Column strict tableaux

Arun Ram Department of Mathematics University of Wisconsin Madison, WI 53706 ram@math.wisc.edu

July 18, 2005

1 Column strict tableaux

A letter is an element of $B(\varepsilon_1) = \{\varepsilon_1, \ldots, \varepsilon_n\}$ and a word of length k is an element of

$$B(\varepsilon_1)^{\otimes k} = \{ \varepsilon_{i_1} \otimes \cdots \otimes \varepsilon_{i_k} \mid 1 \le i_1, \dots, i_k \le n \}.$$

For $1 \leq i \leq n-1$ define

$$\tilde{f}_i \colon B(\varepsilon_1)^{\otimes k} \longrightarrow B(\varepsilon_1)^{\otimes k} \cup \{0\} \quad \text{and} \quad \tilde{e}_i \colon B(\varepsilon_1)^{\otimes k} \longrightarrow B(\varepsilon_1)^{\otimes k} \cup \{0\}$$

as follows. For $b \in B(\varepsilon_1)^{\otimes k}$,

place +1 under each ε_i in b,

place -1 under each ε_{i+1} in b, and

place 0 under each ε_j , $j \neq i, i+1$.

Ignoring 0s, successively pair adjacent (-1, +1) pairs to obtain a sequence of unpaired +1s and -1s

+1 +1 +1 +1 +1 +1 +1 -1 -1 -1 -1

(after pairing and ignoring 0s). Then

 $\tilde{f}_i b$ = same as b except the letter corresponding to the rightmost unpaired +1 is changed to ε_{i+1} , $\tilde{e}_i b$ = same as b except the letter corresponding to the leftmost unpaired -1 is changed to ε_i .

If there is no unpaired +1 after pairing then $\tilde{f}_i b = 0$. If there is no unpaired -1 after pairing then $\tilde{e}_i b = 0$.

A partition is a collection μ of boxes in a corner where the convention is that gravity goes up and to the left. As for matrices, the rows and columns of μ are indexed from top to bottom and left to right, respectively.

> The parts of μ are $\mu_i = (\text{the number of boxes in row } i \text{ of } \mu),$ the length of μ is $\ell(\mu) = (\text{the number of rows of } \mu),$ (1.1) the size of μ is $|\mu| = \mu_1 + \dots + \mu_{\ell(\mu)} = (\text{the number of boxes of } \mu).$

Then μ is determined by (and identified with) the sequence $\mu = (\mu_1, \ldots, \mu_\ell)$ of positive integers such that $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_\ell > 0$, where $\ell = \ell(\mu)$. For example,

A partition of k is a partition λ with k boxes. Write $\lambda \vdash k$ if λ is a partition of k. Make the convention that $\lambda_i = 0$ if $i > \ell(\lambda)$. The dominance order is the partial order on the set of partitions of k,

$$P^+(k) = \{ \text{partitions of } k \} = \{ \lambda = (\lambda_1, \dots, \lambda_\ell) \mid \lambda_1 \ge \dots \ge \lambda_\ell > 0, \ \lambda_1 + \dots + \lambda_\ell = k \},\$$

given by

$$\lambda \ge \mu \quad \text{if} \quad \lambda_1 + \lambda_2 + \dots + \lambda_i \ge \mu_1 + \mu_2 + \dots + \mu_i \quad \text{for all } 1 \le i \le \max\{\ell(\lambda), \ell(\mu)\}.$$

For example, for k = 6 the Hasse diagram of the dominance order is

Let λ be a partition and let $\mu = (\mu_1, \dots, \mu_n) \in \mathbb{Z}_{\geq 0}^n$ be a sequence of nonnegative integers. A column strict tableau of shape λ and weight μ is a filling of the boxes of λ with μ_1 1s, μ_2 2s, \dots, μ_n ns, such that

- (a) the rows are weakly increasing from left to right,
- (b) the columns are strictly increasing from top to bottom.

If p is a column strict tableau write shp(p) and wt(p) for the shape and the weight of p so that

$$shp(p) = (\lambda_1, \dots, \lambda_n),$$
 where $\lambda_i =$ number of boxes in row *i* of *p*, and $wt(p) = (\mu_1, \dots, \mu_n),$ where $\mu_i =$ number of *i* s in *p*.

For example,

For a partition λ and a sequence $\mu = (\mu_1, \dots, \mu_n) \in \mathbb{Z}_{\geq 0}$ of nonnegative integers write

$$B(\lambda) = \{ \text{column strict tableaux } p \mid \text{shp}(p) = \lambda \}, \\B(\lambda)_{\mu} = \{ \text{column strict tableaux } p \mid \text{shp}(p) = \lambda \text{ and wt}(p) = \mu \},$$
(1.2)

Let λ be a partition with k boxes and let

 $B(\lambda) = \{ \text{column strict tableaux of shape } \lambda \}.$

The set $B(\lambda)$ is a subset of $B(\varepsilon_1)^{\otimes k}$ via the injection

where the arabic reading of p is $\varepsilon_{i_1}\varepsilon_{i_2}\cdots\varepsilon_{i_k}$ if the entries of p are i_1, i_2, \ldots, i_k read right to left by rows with the rows read in sequence beginning with the first row.

Proposition 1.1. Let $\lambda = (\lambda_1, \dots, \lambda_n)$ be a partition with k boxes. Then $B(\lambda)$ is the subset of $B(\varepsilon_1)^{\otimes k}$ generated by

$$p_{\lambda} = \underbrace{\varepsilon_1 \otimes \varepsilon_1 \otimes \cdots \otimes \varepsilon_1}_{\lambda_1 \text{ factors}} \otimes \underbrace{\varepsilon_2 \otimes \varepsilon_2 \otimes \cdots \otimes \varepsilon_2}_{\lambda_2 \text{ factors}} \otimes \cdots \otimes \underbrace{\varepsilon_n \otimes \varepsilon_n \otimes \cdots \otimes \varepsilon_n}_{\lambda_n \text{ factors}}$$

under the action of the operators \tilde{e}_i , \tilde{f}_i , $1 \leq i \leq n$.

Proof. If P = P(b) is a filling of the shape λ then $b_{i_1} \otimes \cdots \otimes b_{i_k} = b$ is obtained from P by reading the entries of P in a abic reading order (right to left across rows and from top to bottom down the page). The tableau

is the column strict tableau of shape λ with 1s in the first row, 2s in the second row, and so on. Define operators \tilde{e}_i and \tilde{f}_i on a filling of λ by

$$\tilde{e}_i P = P(\tilde{e}_i p)$$
 and $f_i P = P(f_i b)$, if $P = P(b)$.

To prove the proposition we shall show that if P is a column strict tableau of shape λ then (a) $\tilde{e}_i P$ and $\tilde{f}_i P$ are column strict tableaux, (b) P can be obtained by applying a sequence of \tilde{f}_i to P_{λ} . Let $P^{(j)}$ be the column strict tableau formed by the entries of P which are $\leq j$ and let $\lambda^{(j)} = \operatorname{shp}(P^{(j)})$. Identify P with the sequence

$$P = (\emptyset = \lambda^{(0)} \subseteq \lambda^{(1)} \subseteq \cdots \subseteq \lambda^{(n)} = \lambda), \quad \text{where} \\ \lambda^{(i)} / \lambda^{(i-1)} \text{ is a horizontal strip for each } 1 \le i \le n.$$

(a) Let us analyze the action of \tilde{e}_i and \tilde{f}_i on P. The sequence of +1, -1, 0 constructed in (???) is given by

placing +1 in each box of $\lambda^{(i)}/\lambda^{(i-1)}$, placing -1 in each box of $\lambda^{(i+1)}/\lambda^{(i)}$, placing 0 in each box of $\lambda^{(j)}/\lambda^{(j-1)}$, for $j \neq i, i+1$,

and reading the resulting filling in Arabic reading order, see (???). The process of removing +1, -1 pairs can be executed on the horizontal strips $\lambda^{(i+1)}/\lambda^{(i)}$ and $\lambda^{(i)}/\lambda^{(i-1)}$,

with the effect that the entries in any configuration of boxes of the form

+1	+1	 +1
-1	-1	 $^{-1}$

will be removed. Other +1, -1 pairs will also be removed and the final sequence

$$\underbrace{-1 \ -1 \ \cdots \ -1}_{d_{+}(p)} \underbrace{+1 \ +1 \ \cdots \ +1}_{d_{-}(p)} \tag{1.3}$$

will correspond to a configuration of the form

The rightmost -1 in the sequence (*) corresponds to a box in $\lambda^{(i+1)}/\lambda^{(i)}$ which is leftmost in its row and which does not cover a box of $\lambda^{(i)}/\lambda^{(i-1)}$. Similarly the leftmost +1 in the sequence (*) corresponds to a box in $\lambda^{(i)}/\lambda^{(i-1)}$ which is rightmost in its row and which does not have a box of $\lambda^{(i+1)}/\lambda^{(i)}$ covering it. These conditions guarantee that $\tilde{e}_i P$ and $\tilde{f}_i P$ are column strict tableaux.

(b) Applying the operator

$$\tilde{f}_{n,i} = \tilde{f}_{n-1} \cdots \tilde{f}_{i+1} \tilde{f}_i$$
 to P_{λ}

will change the rightmost i in row i to n. A sequence of applications of

 $\tilde{f}_{n,i}$, as *i* decreases (weakly) from n-1 to 1,

can be used to produce a column strict tableau ${\cal P}_n$ in which

- (1) the entries equal to n match the entries equal to n in P, and
- (2) the subtableau of P_n containing the entries $\leq n-1$ is $P_{\lambda^{(n-1)}}$.

Iterating the process and applying a sequence of operators

 $\tilde{f}_{n-1,i}$, as *i* decreases (weakly) from n-2 to 1,

to the tableau P_n can be used to produce a tableau P_{n-1} in which

- (1) the entries equal to n and n-1 match the entries equal to n and n-1 in P, and
- (2) the subtableau of P_{n-1} containing the entries $\leq n-2$ is $P_{\lambda^{(n-2)}}$.

The tableau P is obtained after a total of n iterations of this process.