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1 The basic construction

In this section we shall assume that all algebras are finite dimensional algebras over an alge-
braically closed field F. The fact that F is algebraically closed is only for convenience, to avoid
the division rings that could arise in the decomposition of Ā just before (4.8) below.

Let A ⊆ B be an inclusion of algebras. Then B⊗F B is an (A,A)-bimodule where A acts on
the left by left multiplication and on the right by right multiplication. Fix an (A,A)-bimodule
homomorphism

ε : B ⊗F B −→ A. (1.1)

The basic construction is the algebra B ⊗A B with product given by

(b1 ⊗ b2)(b3 ⊗ b4) = b1 ⊗ ε(b2 ⊗ b3)b4, for b1, b2, b3, b4 ∈ B. (1.2)

More generally, let A be an algebra and let L be a left A-module and R a right A-module. Let

ε : L⊗F R −→ A, (1.3)

be an (A,A)-bimodule homomorphism. The basic construction is the algebra R ⊗A L with
product given by

(r1 ⊗ `1)(r2 ⊗ `2) = r1 ⊗ ε(`1 ⊗ r2)`2, for r1, r2 ∈ R and `1, `2 ∈ L. (1.4)

Theorem 4.18 below determines, explicitly, the structure of the algebra R⊗A L.
Let N = Rad(A) and let

Ā = A/N, L̄ = L/NL, and R̄ = R/RN (1.5)

Define an (Ā, Ā)-bimodule homomorphism

ε̄ : L̄⊗F R̄ −→ Ā

¯̀⊗ r̄ 7→ ε(`⊗ r)
(1.6)
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where ¯̀= `+NL, r̄ = r+RN , and ā = a+N , for ` ∈ L, r ∈ R and a ∈ A. Then by basic tensor
product relations [Bou1, Ch. II §3.3 Cor. to Prop. 2 and §3.6 Cor. to Prop. 6], the surjective
algebra homomorphism

π : R⊗A L −→ R̄⊗Ā L̄

r ⊗ ` 7→ r̄ ⊗ ¯̀
has ker(π) = R⊗A NL. (1.7)

The algebra Ā is a split semisimple algebra (an algebra isomorphic to a direct sum of matrix
algebras). Fix an algebra isomorphism

Ā
∼−→

⊕
µ∈Â

Mdµ(F)

aµ
PQ ← Eµ

PQ

where Â is an index set for the components and Eµ
PQ is the matrix with 1 in the (P,Q) entry of

the µth block and 0 in all other entries. Also, fix isomorphisms

L̄ ∼=
⊕
µ∈Â

−→
Aµ ⊗ Lµ and R̄ ∼=

⊕
µ∈Â

Rµ ⊗
←−
Aµ (1.8)

where
−→
Aµ, µ ∈ Â, are the simple left Ā-modules,

←−
Aµ, µ ∈ Â, are the simple right Ā-modules,

and Lµ, Rµ, µ ∈ Â are vector spaces. The practical effect of this setup is that if R̂µ is an index
set for a basis {rµ

Y |Y ∈ R̂µ} of Rµ, L̂µ is an index set for a basis {`µ
X |X ∈ L̂µ} of Lµ, and Âµ is

an index set for bases

{−→a µ
Q | Q ∈ Âµ} of

−→
Aµ and {←−a µ

P | P ∈ Âµ} of
←−
Aµ (1.9)

such that
aλ

ST
−→a µ

Q = δλµδTQ
−→a µ

S and ←−a µ
P aλ

ST = δλµδPS
←−a µ

T (1.10)

then
L̄ has basis {−→a µ

P ⊗ `µ
X | µ ∈ Â, P ∈ Âµ, X ∈ L̂µ} and

R̄ has basis {rµ
Y ⊗
←−a µ

Q | µ ∈ Â,Q ∈ Âµ, Y ∈ R̂µ}.
(1.11)

With notations as in (4.9) and (4.11) the map ε̄ : L̄⊗F R̄→ Ā is determined by the constants
εµ
XY ∈ F given by

ε(−→a µ
Q ⊗ `µ

X ⊗ rµ
Y ⊗
←−a µ

P ) = εµ
XY aµ

QP (1.12)

and εµ
XY does not depend on Q and P since

ε(−→a λ
S ⊗ `λ

X ⊗ rµ
Y ⊗
←−a µ

T ) = ε(aλ
SQ
−→a λ

Q ⊗ `λ
X ⊗ rµ

Y ⊗
←−a µ

P aµ
PT ) (1.13)

= aλ
SQε(−→a λ

Q ⊗ `λ
X ⊗ rµ

Y ⊗
←−a µ

P )aµ
PT (1.14)

= δλµaµ
SQεµ

XY aµ
QP aµ

PT = εµ
XY aµ

ST . (1.15)

(1.16)

For each µ ∈ Â construct a matrix
Eµ = (εµ

XY ) (1.17)
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and let Dµ = (Dµ
ST ) and Cµ = (Cµ

ZW ) be invertible matrices such that DµEµCµ is a diagonal
matrix with diagonal entries denoted εµ

X ,

DµEµCµ = diag(εµ
X). (1.18)

In practice Dµ and Cµ are found by row reducing Eµ to its Smith normal form. The εµ
P are the

invariant factors of Eµ.
For µ ∈ Â,X ∈ R̂µ, Y ∈ L̂µ, define the following elements of R̄⊗Ā L̄,

m̄µ
XY = rµ

X ⊗
−→a µ

P ⊗
←−a µ

P ⊗ `µ
Y , and n̄µ

XY =
∑

Q1,Q2

Cµ
Q1XDµ

Y Q2
m̄µ

Q1Q2
. (1.19)

Since

(rλ
S ⊗−→a λ

W ⊗←−a
µ
Z ⊗ `µ

T ) = (rλ
S ⊗−→a λ

P aλ
PW ⊗←−a

µ
Z ⊗ `µ

T ) (1.20)

= (rλ
S ⊗−→a λ

P ⊗ aλ
PW
←−a µ

Z ⊗ `µ
T ) (1.21)

= δλµδWZ(rλ
S ⊗−→a λ

P ⊗←−a λ
P ⊗ `λ

T ) (1.22)
(1.23)

the element m̄µ
XY does not depend on P and {m̄µ

XY | µ ∈ Â,X ∈ R̂µ, Y ∈ L̂µ} is a basis of
R̄⊗Ā L̄.

The following theorem determines the structure of the algebras R ⊗A L and R̄ ⊗Ā L̄. This
theorem is used by W.P. Brown in the study of the Brauer algebra. Part (a) is implicit in
[Bro1,§2.2] and part (b) is proved in [Bro2].

Theorem 1.1. Let π : R ⊗A L → R̄ ⊗Ā L̄ be as in (4.7) and let {ki} be a basis of ker(π) =
R⊗A NL. Let

nµ
Y T ∈ R⊗A L be such that π(nµ

Y T ) = n̄µ
Y T ,

where the elements n̄µ
Y T ∈ R̄⊗Ā L̄ are as defined in (4.16).

(a) The sets {m̄µ
XY | µ ∈ Â,X ∈ R̂µ, Y ∈ L̂µ} and {n̄µ

XY | µ ∈ Â,X ∈ R̂µ, Y ∈ L̂µ} (see (4.16))
are bases of R̄⊗Ā L̄, which satisfy

m̄λ
ST m̄µ

QP = δλµεµ
TQm̄µ

SP and n̄λ
ST n̄µ

QP = δλµδTQεµ
T n̄µ

SP ,

where εµ
TQ and εµ

T are as defined in (4.12) and (4.15).

(b) The radical of the algebra R⊗A L is

Rad(R⊗A L) = F-span{ki, n
µ
Y T | ε

µ
Y = 0 or εµ

T = 0}

and the images of the elements

eµ
Y T =

1
εµ
T

nµ
Y T , for εµ

Y 6= 0 and εµ
T 6= 0,

are a set of matrix units in (R⊗A L)/Rad(R⊗A L).
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Proof. The first statement in (a) follows from the equations in (4.17). If (C−1)µ and (D−1)µ are
the inverses of the matrices Cµ and Dµ then∑

X,Y

(C−1)µ
XS(D−1)µ

TY n̄XY =
∑

X,Y,Q1,Q2

(C−1)µ
XSCµ

Q1Xm̄Q1Q2D
µ
Y Q2

(D−1)µ
TY (1.24)

=
∑

Q1,Q2

δSQ1δQ2T m̄µ
Q1Q2

= m̄µ
ST , (1.25)

(1.26)

and so the elements m̄µ
ST can be written as linear combinations of the n̄µ

XY . This establishes
the second statement in (a). By direct computation, using (4.10) and (4.12),

m̄λ
ST m̄µ

QP = (rλ
S ⊗−→a λ

W ⊗←−a λ
W ⊗ `λ

T )(rµ
Q ⊗
−→a µ

Z ⊗
←−a µ

Z ⊗ `µ
P )

= rλ
S ⊗−→a λ

W ⊗ ε(←−a λ
W ⊗ `λ

T ⊗ rµ
Q ⊗
−→a µ

Z)←−a µ
Z ⊗ `µ

P

= δλµ(rλ
S ⊗−→a λ

W ⊗ ελ
TQāλ

WZ
←−a λ

Z ⊗ `λ
P )

= δλµελ
TQ(rλ

S ⊗−→a λ
W ⊗←−a λ

W ⊗ `λ
P ) = δλµελ

TQm̄λ
SP ,

and

n̄λ
ST n̄µ

UV =
∑

Q1,Q2,Q3,Q4

Cλ
Q1SDλ

TQ2
m̄λ

Q1Q2
Cµ

Q3UDµ
V Q4

m̄µ
Q3Q4

=
∑

Q1,Q2,Q3,Q4

δλµCλ
Q1SDλ

TQ2
εµ
Q2Q3

Cµ
Q3UDµ

V Q4
m̄µ

Q1Q4

= δλµ

∑
Q1,Q4

δTUεµ
T Cµ

Q1SDµ
V Q4

m̄µ
Q1Q4

= δλµδTUεµ
T n̄µ

SV .

(b) Let N = Rad(A) as in (4.5). If r1 ⊗ n1`1, r2 ⊗ n2`2 ∈ R ⊗A NL with n1 ∈ N i for some
i ∈ Z>0 then

(r1 ⊗ n1`1)(r2 ⊗ n2`2) = r1 ⊗ ε(n1`1 ⊗ r2)n2`2 = r1 ⊗ n1ε(`1 ⊗ r2)n2`2 ∈ R⊗A N i+1L.

Since N is a nilpotent ideal of A it follows that ker(π) = R⊗A NL is a nilpotent ideal of R⊗A L.
So ker(π) ⊆ Rad(R⊗A L).

Let
I = F-span{ki, n

µ
Y T | ε

µ
Y = 0 or εµ

T = 0}.
The multiplication rule for the n̄Y T implies that π(I) is an ideal of R̄ ⊗Ā L̄ and thus, by the
correspondence between ideals of R̄ ⊗Ā L̄ and ideals of R ⊗A L which contain ker(π), I is an
ideal of R⊗A L.

If n̄µ
Y1T1

, n̄µ
Y2T2

, n̄µ
Y3T3
∈ {n̄µ

Y T | ε
µ
Y = 0 or εµ

T = 0} then

n̄µ
Y1T1

n̄µ
Y2T2

n̄µ
Y3T3

= δT1Y2ε
µ
Y2

n̄µ
Y1T2

n̄µ
Y3T3

= δT1Y2δT2Y3ε
µ
Y2

εµ
T2

n̄µ
Y1T3

= 0,

since εµ
Y2

= 0 or εµ
T2

= 0. Thus any product nµ
Y1T1

nµ
Y2T2

nµ
Y3T3

of three basis elements of I is
in ker(π). Since ker(π) is a nilpotent ideal of R ⊗A L it follows that I is an ideal of R ⊗A L
consisting of nilpotent elements. So I ⊆ Rad(R⊗A L).

Since

eλ
Y T eµ

UV =
1
ελ
T

1
εµ
V

nλ
Y T nµ

UV = δλµδTU
1

ελ
T ελ

V

ελ
T nλ

Y V = δλµδTUeλ
Y V mod I,

the images of the elements eλ
Y T in (4.7) form a set of matrix units in the algebra (R ⊗A L)/I.

Thus (R⊗A L)/I is a split semisimple algebra and so I ⊇ Rad(R⊗A L).
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1.1 Basic constructions for A ⊆ B

Let A ⊆ B be an inclusion of algebras. Let ε1 : B → A be an (A,A) bimodule homomorphism
and use the (A,A)-bimodule homomorphism

ε : B ⊗F B −→ A
b1 ⊗ b2 7−→ ε1(b1b2)

(1.27)

and (4.2) to define the basic construction B ⊗A B. Theorem 4.28 below provides the structure
of B ⊗A B in the case that both A and B are split semisimple.

Let us record the following facts,

(4.20a) If p ∈ A and pAp = Fp then (p⊗ 1)(B ⊗A B)(p⊗ 1) = F · (p⊗ 1),

(4.20b) If p is an idempotent of A and pAp = Fp then ε1(1) ∈ F,

(4.20c) If p ∈ A, pAp = Fp and if ε1(1) 6= 0, then 1
ε(1)(p⊗ 1) is a minimal idempotent in B ⊗A B,

which are justified as follows. If p ∈ A and pAp = Fp and b1, b2 ∈ B then (p⊗1)(b1⊗b2)(p⊗1) =
(p⊗ ε1(b1)b2)(p⊗ 1) = p⊗ ε1(b1)ε1(b2p) = pε1(b1)ε1(b2)p⊗ 1 = ξp⊗ 1, for some constant ξ ∈ F.
This establishes (a). If p is an idempotent of A and pAp = Fp then pε1(1)p = ε1(p2) = ε1(1 ·p) =
ε1(1)p and so (b) holds. If p ∈ A and pAp = Fp then (p⊗1)2 = ε1(1)(p⊗1) and so, if ε1(1) 6= 0,
then 1

ε(1)(p⊗ 1) is a minimal idempotent in B ⊗A B.
Assume A and B are split semisimple. Let

Â be an index set for the irreducible A-modules Aµ,

B̂ be an index set for the irreducible B-modules Bλ, and let

Âµ = { P→µ } be an index set for a basis of the simple A-module Aµ,

for each µ ∈ Â (the composite P→µ is viewed as a single symbol). We think of Âµ as the set of
“paths to µ” in the two level graph

Γ with vertices on level A: Â, vertices on level B: B̂, and
mλ

µ edges µ→ λ if Aµ appears with multiplicity mλ
µ in ResB

A(Bλ).
(1.28)

For example, the graph Γ for the symmetric group algebras A = CS3 and B = CS4 is

B̂ :

...........................................................................

..............................................................................................

...............................................................

.......................................................................................................

............................................................................................................................................

..........................................................................................

............................................................................................................................................

Â :

If λ ∈ B̂ then

B̂λ = {P→µ→ λ | µ ∈ Â, P→µ ∈ Âµ and µ→ λ is an edge in Γ} (1.29)

is an index set for a basis of the irreducible B-module Bλ. We think of B̂λ as the set of paths
to λ in the graph Γ. Let

{aP Q
µ
| µ ∈ Â, P→µ, Q→µ ∈ Âµ} and {bP Q

µ ν
λ

| λ ∈ B̂, P→µ→ λ, Q→ν → λ ∈ B̂λ}, (1.30)
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be sets of matrix units in the algebras A and B, respectively, so that

aP Q
µ

aS T
ν

= δµνδQSaP T
µ

and bP Q
µ γ
λ

bS T
τ ν
σ

= δλσδQSδγτ bP T
µ ν
λ

, (1.31)

and such that, for all µ ∈ Â, P,Q ∈ Âµ,

aµ
P Q
µ

=
∑
µ→λ

bλ
P Q
µ µ
λ

(1.32)

where the sum is over all edges µ→ λ in the graph Γ.
Though is not necessary for the following it is conceptually helpful to let C = B ⊗A B, let

Ĉ = Â and extend the graph Γ to a graph Γ̂ with three levels, so that the edges between level
B and level C are the reflections of the edges between level A and level B. In other words,

Γ̂ has vertices on level C: Ĉ, and
an edge λ→ µ, λ ∈ B̂, µ ∈ Ĉ, for each edge µ→ λ, µ ∈ Â, λ ∈ B̂.

(1.33)

For each ν ∈ Ĉ define

Ĉν =
{

P→µ→ λ→ ν
∣∣∣ µ ∈ Â, λ ∈ B̂, ν ∈ Ĉ, P→µ ∈ Âµ and

µ→ λ and λ→ ν are edges in Γ̂

}
, (1.34)

so that Ĉν is the set of “paths to ν” in the graph Γ̂. Continuing with our previous example, Γ̂
is

B̂ :

...........................................................................

..............................................................................................

...............................................................

.......................................................................................................

............................................................................................................................................

..........................................................................................

............................................................................................................................................

Â :

Ĉ :
.................
.................
.................
.................
.......

.......................
.......................

.......................
...............

.................

.................

.................

............

............................
............................

............................
...................

.............................................
.............................................

.............................................

..............................
..............................

..............................

.....................................................
.....................................................

................................

Theorem 1.2. Assume A and B are split semisimple, and let the notations and assumption be
as in (4.21-4.25).

(a) The elements of B ⊗A B given by
bP T

µ γ
λ

⊗ bT Q
γ ν
σ

do not depend on the choice of T→γ ∈ Âγ and form a basis of B ⊗A B.

(b) For each edge µ→ λ in Γ define a constant ελ
µ ∈ F by

ε1

(
bP P

µ µ
λ

)
= ελ

µ aP P
µ

(1.35)

Then ελ
µ is independent of the choice of P→µ ∈ Âµ and(

bP T
µ γ
λ

⊗ bT Q
γ ν
σ

)(
bRX

τ π
ρ

⊗ bXS
π ξ
η

)
= δγπδQRδντδσρε

σ
γ

(
bP T

π µ
γ

⊗ bT S
γ ξ
η

)
.
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Rad(B ⊗A B) has basis
{

bP T
µ γ
λ

⊗ bT Q
γ ν
σ

| ελ
µ = 0 or εσ

ν = 0
}

,

and the images of the elements

eP Q
µ ν
λ σ
γ

=
(

1
εσ
γ

) (
bP T

µ γ
λ

⊗ bT Q
γ ν
σ

)
, such that ελ

µ 6= 0 and εσ
ν 6= 0,

form a set of matrix units in (B ⊗A B)/Rad(B ⊗A B).

(c) Let trB : B → F and trA : A→ F be traces on B and A, respectively, such that

trA(ε1(b)) = trB(b), for all b ∈ B. (1.36)

Let χµ
A, µ ∈ Â, and χλ

B, λ ∈ B̂, be the irreducible characters of the algebras A and B,
respectively. Define constants trµ

A, µ ∈ Â, and trλ
B, λ ∈ B̂, by the equations

trA =
∑
µ∈Â

trµ
Aχµ

A and trB =
∑
λ∈B̂

trλ
Bχλ

B, (1.37)

respectively. Then the constants ελ
µ defined in (4.29) satisfy

trλ
B = ελ

µ trµ
A.

(d) In the algebra B ⊗A B,
1⊗ 1 =

∑
P
↓
µ

λ
↙ ↘γ

bP P
µ µ
λ

⊗ bP P
µ µ
γ

(g) By left multiplication, the algebra B ⊗A B is a left B-module. If Rad(B ⊗A B) is a B-
submodule of B⊗AB and ι : B → (B⊗AB)/Rad(B⊗AB) is a left B-module homomorphism
then

ι
(
bRS

τ β
π

)
=

∑
π→γ

eRS
τ β
π π
γ

.

Proof. By (4.11) and (4.25),

B
∼−→

⊕
µ∈Â

−→
Aµ ⊗ Lµ

bP Q
µ ν
λ

7−→ −→a P
µ
⊗ `µ

Q
µ ν
λ

and

B
∼−→

⊕
ν∈Â

Rν ⊗
←−
A ν

bP Q
µ ν
λ

7−→ rν
P
µ ν
λ

⊗←−a Q
ν

(1.38)

as left A-modules and as right A-modules, respectively. Identify the left and right hand sides of
these isomorphisms. Then, by (4.17), the elements of C = B ⊗A B given by

m̄P Q
µ ν
λ σ
γ

= rγ
P
µ γ
λ

⊗←−a T
γ
⊗−→a T

γ
⊗ `γ

Q
γ ν
σ

= bP T
µ γ
λ

⊗ bT Q
γ ν
σ

(1.39)

do not depend on T→γ ∈ Âγ and form a basis of B ⊗A B.
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(b) By (4.12), the map ε : B ⊗F B → A is determined by the values

εµ
T Q
γ τ
λ σ
µ

∈ F given by εµ
T Q
γ τ
λ σ
µ

aP P
µ

= ε
(−→a P

µ
⊗ `µ

T
µ γ
λ

⊗ rµ
Q
τ µ
σ

⊗←−a P
µ

)
. (1.40)

Since

εµ
T Q
γ τ
λ σ
µ

aP P
µ

= ε
(
bP T

µ γ
λ

⊗ bQP
τ µ
σ

)
= ε1

(
bP T

µ γ
λ

⊗ bQP
τ µ
σ

)
= δT Q

γ τ
λ σ

ε1

(
bP P

µ µ
λ

)
= δT Q

γ τ
λ σ

ε1

(
bP P

µ µ
λ

bP P
µ µ
λ

)
= δT Q

γ τ
λ σ

εµ
P P
µµµ
λλ

aP P
µ

.

the matrix Eµ given by (4.14) is diagonal with entries ελ
µ given by (4.15) and, by (4.17), ελ

µ is
independent of P→µ ∈ Âµ. By Theorem 4.18(a),

m̄P Q
µ ν
λ σ
γ

m̄RS
τ ξ
ρ η
π

= δγπεQR
ν τ
σ ρ
γ

m̄P S
µ ξ
λ η
γ

= δγπδQR
ν τ
σ ρ

εσ
γm̄P S

µ ξ
λ η
γ

in the algebra C. The rest of the statements in part (b) follow from Theorem 4.18(b).
(c) Evaluating the equations in (4.31) and using (4.29) gives

trλ
B = trB(bP P

µ µ
λ

) = trA(ε1(bP P
µ µ
λ

)) = ελ
µtrA(aP P

µ
) = ελ

µtrµ
A, (1.41)

(d) Since
1 =

∑
P→µ→λ

bP P
µ µ
λ

in the algebra B,

it follows from part (b) and (4.16) that

1⊗ 1 =
( ∑

P→µ→λ

bP P
µ µ
λ

)
⊗

( ∑
Q→ν→γ

bQQ
ν ν
γ

)
=

∑
P→µ→λ
Q→ν→γ

δPQδµν

(
bP P

µ µ
λ

⊗ bQQ
ν ν
γ

)
=

∑
P
↓
µ

λ
↙ ↘γ

m̄P P
µ µ
λ γ
µ

giving part (d).
(e) By left multiplication, the algebra B ⊗A B is a left B-module. If ελ

γ 6= 0 and εσ
γ 6= 0 then

bRS
τ β
π

eP Q
µ ν
λ σ
γ

=
(

1
εσ
γ

)
bRS

τ β
π

(
bP T

µ γ
λ

⊗ bT Q
γ ν
σ

)
=

(
1
εσ
γ

)
δS P
β µ
π λ

(
bRT

τ γ
λ

⊗ bT Q
γ ν
σ

)
= δS P

β µ
π λ

eRQ
τ ν
π σ
γ

.

Thus, if ι : B → (B ⊗A B)/Rad(B ⊗A B) is a left B-module homomorphism then

ι
(
bRS

τ β
π

)
= ι

(
bRS

τ β
π

)
· 1 = bRS

τ β
π

∑
P→µ→λ→γ

eP P
µ µ
λ λ
γ

=
∑

P→µ→λ→γ

δS P
β µ
π λ

eRP
τ µ
π λ
γ

=
∑
π→γ

eRS
τ β
π π
γ

.
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2 Quasihereditary algebras

Let F be a field. A separable algebra over F is an algebra A such that

A

Rad(A)
∼=

⊕
λ

∈ ÂMdλ
(F).

Two algebras A and B are Morita equivalent if Mod-A is equivalent to Mod-B (Check this in
Gelfand-Manin).
A ring A is semiprimary if there is a nilpotent ideal Rad(A) such that A/Rad(A) is semisimple
artinian. Note: If A is finite dimensional then A is semiprimary.
A hereditary ring is a ring A such that every submodule of a projective module is projective.
A heredity ideal is an ideal J such that

(a) J is projective as a right A-module,

(b) J2 = J , and

(c) JRad(A)J = 0.

Note: J2 = J if and only if there is an idempotent e ∈ A with J = AeA.
A quasihereditary ring is a semiprimary ring A with a chain of ideals

0 = J0 ⊆ J1 ⊆ · · · ⊆ Jm = A such that
J`

J`−1
is a heredity ideal of

A

J`−1

for each 1 ≤ ` ≤ m− 1.

2.1 The Dlab-Ringel theorem

Let C and D be rings,

L, a (C,D) bimodule,
R, a (D,C) bimodule

and ε : L⊗D R→ C,

a (C,C) bimodule homomorphism. Define an algebra

A = C ⊕D ⊕ L⊕R⊕R⊗C L

and product determined by the multiplication in C and D, the module structure of of R and L
and the additional relations

cr = 0, , d` = 0, rd = 0, `c = 0, and (r1 ⊗ `1)(r2 ⊗ `2) = r1 ⊗ ε(`1 ⊗ r2)`2.

Let

eC be the image of the identity of C in A, and

eD be the image of the identity of D in A.

9



Then, if e = eC then

1− e = eD, C = eAe, L = eA(1− e),
D′ = (1− e)A(1− e), R = (1− e)Ae,

so that

A =
{(

c `
r d′

) ∣∣∣ c ∈ C, ` ∈ L, r ∈ R, d′ ∈ D′
}

with matrix multiplication. Then

D′ = D + R⊗C L is a subring of A, and

R⊗C L is an ideal in A, and

R⊗C L = (1− e)AeA(1− e).

Theorem 2.1. Let A be a quasihereditary algebra,

0 = J0 ⊆ J1 ⊆ · · · ⊆ Jm = A.

Let e be a indempotent in A such that

Jm−1 = AeA and eA(1− e) ⊆ Rad(A).

Let
C = eAe and D =

A

AeA
=

A

Jm−1

and
CLD = eA(1− e) and DRC = (1− e)Ae

and let
ε : L⊗D R −→ C

`⊗ r 7−→ `r

Assume D is a separable k-algebra. Then

(a) D + (1− e)AeA(1− e) = (1− e)A(1− e),

(b) A = C(ε),

(c) C is qusihereditary with heredity chain

0 = I0 ⊆ · · · ⊆ Im−1 = C, where I` = eJ`e.

2.2 Nondegeneracy

Let
ε : L⊗D R be a (C,C) bimodule homomorphism.

Let left radical L(ε) and the right radical R(ε) are defined by

L(ε) = {` ∈ L | ε(`⊗ r) ∈ Rad(C), for all r ∈ R},
R(ε) = {r ∈ R | ε(`⊗ r) ∈ Rad(C), for all ` ∈ L},
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The map ε is nondegenerate if

Rad(C) = 0, L(ε) = 0, and R(ε) = 0.

Let

C =
C

Rad(C)
, L =

L

L(ε)
, R =

R

R(ε)
, and define

ε̄ : L̄⊗D R̄ −→ C̄
¯̀⊗ r̄ 7−→ (ε(`⊗ r)

Then ε̄ is nondegenerate. If
φ : R⊗C L −→ R̄⊗C̄ L̄

r̄ ⊗ ¯̀ 7−→ r ⊗ `

then ker φ is generated by R⊗C L(ε) and R(ε)⊗C L, ker φ ·R ⊆ R(ε), L · ker φ ⊆ L(ε), and

A(ε̄) ∼=
A(ε)

I
, where I = Rad(C) + L(ε) + R(ε) + ker φ.

If ε : L⊗D R→ C is nondegenerate then the map

τ : R
∼−→ L∗

r 7→ λr : L → C
` 7→ ε(`⊗ r)

is an isomorphism and
ε = ev ◦ (id⊗ τ).

Thus
A(ε) ∼= A(ev).

2.3 Duals and Projectives

Let L be a C-module and let
Z = EndC(L)

so that L is a (C,Z) bimodule. The dual module to L is the (Z,C) bimodule

L∗ = HomC(L,C).

The evaluation map is the (C,C) bimodule homomorphism

ev : L⊗Z L∗ −→ C
`⊗ λ 7−→ λ(`)

and the centralizer map is the (Z,Z) bimodule homomorphism

ξ : L∗ ⊗C L −→ Z

λ⊗ ` 7−→ zλ,` : L → L
m 7→ λ(m)`

Recall that [Bou, Alg. II §4.2 Cor.]

(a) L is a projective C-module if and only if 1 ∈ im ξ,

(b) If L is a projective C-module then ξ is injective,
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(c) If L is a finitely generated projective C-module then ξ is bijective,

(d) If L is a finitely generated free module then

ξ−1(z) =
∑

i

b∗i ⊗ z(bi),

where {b1, . . . , bd} is a basis of L and {b∗1, . . . , b∗d} is the dual basis in M∗.

Statement (a) says that L is projective if and only if there exist bi ∈ L and b∗i ∈ L∗ such that

if ` ∈ L then ` =
∑

i

b∗i (`)bi, so that ξ
( ∑

i

b∗i ⊗ bi

)
= 1.

2.4 The Macpherson-Vilonen construction

Let C and D be categories

F : C → D and G : C → D be functors, and F
ε−→G,

a natural transformation. Define a category A with

Objects: (M,V ; PICTURE), where M ∈ C, V ∈ D, and m,n ∈ Mor(D),

Morphisms: (f, g) with f ∈ Mor(C), g ∈ Mor(D) such that

PICTURE commutes.

A fundamental case is when D is the category of vector spaces over F.
The connection between the Dlab-Ringel construction and the Macpherson-Vilonen construc-

tion is given by letting C = C-mod and D = D-mod and

F : C −→ D
M 7−→ R⊗C M

and
G : C −→ D

M 7−→ HomC(L,M)

where the D-action on HomC(L,M) is given by

(dφ)(`) = φ(`d), for d ∈ D, ` ∈ L, and φ ∈ HomC(L,M).

Then let ε : F → G be the natural transformation given by

ε : F −→ G
R⊗C M

εM−→ HomC(L,M)

r ⊗m 7−→ τ : L → M
` 7→ ε(`⊗ r)m

Then
A ∼−→ A-mod

(X, Y, ρ, λ) ↔ M
where X = eM, Y = (1− e)M,

and the L-action and R-action on M define ρ and λ via

`y = (λ(y))(`) and rx = ρ(r ⊗ x), for ` ∈ L, r ∈ R, x ∈ X and y ∈ Y .

Note that
`x = 0 and ry = 0, for ` ∈ L, r ∈ R, x ∈ X, y ∈ Y ,

and
PICTURE

commutes.
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2.5 Highest weight categories

Let A be a finite dimensional algebra and let Â be an index set for

L(λ), the simple A-modules.

Let P (λ) be the projective cover of L(λ), and
I(λ) the injective hull of L(λ).

Let ≤ be a partial order on Â.

Let ∇(λ) be the largest subobject of I(λ) with composition factors L(µ) with µ ≤ λ,
∆(λ) be the largest quotient of P (λ) with composition factors L(µ) with µ ≤ λ,

Then A = A-mod is a highest weight category if P (λ) has a filtration

0 = P (λ)(m) ⊆ · · · ⊆ P (λ)(1) ⊆ P (λ),

with
P (λ)

P (λ)(1)
∼= ∆(λ) and

P (λ)(k)

P (λ)(k+1)
∼= ∆(µ), with µ < λ,

for 1 ≤ k ≤ m− 1.

Theorem 2.2. Highest weight categories satisfy BGG-reciprocity,

[I(λ) : ∇(µ)] = [∆(µ) : L(λ)].

Proof. Since

Ext1(∆(λ),∇(µ)) = 0 and Hom(∆(λ),∇(µ)) =

{
End(L(µ)), if λ = µ,
0, if λ 6= µ,

it follows that

Hom(∆(λ),M) = (number of of ∇(λ) in a ∇-filtration of M).

Thus

[I(µ) : ∇(λ)] =
dim

(
Hom(∆(λ), I(µ))

)
dim

(
End( L(λ))

) = [∆(λ) : L(µ)].

How does this proof compare to the proof for convolution algebras in Chriss and Ginzburg?

Examples of highest weight categories
(1) G = G(F), A the category of finite dimensional rational G-modules, and∇(λ) = H0(G/B,Lλ),
(2) A the category O, and ∇(λ) = M(λ)∨.

Theorem 2.3. Let A be a finite dimensional algebra and let A = A-mod. The A is a highest
weight category if and only if A is a quasihereditary algebra.
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Proof. ⇒: Assume A is a highest weight category. Let λ be a maximal weight and let

P (λ) = Aeλ and JAeλA.

Then J is projective as a left A-module,

HomA(J,A/J) = 0, J · Rad(J) = 0.

So J is a heredity ideal. Finally, (A/J)-mod is a highest weight category with (̂A/J) = Â−{λ}.
⇐: Assume A is a quasihereditary algebra,

0 = J0 ⊆ J1 ⊆ · · · ⊆ Jm = A.

Define λ < µ if

L(λ) appears in
Ji/Ji−1

Rad(Ji/Ji−1)
and L(µ) appears in

Jj/Jj−1

Rad(Jj/Jj−1)
,

with i < j. Suppose i is (the unique integer) such that L(λ) appears in (Ji/Ji−1)/((Rad(Ji/Ji−1))
and let

Delta(λ) be the projective cover of L(λ), as an A/Ji−1 module.

Then L(λ) is the simple head of A(λ) and, since Ji−1 ·Rad(A/Ji−1) · Ji−1 = 0, all other compo-
sition factors of A(λ) are lower.

If L(λ) is a simple A-module then there is an idempotent eλ ∈ A such that P (λ) = Aeλ (eλ

is a minimal idempotent). Then

0 = J0eλ ⊆ J1eλ ⊆ · · · ⊆ Jmeλ = Aeλ = P (λ)

is a good filtration of P (λ).
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