Classical Lie algebras

Arun Ram
Department of Mathematics
University of Wisconsin
Madison, WI 53706
ram@math.wisc.edu

1 Classical Lie algebras

A Lie algebra is a vector space \mathfrak{g} with a bilinear map $[,]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ such that

(a)
$$[x,y] = -[y,x]$$
, for $x,y \in \mathfrak{g}$, and

(b) (Jacobi identity)
$$[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0$$
, for all $x, y, z \in \mathfrak{g}$.

A bilinear form $\langle, \rangle \colon \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$ is ad-invariant if, for all $x, y, z \in \mathfrak{g}$,

$$\langle \operatorname{ad}_{x}(y), z \rangle = -\langle y, \operatorname{ad}_{x}(z) \rangle, \quad \text{where} \quad \operatorname{ad}_{x}(y) = [x, y],$$
 (1.1)

for $x, y \in \mathfrak{g}$. The Killing form is the inner product on \mathfrak{g} given by

$$\langle x_1, x_2 \rangle = Tr(\operatorname{ad}_x \operatorname{ad}_y) \rangle.$$
 (1.2)

The Jacobi identity is equivalent to the fact that the Killing form is ad-invariant.

Let \mathfrak{g} be a finite dimensional Lie algebra with a nondegenerate ad-invariant bilinear form. The nondegeneracy of the form means that if $\{x_i\}$ be a basis of \mathfrak{g} then the dual basis $\{x_i^*\}$ of \mathfrak{g} with respect to \langle,\rangle exists. The *Casimir element* of \mathfrak{g} is

$$\kappa = \sum_{i} x_i x_i^*, \quad \text{in } U\mathfrak{g}. \tag{1.3}$$

The element κ is central in $U\mathfrak{g}$ since, for $y \in \mathfrak{g}$,

$$y\kappa = \sum_{i} yx_{i}x_{i}^{*} = \sum_{i} ([y, x_{i}] + x_{i}y)x_{i}^{*} = \sum_{i,j} \langle [y, x_{i}], x_{j}^{*} \rangle x_{j}x_{i}^{*} + \sum_{i} x_{i}yx_{i}^{*}$$
$$= \sum_{i,j} -x_{j} \langle x_{i}, [y, x_{j}^{*}] \rangle x_{i}^{*} + \sum_{i} x_{j}yx_{j}^{*} = \sum_{i} -x_{j}[y, x_{j}^{*}] + x_{j}yx_{j}^{*} = \sum_{i} x_{j}x_{j}^{*}y = \kappa y.$$

Theorem 1.1. Let \mathfrak{g} be a finite dimensional complex semisimple Lie algebra with Cartan subalgebra \mathfrak{h} . The Casimir element κ acts on an \mathfrak{g} -module $L(\lambda)$ of highest weight λ by the constant

$$\langle \lambda + \rho, \lambda + \rho \rangle - \langle \rho, \rho \rangle, \quad where \quad \rho = \frac{1}{2} \sum_{\alpha \in \mathbb{R}^+} \alpha,$$

 R^+ is the set of positive roots, and \langle , \rangle is the form on \mathfrak{h}^* obtained by restricting the Killing form to \mathfrak{h} and identifying \mathfrak{h} with \mathfrak{h}^* .

Proof. (a) Let us choose a basis of \mathfrak{g} compatible with the decomposition

$$\mathfrak{g} = \mathfrak{h} \oplus \left(\bigoplus_{\alpha \in R} \mathfrak{g}_{\alpha}\right)$$
 with $\dim \mathfrak{g}_{\alpha} = 1$, for $\alpha \in R$,

where \mathfrak{h} is a Cartan subalgebra and R is the root system of \mathfrak{g} . Let $x_{\alpha} \in \mathfrak{g}_{\alpha}$, $y_{\alpha} \in \mathfrak{g}_{-\alpha}$, $h_{\alpha} \in \mathfrak{h}$ be such that

$$[x_{\alpha}, y_{\alpha}] = h_{\alpha}, \qquad [h_{\alpha}, x_{\alpha}] = 2x_{\alpha}, \qquad [h_{\alpha}, y_{\alpha}] = -2y_{\alpha}.$$

Let \langle,\rangle be the Killing form on \mathfrak{g} . Using the restriction of \langle,\rangle to \mathfrak{h} to identify \mathfrak{h} and \mathfrak{h}^* ,

$$h_{\alpha} \longrightarrow h^* \\
h_{\alpha} \longmapsto \alpha^{\vee} \quad \text{where} \quad \alpha^{\vee} = \frac{2\alpha}{\langle \alpha, \alpha \rangle}.$$

Then

$$\langle x_{\alpha}, y_{\alpha} \rangle = \left\langle -\frac{1}{2} [x_{\alpha}, h_{\alpha}], y_{\alpha} \right\rangle = \frac{1}{2} \langle h_{\alpha}, [x_{\alpha}, y_{\alpha}] \rangle = \frac{1}{2} \langle h_{\alpha}, h_{\alpha} \rangle = \frac{1}{2} \langle \alpha^{\vee}, \alpha^{\vee} \rangle = \frac{2}{\langle \alpha, \alpha \rangle}.$$

and so

$$\left\langle x_{\alpha}, \frac{\langle \alpha, \alpha \rangle}{2} y_{\alpha} \right\rangle = 1$$
 and $\left[x_{\alpha}, \frac{\langle \alpha, \alpha \rangle}{2} y_{\alpha} \right] = \frac{\langle \alpha, \alpha \rangle}{2} h_{\alpha}.$

Let h_1, \ldots, h_r be a basis of \mathfrak{h} and let h_1^*, \ldots, h_r^* be the dual basis of \mathfrak{h} with respect to \langle, \rangle . Then

$$\{h_1, \ldots, h_r, x_{\alpha}, \frac{\langle \alpha, \alpha \rangle}{2} y_{\alpha} \mid \alpha \in R^+\}$$
 is a basis of \mathfrak{g} , and $\{h_1^*, \ldots, h_r^*, \frac{\langle \alpha, \alpha \rangle}{2} y_{\alpha}, x_{\alpha} \mid \alpha \in R^+\}$ is the dual basis of \mathfrak{g} ,

with respect to \langle , \rangle .

Now compute the constant by which κ acts on $L(\lambda)$. If $L(\lambda)$ is an \mathfrak{g} -module generated by a highest weight vector v_{λ}^+ of weight λ so that

$$h_{\alpha}v_{\lambda}^{+} = \langle \lambda, \alpha^{\vee} \rangle v_{\lambda}^{+}$$
 and $x_{\alpha}v_{\lambda}^{+} = 0$, for $\alpha \in \mathbb{R}^{+}$,

then

$$\kappa v_{\lambda}^{+} = \left(\sum_{i} h_{i} h_{i}^{*} + \sum_{\alpha \in R^{+}} x_{\alpha} \frac{\langle \alpha, \alpha \rangle}{2} y_{\alpha} + \sum_{\alpha \in R^{+}} \frac{\langle \alpha, \alpha \rangle}{2} y_{\alpha} x_{\alpha}\right) v_{\lambda}^{+}$$

$$= \left(\sum_{i} h_{i} h_{i}^{*} + \sum_{\alpha \in R^{+}} \frac{\langle \alpha, \alpha \rangle}{2} \left([x_{\alpha}, y_{\alpha}] + y_{\alpha} x_{\alpha} + y_{\alpha} x_{\alpha}\right)\right) v_{\lambda}^{+}$$

$$= \left(\sum_{i} h_{i} h_{i}^{*} + \sum_{\alpha \in R^{+}} \frac{\langle \alpha, \alpha \rangle}{2} \left(h_{\alpha} + 2y_{\alpha} x_{\alpha}\right)\right) v_{\lambda}^{+}$$

$$= \left(\langle \lambda, \lambda \rangle + \sum_{\alpha \in R^{+}} \frac{\langle \alpha, \alpha \rangle}{2} \left(\langle \lambda, \alpha^{\vee} \rangle + 0\right)\right) v_{\lambda}^{+} = \left\langle \lambda, \lambda + \sum_{\alpha \in R^{+}} \alpha \right\rangle v_{\lambda}^{+}$$

$$= \langle \lambda, \lambda + 2\rho \rangle v_{\lambda}^{+} = \left(\langle \lambda + \rho, \lambda + \rho \rangle - \langle \rho, \rho \rangle\right) v_{\lambda}^{+}.$$

Let V be an n-dimensional vector space over \mathbb{C} . The Lie algebra

$$\mathfrak{gl}_n = \operatorname{End}(V)$$
 with bracket $[x, y] = xy - yx$, for $x, y \in \mathfrak{gl}_n$,

The Lie algebra

$$\mathfrak{sl}_n = \{x \in \mathfrak{gl}_n \mid \operatorname{tr}(x) = 0\},$$
 is a Lie subalgebra of \mathfrak{gl}_n .

Suppose that \langle , \rangle is a nondegenerate symmetric bilinear form on V. The Lie algebra

$$\mathfrak{so}_n = \{ x \in \mathfrak{gl}_n \mid \langle xv_1, v_2 \rangle + \langle v_1, xv_2 \rangle = 0, \text{ for all } v_1, v_2 \in V \}.$$

Suppose that \langle , \rangle is a nondegenerate skew symmetric bilinear form on V. The Lie algebra

$$\mathfrak{sp}_n = \{x \in \mathfrak{gl}_n \mid \ \langle xv_1, v_2 \rangle + \langle v_1, xv_2 \rangle = 0, \ \text{for all} \ v_1, v_2 \in V \}.$$

The inner product

$$\langle , \rangle : \mathfrak{gl}_n \times \mathfrak{gl}_n \to \mathbb{C}$$
 given by $\langle x, y \rangle = \operatorname{Tr}(xy),$ (1.4)

is ad-invariant and nondegenerate on each of the Lie algebras \mathfrak{gl}_n , \mathfrak{sl}_n , \mathfrak{so}_n , and \mathfrak{sp}_n .

Identify \mathfrak{gl}_n with $M_n(\mathbb{C})$ by choosing a basis $\{v_1, \ldots, v_n\}$ of V. Let E_{ij} be the matrix with 1 in the (i, j) entry and all other entries 0. Then

$$\mathfrak{gl}_n$$
 has basis $\{E_{ij} \mid 1 \leq i, j \leq n\}$

Let E_{ij} denote the matrix with 1 in the (i,j) entry and 0 in all other entries. Then

$$\mathfrak{gl}_n$$
 has basis $\{E_{ij} \mid 1 \le i, j, \le n\}$, and $\{E_{ii} \mid 1 \le i, j, \le n\}$ (1.5)

is the dual basis with respect to \langle , \rangle . Identify \mathfrak{so}_n with a Lie subalgebra of $\mathfrak{gl}_n = M_n(\mathbb{C})$ by choosing an *orthonormal* basis $\{v_1, \ldots, v_n\}$ of V. Then

$$\mathfrak{so}_n = \{ A \in M_n(\mathbb{C}) \mid A = -A^t \}$$
 and has basis $\{ E_{ij} - E_{ji} \mid 1 \le i < j \le n \}$

and, with respect to \langle , \rangle ,

the dual basis is
$$\{-\frac{1}{2}(E_{ij} - E_{ji}) \mid 1 \le i, j \le n\}.$$
 (1.6)

Let $\varepsilon_1, \ldots, \varepsilon_n$ be an orthonormal basis of the vector space \mathbb{R}^n . Then

$$\mathfrak{h}^* = \begin{cases} \mathbb{R}^n, & \text{if } \mathfrak{g} = \mathfrak{gl}_n, \\ \{\lambda_1 \varepsilon_1 + \dots + \lambda_n \varepsilon_n \mid \lambda_i \in \mathbb{R}, \ \lambda_1 \dots + \lambda_n = 0\}, & \text{if } \mathfrak{g} = \mathfrak{sl}_n, \\ \mathbb{R}^r, & \text{if } \mathfrak{g} = \mathfrak{so}_{2r+1}, \\ \mathbb{R}^r, & \text{if } \mathfrak{g} = \mathfrak{sp}_{2r}, \\ \mathbb{R}^r, & \text{if } \mathfrak{g} = \mathfrak{so}_{2r}, \end{cases}$$

The positive roots for \mathfrak{gl}_n are the elements of

$$R^{+} = \{ \varepsilon_{i} - \varepsilon_{j} \mid 1 \leq i < j \leq n \}, \quad \text{with} \quad (\varepsilon_{i} - \varepsilon_{j})^{\vee} = \varepsilon_{i} - \varepsilon_{j}.$$
 (1.7)

The positive roots for \mathfrak{so}_n are the elements of

$$R^{+} = \left\{ \begin{array}{ccc} \varepsilon_{i} \pm \varepsilon_{j} & | & 1 \leq i < j \leq n, \\ \varepsilon_{i} & | & 1 \leq i \leq n \end{array} \right\}, \quad \text{with} \quad \left(\begin{array}{ccc} (\varepsilon_{i} \pm \varepsilon_{j})^{\vee} & = \varepsilon_{i} \pm \varepsilon_{j}, & \text{and} \\ (\varepsilon_{i})^{\vee} & = 2\varepsilon_{i}. \end{array} \right)$$
(1.8)

The fundamental weights are the generators of the $\mathbb{Z}_{\geq 0}$ module

$$P^+ = \sum_j \mathbb{Z}_{\geq 0} \omega_j$$
, of dominant integral weights,

and the irreducible \mathfrak{g} -modules $L(\lambda)$ are indexed by the elements of P^+ . The fundamental weights are given by

$$\begin{array}{lll} \omega_i &= \varepsilon_1 + \cdots + \varepsilon_i, & 1 \leq i \leq n, & \text{if } \mathfrak{g} = \mathfrak{gl}_n, \\ \omega_0 &= -(\varepsilon_1 + \cdots + \varepsilon_n), & \\ \\ \omega_i &= \varepsilon_1 + \cdots + \varepsilon_i & 1 \leq i \leq n-1, & \text{if } \mathfrak{g} = \mathfrak{sl}_n, \\ & -\frac{i}{n}(\varepsilon_1 + \cdots + \varepsilon_n), & \\ \\ \omega_i &= \varepsilon_1 + \cdots + \varepsilon_i, & 1 \leq i \leq r-1, & \text{if } \mathfrak{g} = \mathfrak{so}_{2r+1}, \\ \omega_r &= \frac{1}{2}(\varepsilon_1 + \cdots + \varepsilon_r), & \\ \\ \omega_i &= \varepsilon_1 + \cdots + \varepsilon_i, & 1 \leq i \leq r, & \text{if } \mathfrak{g} = \mathfrak{sp}_{2r}, \\ \\ \omega_i &= \varepsilon_1 + \cdots + \varepsilon_i, & 1 \leq i \leq r-2, \\ \\ \omega_{r-1} &= \frac{1}{2}(\varepsilon_1 + \cdots + \varepsilon_{r-1} - \varepsilon_r), & \text{if } \mathfrak{g} = \mathfrak{so}_{2r}, \\ \\ \omega_r &= \frac{1}{2}(\varepsilon_1 + \cdots + \varepsilon_{r-1} + \varepsilon_r), & \text{if } \mathfrak{g} = \mathfrak{so}_{2r}, \\ \\ \omega_r &= \frac{1}{2}(\varepsilon_1 + \cdots + \varepsilon_{r-1} + \varepsilon_r), & \text{if } \mathfrak{g} = \mathfrak{so}_{2r}, \\ \end{array}$$

The dominant integral weights are

$$\lambda = \lambda_{1}\varepsilon_{1} + \dots + \lambda_{n}\varepsilon_{n}, \qquad \lambda_{1} \geq \lambda_{2} \geq \dots \geq \lambda_{n}, \qquad \text{if } \mathfrak{g} = \mathfrak{gl}_{n},$$

$$\lambda = \lambda_{1}\varepsilon_{1} + \dots + \lambda_{n-1}\varepsilon_{n-1} \qquad \lambda_{1} \geq \lambda_{2} \geq \dots \geq \lambda_{n-1} \geq 0, \qquad \text{if } \mathfrak{g} = \mathfrak{sl}_{n},$$

$$-\frac{|\lambda|}{n}(\varepsilon_{1} + \dots + \varepsilon_{n}), \qquad \lambda_{1}, \dots, \lambda_{n-1} \in \mathbb{Z},$$

$$\lambda = \lambda_{1}\varepsilon_{1} + \dots + \lambda_{r}\varepsilon_{r}, \qquad \lambda_{1} \geq \lambda_{2} \geq \dots \geq \lambda_{r} \geq 0,$$

$$\lambda_{1}, \dots, \lambda_{r} \in \mathbb{Z}, \text{ or } \qquad \text{if } \mathfrak{g} = \mathfrak{so}_{2r+1},$$

$$\lambda_{1}, \dots, \lambda_{r} \in \mathbb{Z}, \text{ or } \qquad \text{if } \mathfrak{g} = \mathfrak{so}_{2r+1},$$

$$\lambda = \lambda_{1}\varepsilon_{1} + \dots + \lambda_{r}\varepsilon_{r}, \qquad \lambda_{1} \geq \lambda_{2} \geq \dots \geq \lambda_{r} \geq 0, \qquad \text{if } \mathfrak{g} = \mathfrak{sp}_{2r},$$

$$\lambda = \lambda_{1}\varepsilon_{1} + \dots + \lambda_{r}\varepsilon_{r}, \qquad \lambda_{1} \geq \lambda_{2} \geq \dots \geq \lambda_{r-1} \geq |\lambda_{r}| \geq 0,$$

$$\lambda_{1}, \dots, \lambda_{r} \in \mathbb{Z}, \text{ or } \qquad \text{if } \mathfrak{g} = \mathfrak{so}_{2r},$$

$$\lambda_{1}, \dots, \lambda_{r} \in \mathbb{Z}, \text{ or } \qquad \text{if } \mathfrak{g} = \mathfrak{so}_{2r},$$

$$\lambda_{1}, \dots, \lambda_{r} \in \mathbb{Z}, \text{ or } \qquad \text{if } \mathfrak{g} = \mathfrak{so}_{2r},$$

$$\lambda_{1}, \dots, \lambda_{r} \in \mathbb{Z}, \text{ or } \qquad \text{if } \mathfrak{g} = \mathfrak{so}_{2r},$$

$$\lambda_{1}, \dots, \lambda_{r} \in \mathbb{Z}, \text{ or } \qquad \text{if } \mathfrak{g} = \mathfrak{so}_{2r},$$

where $|\lambda| = \sum_{i} \lambda_{i}$. The element ρ is given by

$$2\rho = \sum_{j} \omega_{j} = \sum_{i} (y - 2i + 1)\varepsilon_{i}, \quad \text{where} \quad y = \begin{cases} 2n - 1, & \text{if } \mathfrak{g} = \mathfrak{gl}_{n}, \\ n, & \text{if } \mathfrak{g} = \mathfrak{sl}_{n}, \\ 2r, & \text{if } \mathfrak{g} = \mathfrak{so}_{2r+1}, \\ 2r + 1, & \text{if } \mathfrak{g} = \mathfrak{sp}_{2r}, \\ 2r - 1, & \text{if } \mathfrak{g} = \mathfrak{so}_{2r}, \end{cases}$$
(1.9)

Identify each dominant integral weight λ with the configuration of boxes which has λ_i boxes in row i ($1 \le i \le n$). If $\lambda_i \le 0$ put $|\lambda_i|$ boxes in row i and mark them with - signs. For example

$$\lambda = \begin{bmatrix} 5\varepsilon_1 + 5\varepsilon_2 + 3\varepsilon_3 + 3\varepsilon_4 + \varepsilon_5 + \varepsilon_6 - \frac{18}{n+1}(\varepsilon_1 + \dots + \varepsilon_{n+1}), & \text{for } \mathfrak{g} = \mathfrak{sl}_{n+1}, \\ 5\varepsilon_1 + 5\varepsilon_2 + 3\varepsilon_3 + 3\varepsilon_4 + \varepsilon_5 + \varepsilon_6, & \text{for } \mathfrak{g} = \mathfrak{gl}_n, \mathfrak{so}_{2r+1}, \mathfrak{sp}_{2r} \text{ of } \mathfrak{so}_{2r}, \end{bmatrix}$$

$$\lambda = \frac{11}{2}\varepsilon_1 + \frac{11}{2}\varepsilon_2 + \frac{7}{2}\varepsilon_3 + \frac{7}{2}\varepsilon_4 + \frac{3}{2}\varepsilon_5 + \frac{3}{2}\varepsilon_6, \quad \text{for } \mathfrak{g} = \mathfrak{so}_{2r+1} \text{ or } \mathfrak{g} = \mathfrak{so}_{2r},$$

$$\lambda = \frac{1}{1-\varepsilon_1} = 6\varepsilon_1 + 6\varepsilon_2 + 4\varepsilon_3 + 4\varepsilon_4 + 2\varepsilon_5 - 2\varepsilon_6, \quad \text{for } \mathfrak{g} = \mathfrak{so}_{12} \text{ (type } D_6),$$

If b is a box in position (i, j) of λ the content of b is

$$c(b) = j - i =$$
the diagonal number of b . (1.10)

PICTURE

Theorem 1.2. (b) Let E_{ij} be the matrix with 1 in the (i, j) entry and all other entries 0. The Casimir element of $U\mathfrak{g}$ is

$$\kappa = \begin{cases} \sum_{1 \le i, j, \le n} E_{ij} E_{ji}, & \text{for } \mathfrak{g} = \mathfrak{gl}_n, \\ ????, & \text{for } \mathfrak{g} = \mathfrak{sl}_n, \\ -\frac{1}{4} \sum_{i,j=1}^n (E_{ij} - E_{ji})^2, & \text{for } \mathfrak{g} = \mathfrak{so}_n, \\ ????, & \text{for } \mathfrak{g} = \mathfrak{sp}_{2r}, \end{cases}$$

where we identify \mathfrak{gl}_n with $M_n(\mathbb{C})$ by choosing a basis $\{v_1, \ldots, v_n\}$ of V which is orthonormal if the bilinear form \langle, \rangle on V is symmetric and satisfies

$$\langle v_i, v_{r+j} \rangle = \delta_{ij},$$
 if $n = 2r$ and \langle , \rangle is skew symmetric.

put in for $\leq i, j \leq r$??? The element κ acts on an \mathfrak{g} -module $L(\lambda)$ of highest weight λ by the constant

$$2\sum_{b\in\lambda}c(b) + \begin{cases} ????, & \text{if } \mathfrak{g} = \mathfrak{gl}_n, \\ n|\lambda| - \frac{|\lambda^2|}{n}, & \text{if } \mathfrak{g} = \mathfrak{sl}_n, \\ (n-1)|\lambda|, & \text{if } \mathfrak{g} = \mathfrak{so}_n \text{ and } \lambda_i \in \mathbb{Z}, \\ (n-1)|\lambda| + \frac{n}{4} + \frac{n^2}{2}, & \text{if } \mathfrak{g} = \mathfrak{so}_n \text{ and } \lambda_i \in \frac{1}{2} + \mathbb{Z}, \\ (2r+1)|\lambda|, & \text{if } \mathfrak{g} = \mathfrak{sp}_{2r}, \end{cases}$$

Proof. (b) The formulas for κ follow from ??? and ???. Thus the Casimir element of \mathfrak{so}_n is

$$\kappa = \sum_{1 \le i \le j \le n} -\frac{1}{2} (E_{ij} - E_{ji})^2 = -\frac{1}{4} \sum_{i,j=1}^{n} (E_{ij} - E_{ji})^2.$$

PUT
$$\mathfrak{sp}_{2r}$$
 HERE.

Now compute the action of κ on a \mathfrak{g} module $L(\lambda)$ generated by a highest weight vector of weight λ . In the case when $\mathfrak{g} = \mathfrak{gl}_n$,

$$\kappa = \sum_{1 \le i, j \le n} E_{ij} E_{ji} = \sum_{i=1}^{n} E_{ii} E_{ii} + \sum_{1 \le i < j \le n} E_{ij} E_{ji} + \sum_{1 \le i < j \le n} [E_{ij}, E_{ji}] + E_{ji} E_{ij}$$

$$= \sum_{i=1}^{n} E_{ii} E_{ii} + 2 \sum_{1 \le i < j \le n} E_{ij} E_{ji} + \sum_{1 \le i < j \le n} (E_{ii} - E_{jj})$$

Since $E_{ii}v_{\lambda}^+ = \lambda_i v_{\lambda}^+$ and $E_{ij}v_{\lambda}^+ = 0$ for i < j, $\kappa v_{\lambda}^+ = c_{\lambda}v_{\lambda}^+$ where

$$c_{\lambda} = \sum_{i=1}^{n} \lambda_{i}^{2} + 0 + \sum_{1 \leq i < j \leq n} (\lambda_{i} - \lambda_{j}) = \sum_{i=1}^{n} \lambda_{i}^{2} + (n - i)\lambda_{i} - (i - 1)\lambda_{i}$$

$$= \sum_{i=1}^{n} (\lambda_{i} + n - 2i + 1)\lambda_{i} = \sum_{i=1}^{n} (\lambda_{i} + 2n - 2i)\lambda_{i} - (n - 1)\lambda_{i} = \langle \lambda, \lambda + 2\delta \rangle - (n - 1)|\lambda|$$

$$= \langle \lambda + \delta, \lambda + \delta \rangle - \langle \delta, \delta \rangle - (n - 1)|\lambda|, \text{ where } \delta = (n - 1)\varepsilon_{1} + (n - 2)\varepsilon_{2} + \dots + \varepsilon_{n-1}.$$

Let λ and μ be partitions such that $\mu \subseteq \lambda$ and $\lambda/\mu = \square$. Suppose that the box where λ and μ differe is in the jth row so that $\lambda = \mu + \varepsilon_j$. Then, with c_{λ} as in the proof of (a),

$$c_{\lambda} - c_{\mu} = (\langle \lambda + \delta, \lambda + \delta \rangle - \langle \delta, \delta \rangle - (n-1)|\lambda|) - (\langle \mu + \delta, \mu + \delta \rangle - \langle \delta, \delta \rangle - (n-1)|\mu|)$$

$$= \langle \mu + \varepsilon_{j} + \delta, \mu + \varepsilon_{j} + \delta \rangle - \langle \mu + \delta, \mu + \delta \rangle - (n-1)(|\lambda| - |\mu|)$$

$$= 2\langle \mu + \delta, \varepsilon_{j} \rangle + \langle \varepsilon_{j}, \varepsilon_{j} \rangle - (n-1)$$

$$= 2(\mu_{j} + n - j) + 1 - n + 1 = 2(\mu_{j} + 1 - j) + n = 2(c\lambda/\mu) + n.$$

Thus, by induction on the number of boxes in λ ,

$$c_{\lambda} = 2 \sum_{b \in \lambda} c(b) + n|\lambda|.$$

If λ and μ are partitions such that either $\lambda \subseteq \mu$ and $\mu/\lambda = \square$, or $\mu \subseteq \lambda$ and $\lambda/\mu = \square$, then

$$\begin{aligned} \left(\langle \lambda + \rho, \lambda + \rho \rangle - \langle \rho, \rho \rangle \right) - \left(\langle \mu + \rho, \mu + \rho \rangle - \langle \rho, \rho \rangle \right) &= \langle \lambda, \lambda + 2\rho \rangle - \langle \mu, \mu + 2\rho \rangle \\ &= \langle \mu \pm \varepsilon_j, \mu \pm \varepsilon_j + 2\rho \rangle - \langle \mu, \mu + 2\rho \rangle = \langle \mu, \pm \varepsilon_j \rangle \pm \langle \varepsilon_j, \mu + 2\rho \rangle + \langle \varepsilon_j, \varepsilon_j \rangle \\ &= \pm \mu_j \pm \mu_j \pm (y - 2j + 1) + 1 = \begin{cases} 2(\mu_j - j + 1) + y, & \text{if } \lambda/\mu = \square, \\ -2(\mu_j - j) - y, & \text{if } \mu/\lambda = \square, \end{cases} \\ &= \begin{cases} 2c(\lambda/\mu) + y, & \text{if } \lambda/\mu = \square, \\ -(2c(\mu/\lambda) + y), & \text{if } \mu/\lambda = \square, \end{cases}$$

Note that $c(\lambda/\lambda^-)$ may be a $\frac{1}{2}$ -integer if μ_j is a $\frac{1}{2}$ -integer. Also, if $\mathfrak{g} = \mathfrak{so}_{2r+1}$ or $\mathfrak{g} = \mathfrak{so}_{2r}$ then

$$\langle \omega_r, \omega_r + 2\rho \rangle = \frac{r}{4} + \frac{1}{2} \sum_{i=1}^r (y - 2i + 1) = \frac{r}{4} + \frac{r}{2} \cdot y - \frac{r^2}{2} = \begin{cases} \frac{r^2}{2} + \frac{r}{4}, & \text{if } \mathfrak{g} = \mathfrak{so}_{2r+1}, \\ \frac{r^2}{2} - \frac{r}{4}, & \text{if } \mathfrak{g} = \mathfrak{so}_{2r}. \end{cases}$$

Using these formulas to compute $\langle \lambda, \lambda + 2\rho \rangle$ for dominant integral weights λ gives

$$\langle \lambda, \lambda + 2\rho \rangle = y |\lambda| + 2 \sum_{b \in \lambda} c(b) + \begin{cases} 0 , & \text{if } \mathfrak{g} = \mathfrak{gl}_n, \, \mathfrak{g} = \mathfrak{sp}_{2r} \text{ or } \mathfrak{g} = \mathfrak{so}_{2r+1} \text{ with } \lambda_i \in \mathbb{Z}, \\ \\ -\frac{|\lambda|^2}{n} , & \text{if } \mathfrak{g} = \mathfrak{sl}_n, \\ \\ ???? , & \text{if } \mathfrak{g} = \mathfrak{so}_{2r}, \\ \\ \frac{r}{4} + \frac{r^2}{2} , & \text{if } \mathfrak{g} = fso_{2r+1} \text{ with } \lambda_i \in \frac{1}{2} + \mathbb{Z}. \end{cases}$$

We NEED the positive roots for the next statement, and define HOOK LENGTH.

Proposition 1.3. (a)

$$\dim(L_{\mathfrak{gl}_n}(\lambda)) = \prod_{\alpha \in R^+} \frac{\langle \lambda + \delta, \alpha^\vee \rangle}{\langle \delta, \alpha^\vee \rangle} = \prod_{n > j > i > 1} \frac{(\lambda_i + n - i) - (\lambda_j + n - j)}{(n - i) - (n - j)} = \prod_{1 < i < j < n} \frac{n + c(b)}{h(b)}.$$

(b) Let

$$\rho = \frac{1}{2} \sum_{\alpha \in R^+} \alpha = \frac{1}{2} \sum_{i=1}^n (2n - (2i - 1)) \varepsilon_i.$$

Then

$$\begin{aligned} \dim(L_{\mathfrak{so}_n}(\lambda)) &= \prod_{\alpha \in R^+} \frac{\langle \lambda + \rho, \alpha^\vee \rangle}{\langle \rho, \alpha^\vee \rangle} \\ &= \prod_{1 \leq i < j \leq n} \left(\frac{(\lambda_i + n - i + \frac{1}{2}) - (\lambda_j + n - j + \frac{1}{2})}{(n - i + \frac{1}{2}) - (n - j + \frac{1}{2})} \right) \left(\frac{(\lambda_i + n - i + \frac{1}{2}) + (\lambda_j + n - j + \frac{1}{2})}{(n - i + \frac{1}{2}) + (n - j + \frac{1}{2})} \right) \\ &\cdot \prod_{i=1}^n \frac{2(\lambda_i + n - i + \frac{1}{2})}{2(n - i + \frac{1}{2})} \\ &= \prod_{b \in \lambda} \frac{2n + r(b)}{h(b)}, \end{aligned}$$

where

$$r(b) = \begin{cases} \lambda_i - i + \lambda_j - j + 1, & \text{if } i \ge j, \\ -(\lambda'_i - i + \lambda'_j - j + 1), & \text{if } i < j. \end{cases}$$

Proof. (a) Think about the derivation of the Weyl dimension formula in the context of Schur

functions.

$$\begin{split} s_{\lambda}(e^{t\delta}) &= s_{\lambda}(e^{t(n-1)}, e^{t(n-2)}, \dots, e^{t}, 1) = s_{\lambda}(q^{(n-1)}, q^{(n-2)}, \dots, q, 1) \\ &= \frac{\det((q^{n-i})^{\lambda_{j}+n-j})}{\det((q^{n-i})^{n-j})} = \frac{\det((q^{\lambda_{j}+n-j})^{n-i})}{\det((q^{n-i})^{n-j})} = \frac{a_{\delta}(q^{\lambda_{1}+n-1}, \dots, q^{\lambda_{n}+n-n})}{a_{\delta}(q^{n-1}, \dots, q^{n-n})} \\ &= \prod_{i < j} \frac{q^{\lambda_{j}+n-j} - q^{\lambda_{i}+n-i}}{q^{n-j} - q^{n-i}} = q^{\sum (i-1)\lambda_{i}} \left(\prod_{i < j} \frac{1 - q^{(\lambda_{j}+n-j)-(\lambda_{i}+n-i)}}{q^{(n-j)-(n-i)}} \right) \\ &= q^{n(\lambda)} \frac{\prod_{i \ge 1} \prod_{k=1}^{\lambda_{i}+n-i} (1 - q^{k})}{\left(\prod_{i \ge 1} 1 - q^{h(b)}\right) \prod_{i \ge 1} (1 - q^{i-j})} = q^{n(\lambda)} \prod_{b \in \lambda} \frac{1 - q^{n+c(b)}}{1 - q^{h(b)}} \end{split}$$

For example, if $\lambda = 5\varepsilon_1 + 4\varepsilon_2 + 4\varepsilon_3 + 3\varepsilon_4 + 2\varepsilon_5$,

Then

So

$$\dim(U^{\lambda}) = \frac{5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 2 \cdot 3 \cdot 4 \cdot 1 \cdot 2}{9 \cdot 8 \cdot 6 \cdot 4 \cdot 1 \cdot 7 \cdot 6 \cdot 4 \cdot 2 \cdot 5 \cdot 4 \cdot 3 \cdot 1 \cdot 4 \cdot 3 \cdot 1 \cdot 2 \cdot 1} = \frac{5 \cdot 7 \cdot 5 \cdot 6}{6} = 5 \cdot 7 \cdot 5 = 175.$$

The first equality is Weyl's dimension formula and the second equality results from the formulas in ???. By using the argument of (???) on the partition $\lambda_{>i} = (\lambda_i, \dots, \lambda_n)$ gives

$$\{1, 2, \dots, \lambda_i + n - i\} = \{(\lambda_i - i) + (\lambda'_j - j) + 1 \mid \lambda_i \ge j \ge 1\} \ \sqcup \ \{(\lambda_i - i) - (\lambda_j - j) \mid n \ge j > 1\}$$
$$= \{h(b) \mid b \text{ is in row } i \text{ of } \lambda\} \ \sqcup \ \{(\lambda_i + n - i) - (\lambda_j + n - j) \mid n \ge j > 1\}.$$

On the other hand

$$\begin{aligned} \{1,2,\dots,\lambda_i+n-i\} &= \{1,2\dots,n-i\} \; \sqcup \; \{n+j-i \mid \lambda_i \geq j \geq 1\} \\ &= \{(n-i)-(n-j) \mid n \geq j > i\} \; \sqcup \; \{n+c(b) \mid b \text{ is in row } i \text{ of } \lambda\}. \end{aligned}$$

Thus

$$\left(\prod_{b\in\lambda}h(b)\right)\prod_{n\geq j>i\geq 1}((\lambda_i+n-i)-(\lambda_j+n-j))=\left(\prod_{b\in\lambda}n+c(b)\right)\prod_{n\geq j>i\geq 1}((n-i)-(n-j))$$

and the third equality follows.

(b) The first equality is Weyl's dimension formula and the second equality results from the formulas in ???.

$$\{h(b) \mid b \text{ is in row } i \text{ of } \lambda\} \sqcup \{(\lambda_i + n - i + \frac{1}{2}) - (\lambda_j + n - j + \frac{1}{2}) \mid n \geq j > i\}$$

$$\sqcup \{(\lambda_i + n - i + \frac{1}{2}) + (\lambda_j + n - j + \frac{1}{2}) \mid n \geq j \geq i\}$$

$$\sqcup \{2n + (\lambda_i - i) - (\lambda'_j - j) \mid (i, j) \in \lambda\}$$

$$= \{(\lambda_i - i) - (\lambda'_j - j) + 1 \mid \lambda_i \geq j \geq 1\}$$

$$\sqcup \{(\lambda_i + n - i) - (\lambda_j + n - j) \mid n \geq j > i\}$$

$$\sqcup \{2(\lambda_i + n - i + \frac{1}{2}) - ((\lambda_i - i) - (\lambda_j - j)) \mid n \geq j \geq i\}$$

$$\sqcup \{2(\lambda_i + n - i + \frac{1}{2}) - ((\lambda_i - i) - (\lambda'_j - j) + 1) \mid \lambda_i \geq j \geq 1\}$$

$$= \{1, 2, \dots, \lambda_i + n - i\} \sqcup \{\lambda_i + n - i + 1, \dots, 2(\lambda_i + n - i + \frac{1}{2})\}$$

$$= \{1, 2, \dots, 2(\lambda_i + n - i + \frac{1}{2})\}$$

Let $r(\lambda)$ be the *Frobenius rank* of the partition λ , i.e. the largest r such that λ contains the "diagonal" box in position (r, r). Then, for $1 \le i \le r(\lambda)$,

$$\{1, 2, \dots, 2n - 1 - 2(\lambda'_i - i)\} \sqcup \{2n + 1 + (\lambda_i - i) + (\lambda_j - j)) \mid j \geq i, (j, i) \in \lambda\}$$

$$\sqcup \{2n + (\lambda_i - i) - (\lambda'_j - j)) \mid j > i, (i, j) \in \lambda\}$$

$$\sqcup \{2n - (\lambda'_i - i) + (\lambda_j - j)) \mid j \geq i, (j, i) \in \lambda\}$$

$$\sqcup \{2n - 1 - (\lambda'_i - i) - (\lambda'_j - j)) \mid j > i, (i, j) \in \lambda\}$$

$$= \{1, 2, \dots, 2n - 1 - 2(\lambda'_i - i)\} \sqcup \{2n + 1 + 2(\lambda_i - i) - ((\lambda_i - i) - (\lambda_j - j)) \mid \lambda'_i \geq j \geq i\}$$

$$\sqcup \{2n + 1 + 2(\lambda_i - i) - ((\lambda_i - i) - (\lambda'_j - j) + 1) \mid \lambda_i \geq j > i\}$$

$$\sqcup \{2n - (\lambda'_i - i) + (\lambda_i - i) - ((\lambda_i - i) - (\lambda'_j - j)) \mid \lambda'_i \geq j \geq i\}$$

$$\sqcup \{2n - (\lambda'_i - i) + (\lambda_i - i) - ((\lambda_i - i) - (\lambda'_j - j) + 1) \mid \lambda_i \geq j > i\}$$

$$= \{1, 2, \dots, 2n - 1 - 2(\lambda'_i - i)\} \sqcup \{2n + 1 + (\lambda_i - i) - (\lambda'_i - i), \dots, 2n + 1 + 2(\lambda_i - i)\}$$

$$\sqcup \{2n - 2(\lambda'_i - i), \dots, 2n + (\lambda_i - i) - (\lambda'_i - i)\}$$

$$= \{1, 2, \dots, 2n + 1 + 2(\lambda_i - i)\}.$$

Thus

$$\begin{split} \left(\prod_{b \in \lambda} h(b)\right) \prod_{n \geq j > i \geq 1} \left((\lambda_i + n - i + \frac{1}{2}) - (\lambda_j + n - j + \frac{1}{2}) \right) \\ & \cdot \prod_{n \geq j \geq i \geq 1} \left((\lambda_i + n - i + \frac{1}{2}) + (\lambda_j + n - j + \frac{1}{2}) \right) \prod_{(i,j) \in \lambda} \left(2n + (\lambda_i - i) - (\lambda'_j - j) \right) \\ &= \prod_{i = 1}^n \left(2(\lambda_i + n - i + \frac{1}{2}) \right)! = \prod_{i = 1}^{r(\lambda)} \left(2(\lambda_i + n - i + \frac{1}{2}) \right)! \prod_{i = r(\lambda) + 1}^n \left(2(\lambda_i + n - i + \frac{1}{2}) \right)! \\ &= \prod_{i = r(\lambda) + 1}^{r(\lambda)} \left((2n - 1 - 2(\lambda'_i - i))! \right) \\ & \cdot \prod_{i \geq i} \left((2n - 1 - 2(\lambda'_i - i))! \right) \\ & \cdot \prod_{\substack{j \geq i \\ (j,i) \in \lambda}} \left(2n + 1 + (\lambda_i - i) + (\lambda_j - j) \right) \prod_{\substack{j > i \\ (i,j) \in \lambda}} \left(2n + (\lambda_i - i) + (\lambda'_j - j) \right) \\ & \cdot \prod_{\substack{j \geq i \\ (j,i) \in \lambda}} \left(2n - (\lambda'_i - i) + (\lambda_j - j) \right) \prod_{\substack{j > i \\ (i,j) \in \lambda}} \left(2n - 1 - (\lambda'_i - i) + (\lambda'_j - j) \right) \end{split}$$

Dividing each side by

$$\prod_{(i,j)\in\lambda} (2n + (\lambda_i - i) - (\lambda'_j - j))$$

gives

$$\left(\prod_{b \in \lambda} h(b)\right) \prod_{\substack{n \ge j > i \ge 1}} \left((\lambda_i + n - i + \frac{1}{2}) - (\lambda_j + n - j + \frac{1}{2}) \right) \prod_{\substack{n \ge j \ge i \ge 1}} \left((\lambda_i + n - i + \frac{1}{2}) + (\lambda_j + n - j + \frac{1}{2}) \right)$$

$$= \prod_{i=1}^{r(\lambda)} \left((2n - 1 - 2(\lambda'_i - i))! \prod_{\substack{i = r(\lambda) + 1 \\ (j,i) \in \lambda}} (2(\lambda_i + n - i + \frac{1}{2}))! \right)$$

$$\cdot \prod_{\substack{j \ge i \\ (j,i) \in \lambda}} (2n + 1 + (\lambda_i - i) + (\lambda_j - j)) \prod_{\substack{j > i \\ (i,j) \in \lambda}} (2n - 1 - (\lambda'_i - i) + (\lambda'_j - j))$$

Then, from

$$\{2(n-(\lambda_i'-i)-\frac{1}{2})) \mid 1 \leq i \leq r(\lambda)\} \ \sqcup \ \{2(\lambda_i+n-i+\frac{1}{2}) \mid r(\lambda)+1 \leq i \leq n\}$$

$$= \{2(n+\frac{1}{2}-(\lambda_j'-j)+1 \mid r(\lambda) \geq j \geq 1\} \ \sqcup \ \{2(n+\frac{1}{2}-(\lambda_j-j) \mid n \geq j \geq r(\lambda)\}$$

$$= \{2(n+\frac{1}{2}-1,\cdots,2(n+\frac{1}{2}-n)\} = \{2n-1,2n-3,\ldots,3,1\} = \{2i-1 \mid 1 \leq i \leq n\},$$

it follows that

$$\begin{split} &\prod_{i=1}^{r(\lambda)} \left((2n-1-2(\lambda_i'-i))! \prod_{i=r(\lambda)+1}^n (2(\lambda_i+n-i+\frac{1}{2}))! \right. \\ &= \prod_{i=1}^n (2i-1)! = \prod_{1 \leq i < j \leq n} ((n-i+\frac{1}{2})-(n-j+\frac{1}{2})) \prod_{1 \leq i \leq j \leq n} ((n-i+\frac{1}{2})+(n-j+\frac{1}{2})) \end{split}$$

which establishes the third equality in (b).

The group $GL_n(\mathbb{C})$ and the Lie algebra \mathfrak{gl}_n act on the *n*-dimensional complex vector space V with basis v_1, \ldots, v_n by

$$gv_i = \sum_{j=1}^{n} g_{ji}v_j,$$
 and $xv_i = \sum_{j=1}^{n} x_{ji}v_j,$ (1.11)

for $g = (g_{ij}) \in GL_n(\mathbb{C})$ and $x = (x_{ij}) \in \mathfrak{gl}_n$. Let $\langle , \rangle \colon V \times V \to \mathbb{C}$ be the inner product defined by making the basis v_1, \ldots, v_n orthonormal. The complex Lie group

$$O_n(\mathbb{C}) = \{g \in GL_n(\mathbb{C}) \mid \langle gv, gw \rangle = \langle v, w \rangle \text{ for all } v, w \in V\} = \{g \in GL_n(\mathbb{C}) \mid gg^t = 1\}$$

has Lie algebra

$$\mathfrak{so}_n = \{x \in M_n(\mathbb{C}) \mid \langle xv, w \rangle + \langle v, xw \rangle = 0 \text{ for all } v, w \in V\}, = \{x \in M_n(\mathbb{C}) \mid x + x^t = 0\}$$

a Lie subalgebra of \mathfrak{gl}_n . The complex Lie group

$$SO_n(\mathbb{C}) = \{ g \in O_n(\mathbb{C}) \mid \det g = 1 \},$$

also has Lie algebra \mathfrak{so}_n . Since an element $g \in O_n(\mathbb{C})$ has $\det g = \pm 1$ the group $O_n(\mathbb{C})$ is a union of two cosets

$$O_n(\mathbb{C}) = SO_n(\mathbb{C}) \sqcup rSO_n(\mathbb{C}), \quad \text{where} \quad r = -E_{11} + \sum_{\ell=2}^n E_{\ell\ell},$$
 (1.12)

A matrix A is in \mathfrak{so}_n if and only if

$$A_{ij} = \left\langle \sum_{j=1}^{n} A_{ji} v_j, v_j \right\rangle = \left\langle A v_i, v_j \right\rangle = -\left\langle v_i, A v_j \right\rangle = -\left\langle v_i \sum_{i=1}^{n} A_{ij} v_i \right\rangle = -A_{ij},$$

for all $1 \leq i, j \leq n$.

For all dominant integral weights λ

$$L(\lambda) \otimes L(\omega_1) = \begin{cases} \bigoplus_{\lambda^{\pm}} L(\lambda^{+}), & \text{if } \mathfrak{g} = \mathfrak{gl}_n \text{ or } \mathfrak{g} = \mathfrak{sl}_n, \\ \\ L(\lambda) \bigoplus \left(\bigoplus_{\lambda^{\pm}} L(\lambda^{\pm})\right), & \text{if } \mathfrak{g} = \mathfrak{so}_{2r+1} \text{ and } \lambda_r > 0, \\ \\ \left(\bigoplus_{\lambda^{\pm}} L(\lambda^{\pm})\right), & \text{if } \mathfrak{g} = \mathfrak{sp}_{2r}, \, \mathfrak{g} = \mathfrak{so}_{2r}, \, \text{or } \\ \\ & \text{if } \mathfrak{g} = \mathfrak{so}_{2r+1} \text{ and } \lambda_n = 0, \end{cases}$$

where the sum over λ^+ is a sum over all partitions (of length $\leq r$) obtained by adding a box to λ , and the sum over λ^{\pm} denotes a sum over all dominant weights obtained by adding or removing a box from λ . If $\mathfrak{g} = \mathfrak{so}_{2r}$ then addition and removal of a box should include the possibility of addition and removal of a box marked with a - sign, and removal of a box from row r when $\lambda_r = \frac{1}{2}$ changes λ_r to $-\frac{1}{2}$.

References

- [HR] T. Halverson and A. Ram, *Partition algebras*, European J. Combinatorics **26** (2005), 869–921.
- [Ko1] M. Kosuda, Irreducible representations of the party algebra, preprint 2004.
- [Ko2] M. Kosuda, Characterization of the party algebras Ryukyu Math. J. 13 (2003), 199–228.
- [Ta] K. Tanabe, On the centralizer algebra of the unitary reflection group G(m, p, n), Nagoya Math. J. 148 (1997), 113-126.
- [Dr1] V.G. Drinfel'd, A new realization of Yangians and quantized affine algebras, Soviet Math. Dokl. **36** No, 2 (1998), 212–216.