Generalized matrix algebras

Arun Ram Department of Mathematics University of Wisconsin Madison, WI 53706 ram@math.wisc.edu

1 Generalized matrix algebras

The algebra of $n \times n$ matrices

$$M_n$$
 has basis $\{E_{ST} \mid 1 \le S, T \le n\}$ with $E_{ST}E_{UV} = \delta_{TU}E_{SV}$. (1.1)

Fix constants ε_{TU} , $1 \leq T, U \leq n$. The generalized matrix algebra

$$M_n(\varepsilon)$$
 has basis $\{E_{ST} \mid 1 \le S, T \le n\}$ with $E_{ST} \cdot E_{UV} = \varepsilon_{TU} E_{SV}$. (1.2)

If we view elements of $M_n(\varepsilon)$ as matrices then

$$x \cdot y = x \varepsilon y$$
, for $x = \sum_{S,T} x_{ST} E_{ST}$, $y = \sum_{U,V} y_{UV} E_{UV}$, and $\varepsilon = (\varepsilon_{TU})$.

Let A be an algebra and fix $\varepsilon \in A$. The homotope algebra $A(\varepsilon)$ is the algebra A with a new multiplication given by

$$x \cdot y = x \varepsilon y, \quad \text{for } x, y \in A.$$
 (1.3)

Let p, q be invertible elements of A. Then

$$\begin{array}{cccc} A(paq) & \stackrel{\sim}{\longrightarrow} & A(a) \\ x & \longmapsto & qxp \end{array} \quad \text{is an algebra isomorphism.} \end{array}$$

Rewrite the construction of $M_n(\varepsilon)$: Let $L = \mathbb{F}^n$ and $R = \mathbb{F}^n$ and identify M_n with $L \otimes R$.

Identify
$$\varepsilon$$
 with a map $\begin{array}{ccc} R \otimes L & \longrightarrow & \mathbb{F} \\ v_S \otimes v_T & \longmapsto & \varepsilon_{ST} \end{array}$

Then

$$M_n(\varepsilon) = L \otimes R$$
 with product $(\ell_1 \otimes r_1)(\ell_2 \otimes r_2) = \ell_1 \otimes \varepsilon(r_1 \otimes \ell_2)r_2$

Let A be an algebra and let L be a left A-module and R a right A-module. Let

$$\varepsilon: L \otimes_{\mathbb{F}} R \longrightarrow A,$$
 be an (A, A) -bimodule homomorphism. (1.4)

The basic construction is the algebra

$$A(\varepsilon) = R \otimes_A L \quad \text{with} \quad (r_1 \otimes \ell_1)(r_2 \otimes \ell_2) = r_1 \otimes \varepsilon(\ell_1 \otimes r_2)\ell_2, \tag{1.5}$$

Research supported in part by NSF Grant ????.

for $r_1, r_2 \in R$ and $\ell_1, \ell_2 \in L$.

One case which is used often is when $A \subseteq B$ is an inclusion of algebras with a given (A, A) bimodule homormorphism $\varepsilon_1 \colon B \to A$, where A acts by left and right multiplication on B (and on A). Then

$$\varepsilon: \begin{array}{ccc} B \otimes_{\mathbb{F}} B & \longrightarrow & A \\ b_1 \otimes b_2 & \longmapsto & \varepsilon_1(b_1 b_2) \end{array}$$

$$(1.6)$$

is an (A, A) bimodule homomorphism and

$$A(\varepsilon) = B \otimes_A B \qquad \text{with} \qquad (b_1 \otimes b_2)(b_3 \otimes b_4) = b_1 \otimes \varepsilon(b_2 \otimes b_3)b_4, \tag{1.7}$$

for $b_1, b_2, b_3, b_4 \in B$.

The algebra $A(\varepsilon)$ does not usually have an identity. Let C and D be rings,

$$\begin{array}{ll} L, \mbox{ a } (C,D) \mbox{ bimodule,} \\ R, \mbox{ a } (D,C) \mbox{ bimodule} \end{array} \quad \mbox{ and } \quad \ \varepsilon \colon L \otimes_D R \to C, \end{array}$$

a (C, C) bimodule homomorphism. Define an algebra

$$A = C \oplus D \oplus L \oplus R \oplus R \otimes_C L \tag{1.8}$$

and product determined by the multiplication in C and D, the module structure of R and L and the additional relations

$$cr = 0$$
, $d\ell = 0$, $rd = 0$, $\ell c = 0$, and $(r_1 \otimes \ell_1)(r_2 \otimes \ell_2) = r_1 \otimes \varepsilon(\ell_1 \otimes r_2)\ell_2$. (1.9)

for $r, r_1, r_2 \in R$, $\ell, \ell_1, \ell_2 \in L$, $c \in C$ and $d \in D$. Let e_C be the image of the identity of C in A and e_D the image of the identity of D in A. Then

 $1 = e_C + e_D, \quad \text{and if} \quad \begin{array}{ll} C = e_C A e_C, & L = e_C A e_D, \\ R = e_D A e_C, & D' = e_D A e_D, \end{array}$

then

$$A = \left\{ \begin{pmatrix} c & \ell \\ r & d' \end{pmatrix} \mid c \in C, \ell \in L, r \in R, d' \in D' \right\}$$

with matrix multiplication. Then

$$e_D A e_D = D + R \otimes_C L$$
 is a subring of A , and
 $e_D A e_C A e_D = R \otimes_C L$ is an ideal in $e_D A e_D$.

1.1 The module category of $Z(\varepsilon)$

Let \mathcal{C} and \mathcal{D} be categories

$$F: \mathcal{C} \to \mathcal{D}$$
 and $G: \mathcal{C} \to \mathcal{D}$ be functors, and $F \xrightarrow{\varepsilon} G$,

a natural transformation. Define a category \mathcal{A} with

Objects: (M, V; PICTURE), where $M \in \mathcal{C}, V \in \mathcal{D}$, and $m, n \in Mor(\mathcal{D})$,

Morphisms: (f,g) with $f \in Mor(\mathcal{C}), g \in Mor(\mathcal{D})$ such that

PICTURE commutes.

A fundamental case is when \mathcal{D} is the category of vector spaces over \mathbb{F} .

The equivalence between the category \mathcal{A} and the module category of $Z(\varepsilon)$ is given by letting $\mathcal{C} = C$ -mod and $\mathcal{D} = D$ -mod and

where the *D*-action on $\operatorname{Hom}_C(L, M)$ is given by

$$(d\phi)(\ell) = \phi(\ell d),$$
 for $d \in D, \ell \in L$, and $\phi \in \operatorname{Hom}_C(L, M).$

Then let $\varepsilon \colon F \to G$ be the natural transformation given by

Then

$$\begin{array}{cccc} \mathcal{A} & \stackrel{\sim}{\longrightarrow} & A\text{-mod} \\ (X,Y,\rho,\lambda) & \leftrightarrow & M \end{array} \quad \text{where} \quad X = eM, \quad Y = (1-e)M, \end{array}$$

and the L-action and R-action on M define ρ and λ via

$$\ell y = (\lambda(y))(\ell)$$
 and $rx = \rho(r \otimes x)$, for $\ell \in L, r \in R, x \in X$ and $y \in Y$.

Note that

$$\ell x = 0$$
 and $ry = 0$, for $\ell \in L, r \in R, x \in X, y \in Y$,

and

commutes.

References

- [GW1] F. Goodman and H. Wenzl, The Temperley-Lieb algebra at roots of unity, Pacific J. Math. 161 (1993), no. 2, 307–334.
- [GL1] J. Graham and G. Lehrer, Diagram algebras, Hecke algebras and decomposition numbers at roots of unity, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 4, 479–524.
- [GL2] J. Graham and G. Lehrer, The two-step nilpotent representations of the extended affine Hecke algebra of type A, Compositio Math. 133 (2002), no. 2, 173–197.