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1 The basic construction

In this section we shall assume that all algebras are finite dimensional algebras over an alge-
braically closed field F. The fact that F is algebraically closed is only for convenience, to avoid
the division rings that could arise in the decomposition of A just before (4.8) below.

Let A C B be an inclusion of algebras. Then B ®p B is an (A, A)-bimodule where A acts on
the left by left multiplication and on the right by right multiplication. Fix an (A, A)-bimodule

homomorphism
e:B®y B — A (1.1)

The basic construction is the algebra B ® 4 B with product given by
(b1 ® ba) (b3 ® by) = by ® (ba ® b3 )by, for by, ba,b3,b4 € B. (1.2)
More generally, let A be an algebra and let L be a left A-module and R a right A-module. Let
e:L®y R— A, (1.3)

be an (A, A)-bimodule homomorphism. The basic construction is the algebra R ®4 L with
product given by

(r1 ®@£01)(ro @ ly) =11 @e(ly @re)la, for 71,70 € R and ¢1,¢> € L. (1.4)

Theorem 4.18 below determines, explicitly, the structure of the algebra R ®4 L.
Let N = Rad(A) and let

A=A/N, L=L/NL  and R=R/RN (1.5)

Define an (A, A)-bimodule homomorphism

. LoxR — A
(1.6)

(@ +— e(l®r)
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where / = (+NL,7=r+RN,and @ =a+ N, for ¢ € L,r € R and a € A. Then by basic tensor
product relations [Boul, Ch. IT §3.3 Cor. to Prop. 2 and §3.6 Cor. to Prop. 6], the surjective
algebra homomorphism

m: R®sL — R@AE
) has ker(m) = R®a NL. (1.7)
re — re/l

The algebra A is a split semisimple algebra (an algebra isomorphic to a direct sum of matrix
algebras). Fix an algebra isomorphism

A = My, F)
uEA

a‘L]LDQ — EI%Q

where A is an index set for the components and EgQ is the matrix with 1 in the (P, Q) entry of
the pth block and 0 in all other entries. Also, fix isomorphisms

L=@PArer* ad R=@PReA* (1.8)
,uEA ,uGA

where A“, u e A, are the simple left A-modules, A“ uw e A, are the simple right A-modules,
and L¥*, R* € A are vector spaces. The practical effect of this setup is that if R* is an index
set for a basis {r{:|Y € RMY of R*, L* is an index set for a basis {t|X € LMY of L', and A is
an index set for bases

{(@h | Qe Aty of An and  {@l | Pe At} of An (1.9)
such that
agT?‘é = S\u0rg a’s and ahady = Sxudpsaly (1.10)
then

L has basis {a% @5 | pc A, P c A* X € LM} and
(1.11)
R has basis {ry ® @, | p€ A,Q € A" Y € R*}.

With notations as in (4.9) and (4.11) the map & : L®p R — A is determined by the constants
ehyy € FF given by
(@ etk @ry @ al) =dyyagp (1.12)

and €'y, does not depend on @ and P since

(T @ @1y @ al) =clago@e @y @Y ® @hdlpry) (1.13)
= ag0e(@H @y @Y ®@ @lp)dlpy (1.14)
= OAullsofy GG palpr = ey Al (1.15)
(1.16)
For each p € A construct a matrix
g = (ehy) (1.17)



and let D* = (D7) and C* = (C%,;,) be invertible matrices such that DFEXCH is a diagonal
matrix with diagonal entries denoted &y,

DHELCH = diag(ely). (1.18)

In practice D* and C* are found by row reducing £* to its Smith normal form. The £/, are the
invariant factors of EM. ) B
For pe€ A, X € RMY € L*, define the following elements of R ® 35 L,

- — — _ _
mhy =rk @ adh@ahely, and Ak, = > CH DY, mb . (1.19)

Q1,Q2

Since

(re@ @y @ ah,th) = (ry@ dpapy @ al @) (1.20)
= (¥ ap@apyal ) (1.21)
=0\ 0wz(rs @ @p @ Tp @ L£7) (1.22)
(1.23)

the element m’y does not depend on P and {m’, | p € A /X € R*)Y € LM} is a basis of
R®j4 L.

The following theorem determines the structure of the algebras R ®4 L and R ® 4 L. This
theorem is used by W.P. Brown in the study of the Brauer algebra. Part (a) is implicit in
[Bro1,§2.2] and part (b) is proved in [Bro2].

Theorem 1.1. Let m: R®4 L — R®4 L be as in (4.7) and let {k;} be a basis of ker(m) =
R®a NL. Let
nkp € R®a L be such that m(nk. ) = alp,

where the elements il € R®x L are as defined in (4.16).

(a) The sets {mlyy | p€ A, X € R"Y € L'} and {nf, | p € A, X € R*Y € L'} (see (4.16))
are bases of R ® z L, which satisfy

Mgrimgp = Ol p and  W§rigp = SaudTQer P,
where el and . are as defined in (4.12) and (4.15).
(b) The radical of the algebra R ® 4 L is
Rad(R ®4 L) = F-span{k;,n., | e}, =0 or e} = 0}
and the images of the elements
el = gi#n’;/T, for e, # 0 and €. # 0,

T
are a set of matriz units in (R®4 L)/Rad(R®4 L).



Proof. The first statement in (a) follows from the equations in (4.17). If (C~1)* and (D1 are
the inverses of the matrices C* and D* then

Z(C_lms(D_l)%yﬁXY = Z (C™ )% sCh, xmQu@2 DY g, (D™ iy (1.24)
X7Y X7Y7Q17Q2
= Z 55@15Q2T77L61Q2 = ﬁ’LgT, (1.25)
Q1,Q2
(1.26)

and so the elements m‘éT can be written as linear combinations of the ﬁ‘;(y. This establishes
the second statement in (a). By direct computation, using (4.10) and (4.12),

mgrmpp = (ry © Ty @ @iy @ () (rly ® aly @ a'ly @ ()
=ry@adyeeay @ erheal)al el
=0u(rs ® @iy ®epayz ay @ 0p)

= Oaueto(ry @ @iy ® @iy ® £p) = Snuetomip,

and
A Sp A A=A L TR
hsThyy = Z Co1sDP710.M0,0.C0,u Py @, M0,0,
Q1,Q2,Q3,Q4
— A A H H o=
= D 0n03,5D70:60,0,C0,0 PV, M0
Q1,Q2,Q3,Q4
- 6)‘“ Z 5TU€!7€051SD5Q4m€21Q4 = 5/\M6TU€/27“ﬁg‘V‘
Q1,Q4

(b) Let N = Rad(A) as in (4.5). If ry ® nil1,72 @ naly € R @4 NL with ny € N* for some
i € Z~q then
(11 @ nl1)(ry @ ngls) = 11 ® e(nily @ ro)noly = 11 @ nie(fy @ ro)noly € R4 NTIL.
Since N is a nilpotent ideal of A it follows that ker(m) = R®4 NL is a nilpotent ideal of R® 4 L.
So ker(m) C Rad(R®4 L).
Let
I = F-span{k;,n{.. | i = 0 or £f. = 0}.

The multiplication rule for the fiyr implies that 7(I) is an ideal of R ® 4 L and thus, by the
correspondence between ideals of R ® 5 L and ideals of R ®4 L which contain ker(r), I is an

ideal of R®4 L.
If 2y s My, 1y Py, 7, € {72y | €y = 0 or . = 0} then
1 My, 1, My, = OTIYaEy, My 1, My = OTuY20Ta Y€, €, My, 1y = 0,
since €y, = 0 or e, = 0. Thus any product ny. . ny,  ny, 5, of three basis elements of I is

in ker(m). Since ker(7) is a nilpotent ideal of R ® 4 L it follows that I is an ideal of R ®4 L
consisting of nilpotent elements. So I C Rad(R ®4 L).

Since
Au_iikﬂ—(s(silA’\—(SdA drI
eyreyy = x n WTWv = OnO0TU 3 3 €Ty v = OnoTuéyy  mod [,
€T Ev TV

the images of the elements ey, in (4.7) form a set of matrix units in the algebra (R ®4 L)/I.
Thus (R®4 L)/I is a split semisimple algebra and so I D Rad(R®4 L). O



1.1 Basic constructions for A C B

Let A C B be an inclusion of algebras. Let €1 : B — A be an (A, A) bimodule homomorphism
and use the (A4, A)-bimodule homomorphism

e: B B — A

1.27
b ®by +—— 61(b1b2) ( )

and (4.2) to define the basic construction B ®4 B. Theorem 4.28 below provides the structure
of B®4 B in the case that both A and B are split semisimple.
Let us record the following facts,

(4.20a) If p € A and pAp = Fp then (p® 1)(BR4 B)(p@ 1) =F- (p® 1),
(4.20b) If p is an idempotent of A and pAp = Fp then ¢1(1) € F,
(4.20c) If p € A, pAp =Fp and if €1(1) # 0, then =g )(p ® 1) is a minimal idempotent in B ®4 B,

which are justified as follows. If p € A and pAp = Fp and by,b2 € B then (p®1)(b1 ®b2)(p®1) =
(p@e1(br)b2)(p®1) =pRei(br)er(bap) = pe1(br)e1(ba)p @1 = Ep® 1, for some constant & € F.
This establishes (a). If p is an idempotent of A and pAp = Fp then pe1(1)p = 1(p?) = e1(1-p) =
£1(1)p and so (b) holds. If p € A and pAp = Fp then (p®1)? = 1(1)(p® 1) and so, if £1(1) # 0,
then ?ﬁ)(p ® 1) is a minimal idempotent in B ® 4 B.

Assume A and B are split semisimple. Let

A be an index set for the irreducible A-modules AH,
B be an index set for the irreducible B-modules B*, and let

A# = { p—p } be an index set for a basis of the simple A-module A,

for each p € A (the composite P—p is viewed as a single symbol). We think of AF as the set of
“paths to p” in the two level graph

T with vertices on level A: fl, vertices on level B: B , and (1.28)
mf; edges u — X if A* appears with multiplicity m;\t in Res%(B"). )
For example, the graph I' for the symmetric group algebras A = CS3 and B = CSy is
If A € B then
A={pop—A|peA pope A¥and p — X is an edge in T'} (1.29)

is an index set for a basis of the irreducible B-module B*. We think of B as the set of paths
to A in the graph I'. Let

{apg | p € A, P—p,g—p € A¥}  and  {bpg | A€ B, P—pu — \,@—v — X € B*}, (1.30)
K Ky
A



be sets of matrix units in the algebras A and B, respectively, so that

apast = dwdgsapr  and  bpbsr = drs0Qsdyrbpr, (1.31)
By u u)\v TV u/\u

and such that, for all p € A, P, Qe AR,

tho =2 Ukg (1.32)
u W

H—A A
where the sum is over all edges © — X in the graph T.
Though is not necessary for the following it is conceptually helpful to let C' = B ®4 B, let
C = A and extend the graph I" to a graph I with three levels, so that the edges between level
B and level C are the reflections of the edges between level A and level B. In other words,

I has vertices on level C" C’, and (1.33)
an edge A — u, A € B, u € C, for each edge pt — A\, p € A, A € B. )
For each v € C define
. A 3 S p, A
Cv PHM_})\_”/‘/LEA,)\EB,I/EC,P /JEA aknd 7 (1.34)
©w— X and A\ — v are edges in I'

so that CV is the set of “paths to v” in the graph I'. Continuing with our previous example, I'
is

o
i
H
oo

C':D:DEJE

Theorem 1.2. Assume A and B are split semisimple, and let the notations and assumption be

as in (4.21-4.25).
(a) The elements of B®4 B given by

bpr @ brq
by e
A o

do not depend on the choice of T—v € A7 and form a basis of B®4 B.

(b) For each edge i — X in I' define a constant Eﬁ eF by

€1 <bpp) = EZ\ app (135)
N)\N H

Then 52‘ is independent of the choice of P—pu € Ar and

(pr & bTQ) (bRX & bX5> = 5fy7r5QR6V7'50'p5?y <bPT ® bTS)'
u)\’y "/Ul/ Tpﬂ‘ 7r77§ ﬂWM 77]5



Rad(B ®4 B) has basis {pr ®brg | 52 =0ore) = O},
ny v
A oz

and the images of the elements

1
epQ = <0> (bPT ® bTQ>, such that 6,’) #0 and € # 0,
o = S

v
form a set of matriz units in (B ®4 B)/Rad(B ®4 B).

(c) Lettrg: B —TF andtra: A — T be traces on B and A, respectively, such that
tra(e1(b)) = trp(b), for all b € B. (1.36)

Let X%, p € A, and X)l\%; X € B, be the irreducible characters of the algebras A and B,
respectively. Define constants tr'y, p € A, and trg, A € B, by the equations

tra = Z trfy s and trp = Z try X (1.37)
;LGA \eB

respectively. Then the constants 8;) defined in (4.29) satisfy
try = &), trly.

(d) In the algebra B ®4 B,
1®1= bpp @b
2 brnobuy
ANy
(9) By left multiplication, the algebra B ® o4 B is a left B-module. If Rad(B ®4 B) is a B-
submodule of BRAB and: B — (B®aB)/Rad(B®aB) is a left B-module homomorphism

then
L(bRs> = ) €Rs
70 7; T0
™ ™7
2t
Proof. By (4.11) and (4.25),
B = PArerr B = PR oA
ned d ved 1.38
bpg +— ?p@f'uQ o bpg +— 1% ®<EQ ( )
1% Iz 7% Hv B v
A A A A

as left A-modules and as right A-modules, respectively. Identify the left and right hand sides of
these isomorphisms. Then, by (4.17), the elements of C' = B ® 4 B given by

mPQ = T’IYD ® HT & E>T ®£7Q - bPT ® bTQ (139)
v ny Y Y % By yv
)\’ya by o A o

do not depend on 17—y € A7 and form a basis of B ®4 B.



(b) By (4.12), the map ¢: B ®p B — A is determined by the values

eho €F  given by TQapp—s(ap@)f T ®TH ®ap). (1.40)
YT H By T I

Ao )\O' A o

I

Since

E;Qapp = E(pr ® pr) =€ (pr X pr)

¥ oh Yy T 1 wy T I
Ao A o A o
n

_ p
= 5TQ€1 (bPP) = 5TQ€1(b pbpp) = 0rqe'ppapp.
vE VT ppp
)\0' >\ Ao A A Ao A\

the matrix ¥ given by (4.14) is diagonal with entries 52 given by (4.15) and, by (4.17), &)
independent of Py € A*. By Theorem 4.18(a),

g
MpQMRS = OynEQRMPS = 5%5@5:57 PS
rpy  TE vt M€ VT e
Xo Pl op AT ap  AM
Y ow SR Y

in the algebra C. The rest of the statements in part (b) follow from Theorem 4.18(b).
(c) Evaluating the equations in (4.31) and using (4.29) gives

tr)é = trB(bPP) = tI'A(gl(bpp)) = €2tI'A(CLPP) = 621’;1‘%, (141)
Iz 1 I
A A
(d) Since
1= Z bpp in the algebra B,
pomey Hb
H A

it follows from part (b) and (4.16) that

I1®1l= ( Z bPP) ( Z bQQ) Z OPQOuw (bPP ® bQQ) Z mpp
P—p—A /\ Q—v—y ~ g:;::i; N)\M ~ T 'l)l:'ij;
N I

A7

giving part (d).
(e) By left multiplication, the algebra B ®4 B is a left B-module. If 5/7\ # 0 and €7 # 0 then

1 1
b - b (b b ) -
e <6“> Rg\PpT @019 (6“
s /\

™

ARO

> dgp (bRT ® bTQ) = 05 PERQ-
~ v Bu 37 ly Bp Tv

TN TO

LO>EY

Thus, if t: B — (B

(bRS) = L<bRs) A1=bps >,

B)/Rad(B ®4 B) is a left B-module homomorphism then

5 ‘on T 2 OspeRp = 2 ‘ry

T T T

7 Pop—=A—=y N\ P=u—=A—=y o\ A T ow
Y Y Y



2 Quasihereditary algebras

Let F be a field. A separable algebra over F is an algebra A such that

A -~ A
Rad(d) = QP e AMy, (F).

Two algebras A and B are Morita equivalent if Mod-A is equivalent to Mod-B (Check this in
Gelfand-Manin).

A ring A is semiprimary if there is a nilpotent ideal Rad(A) such that A/Rad(A) is semisimple
artinian. Note: If A is finite dimensional then A is semiprimary.

A hereditary ring is a ring A such that every submodule of a projective module is projective.
A heredity ideal is an ideal J such that

(a) J is projective as a right A-module,
(b) J?=J, and
(c) JRad(A)J = 0.
Note: J? = J if and only if there is an idempotent e € A with J = AeA.

A quasihereditary ring is a semiprimary ring A with a chain of ideals

A
0=JyCJ;C---CJ,=4 such that i is a heredity ideal of ——
Jo—1 Jo1

foreach 1 </ <m—1.

2.1 The Dlab-Ringel theorem
Let C and D be rings,

L, a (C, D) bimodule, '
R a(D,C) bimodule =~ 4 & L@ R—=C
a (C,C) bimodule homomorphism. Define an algebra

A=CosDPLPRPR®c L

and product determined by the multiplication in C' and D, the module structure of of R and L
and the additional relations

cr=0, ,dl=0, rd=0, flc=0, and (r1®/0)(re®¥s) =11 @e(l; ®19)ls.
Let

ec be the image of the identity of C' in A, and

ep be the image of the identity of D in A.



Then, if e = e¢ then

l—e=¢ep, C = eAe, L=eA(l —e),
D'=(1-eA(l—-e), R=(1-—e)Ae,

so that
A= {(;f 5,) ] ceC,EeL,reR,d’eD’}

with matrix multiplication. Then

D' =D+ R®¢ L is a subring of A, and

R ®c L is an ideal in A, and

R®c L= (1—-e)AcA(1 —e).
Theorem 2.1. Let A be a quasihereditary algebra,

0=JhCSHhC---CJ,=A

Let e be a indempotent in A such that

Im—1 = AeA and eA(1 —e) C Rad(A).

Let A A
C =ecAe and D= A= —
and
cLp =eA(l —e) and pRc = (1—e)Ae
and let

e: LpR — C
fQr +—— Ur

Assume D is a separable k-algebra. Then
(a) D+ (1—e)AeA(l—e)=(1—-e)A(l—e),
(b) A=Cl(e),
(c) C is qusihereditary with heredity chain

0=IlC---Cl,,_1=0C, where I, = eJye.

2.2 Nondegeneracy

Let
e:L®p R be a (C,C) bimodule homomorphism.

Let left radical L(e) and the right radical R(g) are defined by

L(e) ={feL]|e(f{®r)ecRad(C), for all r € R},
R(e) ={reR|c(l{®r)ecRad(C), for all ¢ € L},

10



The map ¢ is nondegenerate if
Rad(C) =0, L(e) =0, and R(e) = 0.

Let

o C T_ L T R g: L®pR — C
- Rad(0)’ - L(e)’ "~ R(e)’ (T +— (e({®7)

Then £ is nondegenerate. If

then ker ¢ is generated by R ®¢ L(¢) and R(e) ®¢ L, ker ¢ - R C R(e), L - ker ¢ C L(e), and

A(e)
I )

A(e) = where I =Rad(C) + L(e) + R(e) + ker ¢.

Ife: L®p R — C is nondegenerate then the map

7 R — L*
. AN L — C
C — g(l®r)

is an isomorphism and
e=evo(id®T).

Thus
A(e) = Alev).
2.3 Duals and Projectives

Let L be a C-module and let
Z = End¢ (L)

so that L is a (C, Z) bimodule. The dual module to L is the (Z,C') bimodule
L* = Home(L, O).
The evaluation map is the (C,C') bimodule homomorphism

ev: L®zL* — C
X +— A0

and the centralizer map is the (Z, Z) bimodule homomorphism

& L"®cL — Z
2 Lo— L
ABL m — AXm)l

Recall that [Bou, Alg. II §4.2 Cor.]
(a) L is a projective C-module if and only if 1 € im¢&,

(b) If L is a projective C-module then £ is injective,

11



(c) If L is a finitely generated projective C-module then ¢ is bijective,

(d) If L is a finitely generated free module then
£M(z) =) b ®z(b),

where {b1,...,bq} is a basis of L and {b},...,b}} is the dual basis in M*.
Statement (a) says that L is projective if and only if there exist b; € L and b € L* such that

ifeeL them €= b0 so that g(Zb;‘@)bi):l.

2.4 The Macpherson-Vilonen construction
Let C and D be categories
F:C—D and G:C—7D befunctors, and F-5G,
a natural transformation. Define a category A with
Objects: (M,V; PICTURE), where M € C, V € D, and m,n € Mor(D),
Morphisms: (f,g) with f € Mor(C), g € Mor(D) such that
PICTURE commutes.

A fundamental case is when D is the category of vector spaces over F.
The connection between the Dlab-Ringel construction and the Macpherson-Vilonen construc-
tion is given by letting C = C-mod and D = D-mod and

F: C — D q G: C —
M — RecM ™ M +—— Home(L, M)

where the D-action on Home (L, M) is given by
(dop)(£) = ¢(bd), forde D, ¢ € L, and ¢ € Homg (L, M).

Then let €: F' — G be the natural transformation given by

€: F — G
R@c M =4 Home (L, M)

7: L — M

rem { — e(lr)m

Then N
A —  A-mod

(X.Y.p,A) < M
and the L-action and R-action on M define p and A via
ly = (M) () and re = p(r® x), forteL,re R,zre XandyeY.
Note that

where X=eM, Y=(1-eM,

lxr=0 and ry=0, for{elL,reR zeX,yeY,

and
PICTURE

commutes.

12



2.5 Highest weight categories

Let A be a finite dimensional algebra and let A be an index set for

L(\), the simple A-modules.

Let P(\) be the projective cover of L()), and
I()\)  the injective hull of L(A).

Let < be a partial order on A.

Let V(A) be the largest subobject of I(\) with composition factors L(u) with g < A,
A(X)  be the largest quotient of P(\) with composition factors L(p) with u < A,

Then A = A-mod is a highest weight category if P(\) has a filtration
0= PO C .. P C POV,
with
= A(p), with p <A,

for1<k<m-—1.

Theorem 2.2. Highest weight categories satisfy BGG-reciprocity,

Proof. Since
Ext'(A(A),V(u)) =0 and  Hom(A(X),V(u)) =

it follows that
Hom(A(X), M) = (number of of V() in a V-filtration of M).

Thus

o= 2L

How does this proof compare to the proof for convolution algebras in Chriss and Ginzburg? [

— AW : L(w)].

Ezamples of highest weight categories
(1) G = G(F), A the category of finite dimensional rational G-modules, and V(\) = H%(G/B, L),
(2) A the category O, and V(\) = M(A\)V.

Theorem 2.3. Let A be a finite dimensional algebra and let A = A-mod. The A is a highest
weight category if and only if A is a quasihereditary algebra.

13



Proof. =: Assume A is a highest weight category. Let A be a maximal weight and let
P(\) = Aey and JAey)A.
Then J is projective as a left A-module,
Homyu(J,A/J) =0, J -Rad(J) = 0.

So J is a heredity ideal. Finally, (A/J)-mod is a highest weight category with (A//\J) = A—{)\}.

<: Assume A is a quasihereditary algebra,
O0=JChC---CJp=A
Define A < p if

Ji) Ji—1
Rad(Ji/Ji_l)

Jj/Jj—1

L(\) appears in —_— =
(%) app Rad(J;/Jj-1)

and L(p) appears in

with ¢ < j. Suppose i is (the unique integer) such that L(\) appears in (J;/J;—1)/((Rad(J;/Ji—1))
and let
Delta(X) be the projective cover of L(A), asan A/J;—1 module.

Then L(A) is the simple head of A()A) and, since J;_1 - Rad(A/J;—1) - Ji—1 = 0, all other compo-
sition factors of A(\) are lower.

If L()\) is a simple A-module then there is an idempotent ey € A such that P(\) = Aey (e)
is a minimal idempotent). Then

O:Jge,\gjleAg ---QJme,\:Ae)\:P()\)

is a good filtration of P(\). O

References

[GW1] F. Goodman and H. Wenzl, The Temperley-Lieb algebra at roots of unity, Pacific J.
Math. 161 (1993), no. 2, 307-334.

[GL1] J. Graham and G. Lehrer, Diagram algebras, Hecke algebras and decomposition numbers
at roots of unity, Ann. Sci. Ecole Norm. Sup. (4) 36 (2003), no. 4, 479-524.

[GL2] J. Graham and G. Lehrer, The two-step nilpotent representations of the extended affine
Hecke algebra of type A, Compositio Math. 133 (2002), no. 2, 173-197.

14



