, for A semisimple

Fix isomorphisms
-
AH (1.15)



where Z“, w e A, are the simple left A-modules, Z“, wE /l, are the simple right A-modules,
and L*, RF 1 € A are vector spaces. In other words, if A has matrix units

L has a basis {{px | P € Ar X € f)“}

€A, Pop,Qop e A* th - "
{GPLQ n th Q=p } e R hasabasis {ryg| Qe A", Y € LV}

such that

aPQgRX = 6IUJ/6QR€PX and TysapQ = 5MV55P‘€YQ' (116)
H v K v H H

The map € : L ®¢ R — A is determined by the constants ekry € F given by
E(EQX X TYP) = Eﬁyan (117)
i I 0
and €'y, does not depend on @ and P since

e(lsx @ryr) =elagglox @ rypapr) = agqe(lox @ ryplapr
) 2 PUENY fo g A ) "
= 05 Qe y aQpapT = ey st
1 woop i

For each p € A construct a matrix
£ = (ehy) (1.18)

and use row reduction (Smith normal form) to find invertible matrices
DV = (D) and C* = (C%y) such that ~ DMENCH = diag(ey). (1.19)

is a diagonal matrix with diagonal entries denoted €', The €, are the invariant factors of the
matrix EX.

Theorem 1.2. Using notation as in (7¢7) define elements of R®4 L by

Mmyxy =Txp ®€py, and nxy = Z CngDg/QQmQQb (120)
© 12 12 H Q1.Q> 2

where p € A,X € R“,Y e Lr.
(a) The sets
{m)%y|,u6121,X6f%“,Y€ﬁ“} and {nﬁy|u€A,X€R",Y6ﬁ“}
are bases of R ® 5 L, which satisfy
msTmQp = 5Au€’{~QmsMP and  nsrnop = 5AM5TQ6’%TLSMP,
where E%Q and 4. are as defined in (4.12) and (4.15).
(b) The radical of the algebra R @4 L is
Rad(R®4 L) = F-span{nnT | ef- =0 orell =0}

and the images of the elements

1
eYMT = ETTLYMT, for el # 0 and €. # 0,

T
are a set of matriz units in (R®4 L)/Rad(R®4 L).



Proof. Since
(rsw ® lz7) = (rspapw ® Lzr) = (rsp ® apwlzr) = Irudwz(rsp ® Lpr)
X\ i XA i py X H Py hy

the element m yy does not depend on P and
m
{mXY |pe A, X e R)Y € LM} is a basis of R ®4 L. (1.21)

and hence R ®4 L is a direct sum of generalized matrix algebras. If (C~1)* and (D~!)* are the
inverses of the matrices C* and D* then

Z(C_l)l;(S(D_l)i/;YnXY = Z (C_l)/;(scglmeQle)jQQ(D_l)lzt“y
X,Y a X,Y,Q1,Q2 a

Z 5SQ15Q2TmQQ2 = mST?
Q1,Q2

and so the elements mS#T can be written as linear combinations of the n Xy Thus
{’I’L)&y lpe A, X e R)Y € LM} is a basis of R ®4 L. (1.22)
By direct computation,
mSTMQP = (""S)E/V ® EVKT)(T%Z ® Ezup) =Tsw @ 5(£ng ® 7“%z)fzup

A A A
= 5,\y(7“5)1\/v ® 5TQCLV[Z\Z€Z>\P) = 5>\M5TQ(TS)E/V ® EVKP) = 5)\pETQmS)\P,

and
A A
nsrnyy = Z C’QISDTQQmQQQC DVQ4mQQ4
ALK Q1,02,Q3,Q4
- Z 6>‘#CQ15DTQ2€Q2Q30Q3UDVQ4mQQ4 (1'23)
Q1,Q2,Q3,Q4
= O Z orverCh, sDivg, mQQ4 = 6/\u5TU€TTLSV
Q1,Q4
(b) Let

I= F—span{m;T | el =0or el =0}
The multiplication rule for the ny; implies that I is an ideal of R ®4 L. If ny;,, nyyn,, nyyry, €
p [ 1 1

L Ko
{an | % =0 or ¢/, = 0} then
nbel TZY%'LFQ nygg = (5T1y2€l;/2 legb ny3T3,u = 5T1Y25T2Y3€§25%2an3 = 0,

since z-:‘{/z =0or 5‘:;2 = 0. Thus any product ny;, nyg,nyyr, of three basis elements of I is 0. So
Looh

i

I is an ideal of R ® 4 L consisting of nilpotent elements and so I C Rad(R®4 L).
Since

1

CyTeUuv = —x

I\ )\

1 1
A
N nYTnUV = (s,\MCSTU by ErNyy = (S)\M(sTUeyv mod I,
2 €y A ere A A

TV

the images of the elements ey7 in (?77?7) form a set of matrix units in the algebra (R®4 L)/I.
A

Thus (R®4 L)/I is a split semisimple algebra and so I D Rad(R®4 L). O



2 Structure of Z(¢)

Let
e:L®pR—C be a (C,C) bimodule homomorphism.

Let left radical L(e) and the right radical R(c) of € are defined by

L) ={teL|e(f{®r)eRad(C), for all r € R},
R(e) ={reR|e(l®r)ecRad(C), for all £ € L},

The map ¢ is nondegenerate if Rad(C) =0, L(e) =0, and R(¢) = 0. Let

C = C/Rad(C), . o
T=L/L(s), and @ R%CZL —n %Cf
R =R/R(e), ' '

Then ker ¢ is generated by R ®¢ L(¢) and R(¢) ®¢ L, and we have that ker o - R C R(e) and
L -kero C L(e). Then

I =Rad(C)+ L(e) + R(e) + kerp  is a nilpotent ideal of A(e),

and

A

—(TS) = A(8) where the map : 7o
is a nondegenerate (C,C) bimodule homomorphism.

If e: L®p R — C is nondegenerate and R is a projective C-module then there is a (D, ()
bimodule isomorphism

~

T R — Lx
At L — C so that e=evo (id®rT)
T —
¢t — e(ler)

and
A(e) = Alevy).

If C, D, L, R are finite dimensional vector spaces over F and D = [F then
E=¢epDevp: (Lo@P*) Xp (Ro@P> — C,

with P projective and imey C Rad(C).
If e = ¢y @ evp with P finitely generated and projective then

A(g)-mod — A(gp)-mod _ @
o . Y where 6—1—sz®az-

If ime C Rad(C) then
Rad(A(ep)) = I = Rad(C) @ Rad(D) ® Lo ® Ry ® Ry ®c Lo

and
A(&U) C D

~

Rad(A(zg)  Rad(C) *~ Rad(D)’




3 Duals and Projectives

Let L be a C-module and let
Z = End¢(L)

so that L is a (C, Z) bimodule. The dual module to L is the (Z,C) bimodule
L* = Home(L, C).
The evaluation map is the (C,C') bimodule homomorphism

ev: L®zL* — C
@A +— A

and the centralizer map is the (Z, Z) bimodule homomorphism

§: L"®cL — Z
2 Lo— L
ABL m — AXm)l

Recall that [Bou, Alg. II §4.2 Cor.]
(a) L is a projective C-module if and only if 1 € im¢&,
(b) If L is a projective C-module then ¢ is injective,

(c) If L is a finitely generated projective C-module then & is bijective,
(d) If L is a finitely generated free module then

§7(z) = Db ® 2(b),

where {b1,...,bq} is a basis of L and {b},...,b}} is the dual basis in M*.

Statement (a) says that L is projective if and only if there exist b; € L and b € L* such that

ifleL them (=Y b0 sothat €( D b @bi) =1.
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