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1 Convolution algebras

1.1 The decomposition theorem

Let M be a smooth G-variety and let N be a G-variety with finitely many G-orbits such that
the orbit decomposition is an algebraic stratification of N ,

N =
⊔
ϕ

Gxϕ, and µ : M −→ N

is a G-equivariant projective morphism. Let CM be the constant perverse sheaf on M . The
decomposition theorem [CG, 8.4.12] says that

µ∗CM =
⊕
i∈Z

λ=(ϕ,χ)∈M̂

L(λ, i)⊗ ICλ[i]=̇
⊕
λ∈M̂

L(λ)⊗ ICλ, where L(λ) =
⊕
i∈Z

L(λ, i),

µ∗ is the derived functor of sheaf theoretic direct image, λ runs over the indexes of the intersec-
tion cohomology complexes ICλ, L(λ) are finite dimensional vector spaces, and =̇ indicates an
equality up to shifts in the derived category.

1.2 Convolution algebras

Let µ : M → N be a proper map. The convolution algebra is

A = Ext∗Db(N)(µ∗CM , µ∗CM ) =
⊕
k∈Z

Extk(µ∗CM , µ∗CM ),

The decomposition theorem for µ∗CM induces a decomposition of A. Since the intersection
cohomology complexes ICφ are the simple objects in the category of perverse sheaves,

Ext0Db(N)(IC
λ, ICµ) = δλµC, and ExtkDb(N)(IC

λ, ICµ) = 0, for k ∈ Z<0,

and the decomposition of A simplifies to

A =
⊕
λ∈M̂

EndC(L(λ))
⊕ ⊕

k∈Z>0

( ⊕
λ,µ∈M̂

HomC(L(λ), L(µ))⊗ ExtkDb(N)(IC
λ, ICµ)

) .
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In this context there is a good theory of projective, standard and simple modules, and their
decomposition matrices satisfy a BGG reciprocity. View elements of A as sums∑

λ,µ

∑
P∈L̂(λ),Q∈L̂(µ)

cλµPQa
λµ
PQ where cλµPQ ∈ C, and aλµPQ ∈

⊕
k>0

ExtkDb(N)(IC
λ, ICµ).

The algebra A is completely controlled by the dimensions of the L(λ) and the multiplication in

Abasic = Ext∗(IC, IC) where IC =
⊕
λ∈M̂

ICλ.

an algebra which has all one dimensional simple modules. The radical filtration of A is

Rad`(A) =
⊕
λ,µ∈M̂

HomC(L(λ), L(µ))⊗
( ⊕
k∈Z≥`

ExtkDb(N)(IC
λ, ICµ)

)
and the nonzero

L(λ) are the simple A-modules.

1.3 Projective modules

Let eλ be a minimal idempotent in
⊕

µ End(L(µ)). Then

P (λ) = Aeλ = L(λ)
⊕⊕

k>0
µ

L(µ)⊗ ExtkDb(N)(IC
µ, ICλ)


is the projective cover of the simple A-module L(λ). Define an A-module filtration

P (λ) ⊇ P (λ)(1) ⊇ P (λ)(2) ⊇ · · ·

by
P (λ)(m) =

⊕
k≥m
µ

L(µ)⊗ ExtkDb(N)(IC
µ, ICλ).

Then
L(λ) = P (λ)/P (λ)(1) and gr

(
P (λ)

)
is a semisimple A-module.

Thus the multiplicity of the simple A-module L(µ) in a composition series of P (λ) is

[P (λ) : L(µ)] = dim
(
Ext∗(ICO,χ, ICO′,χ′)

)
=
∑
k≥0

dim
(
ExtkDb(N)(IC

µ, ICλ)
)
.

1.4 Standard and costandard modules

Let λ = (ϕ, χ),
x ∈ Oϕ, and let ix : {x} ↪→ N be the injection.

Then i!xµ∗CM is the stalk of µ∗CM at x and the Yoneda product makes

∆ϕ = H∗(i!xCM ) = HomDb({x})(C, i!xµ∗CM [∗]) = HomDb(N)((ix)!C[−∗], µ∗CM ), and

∇ϕ = H∗(i∗xCM ) = H∗({x}, i∗xµ∗CM ) = HomDb({x})(D, i!xµ∗CM [∗]) = HomDb(N)((ix)!C[−∗], µ∗CM ),

2



into rightA-modules. The action of an element a ∈ Extk(µ∗CM , µ∗CM ) = HomDb(N)(µ∗CM , µ∗CM [k])
sends

H∗({x}, i!xµ∗CM ) −→ H∗+k({x}, i!xµ∗CM ).

A G-equivariant local system is a G-equivariant locally constant sheaf. The orbit Oϕ can
be identified with G/Gx where Gx is the stabilizer of x. π0(Oϕ, x) = Gx/G

◦
x where G◦

x is the
connected component of the identity in Gx). There is a homomorphism π1(Oϕ, x)→ π0(Oϕ, x) =
Gx/G

◦
x and the representations of π1(Oϕ, x) on the fibers Lx of G-equivariant local systems L

are exactly the pullbacks of finite dimensional representations of C = Gx/G
◦
x to π1(Oϕ, x). In

this way the irreducible G-equivariant local systems on Oϕ can be indexed by (some of the)
irreducible representations of Gx/G◦

x [CG, Lemma 8.4.11]. There is an action of C = Gx/G
◦
x on

∆ϕ which commutes with the action of A. Similar arguments apply to ∇ϕ. As (A,C) bimodules,

∆ϕ =
⊕
χ∈Ĉ

∆(ϕ, χ)⊗ χ and ∇ϕ =
⊕
χ∈Ĉ

∇(ϕ, χ)⊗ χ,

and the standard and costandard A-modules are

∆(λ) = ∆(ϕ, χ) and ∇(λ) = ∇(ϕ, χ).

Using the decomposition theorem

∆(λ) = H∗(i!xCM )χ =
⊕
k∈Z
µ

L(µ)⊗Hk(i!xIC
µ)χ,

where the subscript χ denotes the χ-isotypic component. Define a filtration

∆(λ) ⊇ ∆(λ)(1) ⊇ ∆(λ)(2) ⊇ · · · by ∆(λ)(m) =
⊕
j≥m

⊕
φ

L(µ)⊗Hj(i!xIC
µ)χ.

Then ∆(λ)(m) is an A-module and gr
(
∆(λ))) is a semisimple A-module. This (and a similar

argument for ∇(λ)) show that the multiplicity of the simple A-module L(µ) in composition
series of ∆(λ) and ∇(λ) are

[∆(λ) : L(µ)] =
∑
k

dim
(
Hk(i!xIC

µ)χ
)

and [∇(λ) : L(µ)] =
∑
k

dim
(
Hk(i∗xIC

µ)χ
)
.

Define the standard KL-polynomial and the costandard KL-polynomial of A to be

P∆
λµ(t) =

∑
k

tkdim
(
Hk(i!xIC

µ)χ
)

and P∇
λµ(t) =

∑
k

tkdim
(
Hk(i∗xIC

µ)χ
)
,

respectively. Then ??? says that

[∆(λ) : L(µ)] = P∆
λµ(1) and [∇(λ) : L(µ)] = P ∗

λµ(1).

These identities are analogues of the original Kazhdan-Lusztig conjecture describing the multi-
plicities of simple g-modules in Verma modules.
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1.5 The contravariant form

Note that there is a canonical homomorphism

∆(λ) cλ−→∇(λ)

coming from applying the functor H∗ to the composition

(ix)!(ix)!µ∗CM −→ µ∗CM −→ (ix)∗(ix)∗µ∗CM ,

where the two maps arise from the canonical adjoint functor maps. Use the map cλ to define a
bilinear form on ∆(λ) by

〈, 〉 : ∆(λ)⊗∆(λ) −→ C
m1 ⊗m2 7−→ m1 ∩ cλ(m2)

Then
L(λ) = ∆(λ)/Rad(〈, 〉).

1.6 Contragradient modules

There is an involutive antiautomorphism t : A→ A on A (coming from switching the two factors
in Z = M ×N M). If M is an A-module the contragredient module is

M∗ = HomC(M,C) with (aψ)(m) = ψ(at(m)), for a ∈ A, ψ ∈M∗, and m ∈M .

Then
∇(λ) ∼= ∆(λ)∗.

1.7 Reciprocity

If λ = (ϕ, ρ) define

dλ = dimC(Oϕ), and assume that Extdψ+dϕ+k

Db(N)
(ICϕ, ICψ) = 0, for all odd k.
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Then

[P (λ) : L(µ)] =
∑
k

dimExtkDb(N)(IC
λ, ICµ)

=
∑
k

dimExtdλ+dµ+k

Db(N)
(ICλ, ICµ)

=
∑
k

(−1)kdimExtdλ+dµ+k

Db(N)
(ICλ, ICµ)

= (−1)dφ+dψ
∑
O
χ(O, i!OIC∨

φ

!
⊗ i!OICψ)

= (−1)dφ+dψ
∑
O
χ

O, (−1)dφ
∑
α,k

[Hki!O(IC∨
φ ) : α]α

!
⊗(−1)dψ

∑
β,`

[H`i!O(ICψ) : β]β


=
∑

O,α,β
χ

(
O,
∑
k

[Hki!O(ICφ) : α∗]α
!
⊗
∑
`

[H`i!O(ICψ) : β]β

)

=
∑
α,β

∑
k

dimHk(i!αICφ)

∑
O
χ(O, α∗

!
⊗β)

∑
`

dimH`(i!βICψ)

=
∑
α,β

[M!
α : Lφ]

∑
O
χ(O, α∗ ⊗ β)

 [M!
β : Lψ]

=
∑
α,β

Pφα(1)DαβPψβ(1)

= (PDP t)φψ,

where

(1) the third equality follows from the vanishing of Ext groups in odd degrees,

(2) χ denotes the Euler characteristic,

(3) P is the matrix (Pφα(1)), and

(4) D is the matrix (
∑

O χ(O, α∗ ⊗ β)).

This identity is the “BGG reciprocity” for the algebra A.

1.8 The Steinberg variety

Let x ∈ N and define

Z = M ×N M = {(m1,m2) ∈M ×M | µ(m1) = µ(m2)} and Mx = µ−1(x).

There are commutative diagrams

Z = M ×N M
ι−→ M ×Myµ12

yµ1×µ2

N = N∆
∆−→ N ×N

and
Mx

ι−→ Myµ yµ
{x} ix−→ N
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which (via base change) provide isomorphisms

H∗(Z) = HomDb(Z12)(CZ12 , (CZ12 [∗])∨)

= HomDb(Z12)(µ
∗
12CN , ι

!CM1×M2 [m1 +m2][−∗])

= HomDb(N)(CN , (µ12)∗ι!CM1×M2 [m1 +m2 − ∗])

= HomDb(N)(CN ,∆!(µ1 × µ2)∗(CM1 � CM2)[m1 +m2 − ∗])

= HomDb(N)(CN ,∆!((µ1)∗CM1 � (µ2)∗CM2)[m1 +m2 − ∗])
= Extm1+m2−∗

Db(N)
((µ1)∗CM1 , (µ2)∗CM2),

H∗(Mx) = HomDb(Mx)(CMx , (CMx [∗])∨) = HomDb(Mx)(µ
∗C{x}, ((ι

∗CM )[∗])∨)

= HomDb({x})(C{x}, µ∗(ι
!CM [2m])[−∗]) = HomDb({x})(C{x}, i

!
xµ∗CM [m− ∗])

= Hm−∗(i!xµ∗CM ),

and

H∗(Mx) = HomDb(Mx)(CMx ,CMx [∗]) = HomDb(Mx)(µ
∗C{x},CMx [∗])

= HomDb({x})(C{x}, µ∗CMx [∗]) = HomDb({x})(C{x}, µ!ι
∗CM [∗])

= HomDb({x})(C{x}, i
∗
xµ!CM [∗]) = HomDb({x})(C{x}, i

∗
xµ∗CM [∗ −m])

= H∗−m(i∗xµ∗CM ).

1.9 The category Db(N)

The category Compb(Sh(N)) is the cateogry of all finite complexes

A = (0→ A−m → A−m+1 → · · · → An−1 → An → 0), m, n ∈ Z>>0,

of sheaves on N with morphisms being morphisms of complexes which commute with the dif-
ferentials. The jth cohomology sheaf of A is

Hj(A) =
ker(Aj → Aj+1)
im(Aj−1 → Aj)

.

A morphism in Compb(Sh(N)) is a quasi-isomorphism if it induces isomorphisms on cohomology.
The category Db(Sh(N)) is the category Compb(Sh(N)) with additional morphisms obtained
by formally inverting all quasi-isomorphisms.

Assume that N is a G-variety with a finite number of orbits such that the G-orbit decom-
position

N =
⊔
ϕ

Oϕ is an algebraic stratification of X.

A constructible sheaf is a sheaf that is locally constant on strata of N . A constructible complex
is a complex such that all of its cohomology sheaves are constructible.

The derived category of bounded constructible complexes of sheaves on N is the full subcate-
gory Db(N) of Db(Sh(N)) consisting of constructible complexes. Full means that the morphisms
in Db(N) are the same as those in Db(Sh(N)).

The shift functor [i] : Db(N)→ Db(N) is the functor that shifts all complexes by i.
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The Verdier duality functor ∨ : Db(N)→ Db(N) is defined by requiring

HomDb(N)(A1, A2[i]) = HomDb(N)(∆
∗(A1�A

∨
2 )[−i],CN [2dimCN ]), for all i ∈ Z, where

∆: N → N ×N is the diagonal map.

The Verdier duality functor satisfies the properties

(A∨)∨ = A, (A[i ])∨ = A∨[−i ], and HomDb(N)(A1, A2) = HomDb(N)(A
∨
2 , A

∨
1 ).

Define
ExtkDb(X)(A1, A2) = HomDb(X)(A1, A2[k]),
Hk(A) = Hk(X,A) = HomDb(X)(CX , A[k]), the hypercohomology of A ∈ Db(N),
Hk(N) = HomDb(N)(CN ,CN [k]), the cohomology of N,
Hk(N) = HomDb(N)(CN , (CN [k])∨), the Borel-Moore homology of N,
DX = C∨

X , the dualizing complex ,

respectively. The Yoneda product

Extp
Db(N)

(A1, A2)× Extq
Db(N)

(A2, A3) −→ Extp+q
Db(N)

(A1, A3)

is given by

HomDb(N)(A1, A2[p])×HomDb(N)(A2[p], A3[p+ q]) −→ HomDb(N)(A1, A3[p+ q]),

using the canonical identification HomDb(N)(A2, A3[q]) ∼= HomDb(N)(A2[p], A3[p+ q]).
If f : X → Y is a morphism define

f∗ = derived functor of sheaf theoretic direct image,
f∗ = derived functor of sheaf theoretic inverse image,

f !A = (f∗A∨)∨, for A ∈ Db(Y ), and f!A = (f∗A∨)∨, for A ∈ Db(X).

Then
HomDb(X)(f∗A1, A2) = HomDb(Y )(A1, f∗A2), and
HomDb(X)(A2, f

!A1) = HomDb(Y )(f!A2, A1).

If f : X → Z and g : Y → Z define The base change formula is

X ×Z Y
π2−→ Yyπ1

yg
X

f−→ Z

g!f∗A = (π2)∗π!
1A, for A ∈ Db(X),

where X ×Z Y = {(x, y) ∈ X × Y | f(x) = g(y)}.
The category of perverse sheaves on X is a full subcategory of Db(X) which is abelian. The

simple objects in the category of perverse sheaves are the intersection cohomology complexes

ICφ indexed by pairs φ = (O, χ),

where O is a G-orbit on X and χ is an irreducible local system on X. By ???, the local systems χ
on O can be identified with (some of the) representations of the component group ZG(x)/ZG(x)◦

where x is a point in O. If X is smooth the constant perverse sheaf CX on X is given by

CX
∣∣
Xi

= CXi [dimCXi],

on the irreducible components of X. Since the intersection cohomology complexes ICφ are the
simple objects of the category of perverse sheaves,

Ext0Db(N)(ICφ, ICψ) = C · δφψ and ExtkDb(N)(ICφ, ICψ) = 0, if k > 0.
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2 Dlab-Ringel algebras

Let C and D be rings,

L, a (C,D) bimodule,
R, a (D,C) bimodule

and ε : L⊗D R→ C,

a (C,C) bimodule homomorphism. Define an algebra

A = C ⊕D ⊕ L⊕R⊕R⊗C L

and product determined by the multiplication in C and D, the module structure of R and L
and the additional relations

cr = 0, d` = 0, rd = 0, `c = 0, and (r1 ⊗ `1)(r2 ⊗ `2) = r1 ⊗ ε(`1 ⊗ r2)`2.

Let

eC be the image of the identity of C in A, and

eD be the image of the identity of D in A.

Then, if e = eC then

1 = eC + eD, C = eCAeC , L = eCAeD,
R = eDAeC , D′ = eDAeD,

so that

A =
{(

c `
r d′

) ∣∣∣ c ∈ C, ` ∈ L, r ∈ R, d′ ∈ D′
}

with matrix multiplication. Then

eDAeD = D +R⊗C L is a subring of A, and

R⊗C L is an ideal in eDAeD, and

R⊗C L = eDAeCAeD.

2.1 Structure of Z(ε)

Let
ε : L⊗D R −→ C be a (C,C) bimodule homomorphism.

Let left radical L(ε) and the right radical R(ε) of ε are defined by

L(ε) = {` ∈ L | ε(`⊗ r) ∈ Rad(C), for all r ∈ R},
R(ε) = {r ∈ R | ε(`⊗ r) ∈ Rad(C), for all ` ∈ L},

The map ε is nondegenerate if Rad(C) = 0, L(ε) = 0, and R(ε) = 0. Let

C = C/Rad(C),
L = L/L(ε),
R = R/R(ε),

and
φ : R⊗C L −→ R̄⊗C̄ L̄

r̄ ⊗ ¯̀ 7−→ r ⊗ `
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Then kerϕ is generated by R ⊗C L(ε) and R(ε) ⊗C L, and we have that kerϕ · R ⊆ R(ε) and
L · kerϕ ⊆ L(ε). Then

I = Rad(C) + L(ε) +R(ε) + kerϕ is a nilpotent ideal of A(ε),

and
A(ε)
I
∼= A(ε̄) where the map

ε̄ : L̄⊗D R̄ −→ C̄
`⊗ r 7−→ ¯̀⊗ r̄

is a nondegenerate (C̄, C̄) bimodule homomorphism.
If ε : L ⊗D R → C is nondegenerate and R is a projective C-module then there is a (D,C)

bimodule isomorphism

τ : R
∼−→ L∗

r 7→ λr : L → C
` 7→ ε(`⊗ r)

so that ε = ev ◦ (id⊗ τ)

and
A(ε) ∼= A(evL).

If C,D,L,R are finite dimensional vector spaces over F and D = F then

ε = ε0 ⊕ evP : (L0 ⊕ P ∗)⊗D (R0 ⊕ P ) −→ C,

with P projective and imε0 ⊆ Rad(C).
If ε = ε0 ⊕ evP with P finitely generated and projective then

A(ε)-mod ∼−→ A(ε0)-mod
M 7−→ eM

where e = 1−
∑
i

pi ⊗ αi.

If im ε ⊆ Rad(C) then

Rad(A(ε0)) = I = Rad(C)⊕ Rad(D)⊕ L0 ⊕R0 ⊕R0 ⊗C L0

and
A(ε0)

Rad(A(ε0)
∼=

C

Rad(C)
⊕ D

Rad(D)
.

2.2 The module category of Z(ε)

Let C and D be categories

F : C → D and G : C → D be functors, and F
ε−→G,

a natural transformation. Define a category A with

Objects: (M,V ;
FM GM

V

εM

m n

................................................................................................................................ .................................................................................................... .............. ............................
............................

............................................ ), where M ∈ C, V ∈ D, and m,n ∈ Mor(D),
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Morphisms: (f, g) with f ∈ Mor(C), g ∈ Mor(D) such that

FM GM

V

εM

m n

................................................................................................................................ .................................................................................................... .............. ............................
............................

............................................

FM ′ GM ′

V ′

εM ′

m′ n′

................................................................................................................................ .................................................................................................... .............. ............................
............................

............................................

.......................................................................................................................................................................................................

..............................................................................................................................................................................................................

..................................................................................

...........................................................................

commutes.

A fundamental case is when D is the category of vector spaces over F.
The equivalence between the category A and the module category of Z(ε) is given by letting

C = C-mod and D = D-mod and

F : C −→ D
M 7−→ R⊗C M

and
G : C −→ D

M 7−→ HomC(L,M)

where the D-action on HomC(L,M) is given by

(dφ)(`) = φ(`d), for d ∈ D, ` ∈ L, and φ ∈ HomC(L,M).

Then let ε : F → G be the natural transformation given by

ε : F −→ G
R⊗C M

εM−→ HomC(L,M)

r ⊗m 7−→ τ : L → M
` 7→ ε(`⊗ r)m

Then
A ∼−→ A-mod

(X,Y, ρ, λ) ↔ M
where X = eM, Y = (1− e)M,

and the L-action and R-action on M define ρ and λ via

`y = (λ(y))(`) and rx = ρ(r ⊗ x), for ` ∈ L, r ∈ R, x ∈ X and y ∈ Y .

Note that
`x = 0 and ry = 0, for ` ∈ L, r ∈ R, x ∈ X, y ∈ Y ,

and
R⊗C X = FX GX = HomC(L,X)

Y

εX

ρ λ

................................................................................................................................ .................................................................................................... .............. ............................
............................

............................................

commutes.
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2.3 Macpherson-Vilonen

Let X be a Thom-Mather stratified space with a fixed stratification such that all strata have
even codimension. Let

P (X) be the category of perverse sheaves on X.

Let S be a closed stratum such that S is contractible and let

ι : X − S ↪→ X,

be the inclusion. Let

j : L−K ↪→ L, where
L = the link of S
∪|
K = perverse link of S, a closed subset of L.

Let
F : P (X − S) −→ {vector spaces}

P 7−→ H−d−1(K;P )

and
G : P (X − S) −→ {vector spaces}

P 7−→ H−d(L,K;P ) = H−d(L, j!P |L−K),

Let A be the corresponding category as in the previous section. Then the map

P (X) ∼−→ A

Q 7−→

Q|X−S , H−d−1(K,Q) H−d(L,K;Q)

H−d(D,K;Q)

εX

ρ λ

................................................................................................................................ .................................................................................................... .............. ............................
............................

............................................


is an equivalence of categories, where Q

∣∣
X−S = ι∗Q, and εQ is the coboundary homomorphism

in the long exact sequence for the pair L,K. What is D????

2.3.1 Examples

(1) The flag variety.

(2) The nilpotent cone.

3 Quasihereditary algebras

Let F be a field. A separable algebra over F is an algebra A such that

A

Rad(A)
∼=
⊕
λ

∈ ÂMdλ(F).

Two algebras A and B are Morita equivalent if Mod-A is equivalent to Mod-B (Check this in
Gelfand-Manin).
A ring A is semiprimary if there is a nilpotent ideal Rad(A) such that A/Rad(A) is semisimple
artinian. Note: If A is finite dimensional then A is semiprimary.
A hereditary ring is a ring A such that every submodule of a projective module is projective.
A heredity ideal is an ideal J such that
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(a) J is projective as a right A-module,

(b) J2 = J , and

(c) JRad(A)J = 0.

Note: J2 = J if and only if there is an idempotent e ∈ A with J = AeA.
A quasihereditary ring is a semiprimary ring A with a chain of ideals

0 = J0 ⊆ J1 ⊆ · · · ⊆ Jm = A such that
J`
J`−1

is a heredity ideal of
A

J`−1

for each 1 ≤ ` ≤ m− 1.

Theorem 3.1. Let A be a quasihereditary algebra,

0 = J0 ⊆ J1 ⊆ · · · ⊆ Jm = A.

Let e be a indempotent in A such that

Jm−1 = AeA and eA(1− e) ⊆ Rad(A).

Let
C = eAe and D =

A

AeA
=

A

Jm−1

and
CLD = eA(1− e) and DRC = (1− e)Ae

and let
ε : L⊗D R −→ C

`⊗ r 7−→ `r

Assume D is a separable k-algebra. Then

(a) D + (1− e)AeA(1− e) = (1− e)A(1− e),

(b) A = C(ε),

(c) C is qusihereditary with heredity chain

0 = I0 ⊆ · · · ⊆ Im−1 = C, where I` = eJ`e.

3.1 Highest weight categories

Let A be a finite dimensional algebra and let Â be an index set for

L(λ), the simple A-modules.

Let P (λ) be the projective cover of L(λ), and
I(λ) the injective hull of L(λ).

Let ≤ be a partial order on Â.

Let ∇(λ) be the largest subobject of I(λ) with composition factors L(µ) with µ ≤ λ,
∆(λ) be the largest quotient of P (λ) with composition factors L(µ) with µ ≤ λ,

12



Then A = A-mod is a highest weight category if P (λ) has a filtration

0 = P (λ)(m) ⊆ · · · ⊆ P (λ)(1) ⊆ P (λ),

with
P (λ)
P (λ)(1)

∼= ∆(λ) and
P (λ)(k)

P (λ)(k+1)
∼= ∆(µ), with µ < λ,

for 1 ≤ k ≤ m− 1.

Theorem 3.2. Highest weight categories satisfy BGG-reciprocity,

[I(λ) : ∇(µ)] = [∆(µ) : L(λ)].

Proof. Since

Ext1(∆(λ),∇(µ)) = 0 and Hom(∆(λ),∇(µ)) =

{
End(L(µ)), if λ = µ,
0, if λ 6= µ,

it follows that

Hom(∆(λ),M) = (number of of ∇(λ) in a ∇-filtration of M).

Thus

[I(µ) : ∇(λ)] =
dim

(
Hom(∆(λ), I(µ))

)
dim

(
End( L(λ))

) = [∆(λ) : L(µ)].

How does this proof compare to the proof for convolution algebras in Chriss and Ginzburg?

Examples of highest weight categories
(1)G = G(F), A the category of finite dimensional rationalG-modules, and∇(λ) = H0(G/B,Lλ),
(2) A the category O, and ∇(λ) = M(λ)∨.

Vogan, Irreducible characters of semisimple Lie groups II; The Kazhdan-Lusztig conjectures

Pyw =
∑
i

qidim(Ext`(w)−`(y)−2i(My, Lw)), for y ≤ w.

Theorem 3.3. Let A be a finite dimensional algebra and let A = A-mod. The A is a highest
weight category if and only if A is a quasihereditary algebra.

Proof. ⇒: Assume A is a highest weight category. Let λ be a maximal weight and let

P (λ) = Aeλ and JAeλA.

Then J is projective as a left A-module,

HomA(J,A/J) = 0, J · Rad(J) = 0.

So J is a heredity ideal. Finally, (A/J)-mod is a highest weight category with (̂A/J) = Â−{λ}.
⇐: Assume A is a quasihereditary algebra,

0 = J0 ⊆ J1 ⊆ · · · ⊆ Jm = A.

13



Define λ < µ if

L(λ) appears in
Ji/Ji−1

Rad(Ji/Ji−1)
and L(µ) appears in

Jj/Jj−1

Rad(Jj/Jj−1)
,

with i < j. Suppose i is (the unique integer) such that L(λ) appears in (Ji/Ji−1)/((Rad(Ji/Ji−1))
and let

∆(λ) be the projective cover of L(λ), as an A/Ji−1 module.

Then L(λ) is the simple head of A(λ) and, since Ji−1 ·Rad(A/Ji−1) · Ji−1 = 0, all other compo-
sition factors of A(λ) are lower.

If L(λ) is a simple A-module then there is an idempotent eλ ∈ A such that P (λ) = Aeλ (eλ
is a minimal idempotent). Then

0 = J0eλ ⊆ J1eλ ⊆ · · · ⊆ Jmeλ = Aeλ = P (λ)

is a good filtration of P (λ).

3.2 Duals and Projectives

Let L be a C-module and let
Z = EndC(L)

so that L is a (C,Z) bimodule. The dual module to L is the (Z,C) bimodule

L∗ = HomC(L,C).

The evaluation map is the (C,C) bimodule homomorphism

ev : L⊗Z L∗ −→ C
`⊗ λ 7−→ λ(`)

and the centralizer map is the (Z,Z) bimodule homomorphism

ξ : L∗ ⊗C L −→ Z

λ⊗ ` 7−→ zλ,` : L → L
m 7→ λ(m)`

Recall that [Bou, Alg. II §4.2 Cor.]

(a) L is a projective C-module if and only if 1 ∈ im ξ,

(b) If L is a projective C-module then ξ is injective,

(c) If L is a finitely generated projective C-module then ξ is bijective,

(d) If L is a finitely generated free module then

ξ−1(z) =
∑
i

b∗i ⊗ z(bi),

where {b1, . . . , bd} is a basis of L and {b∗1, . . . , b∗d} is the dual basis in M∗.

Statement (a) says that L is projective if and only if there exist bi ∈ L and b∗i ∈ L∗ such that

if ` ∈ L then ` =
∑
i

b∗i (`)bi, so that ξ
(∑

i

b∗i ⊗ bi
)

= 1.
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4 Cellular algebras

A cellular algebra is an algebra A with

a basis {aλST | λ ∈ Â, S, T ∈ Âλ}
an involutive antihomomrphism ∗ : A→ A, and

a partial order ≤ on Â

such that

(a) (aλST )∗ = aλTS ,

(b) If A(< λ) = span-{aµST | µ < λ}

then
aaλST =

∑
Q∈Âλ

Aλ(a)QTaλQT mod A(< λ), for all a ∈ A.

Applying the involution ∗ to (b) and using (a) gives that

aλTSa
∗ =

∑
Q∈Âλ

Aλ(a)QSaλTQ mod A(< λ), for all a ∈ A.

The concept of a cellular algebra is not really the “right” one. The “right” one comes from
the structure of a convolution algebra whenever the decomposition theorem holds [CG, 8.6.9].

5 Peter Webb’s generalized reciprocity

Let o be a complete discrete valuation ring, k = o/p its residue field and let oA be an algebra
over o,

k ←− o −→ K
kA ←− oA −→ KA

Theorem 5.1. The diagram
K0(KA) cA−→ G0(KA)xe=Dt yD
K0(kA) cλ−→ G0(kA)

commutes, where e is defined by lifting idempotents. Furthermore e = Dt.

Proof. If P is projective, U any finitely generated module, put

〈P,U〉 = dimHom(P,U).

This is well defined on K0(KA)×G0(KA) and K0(kA)×G0(kA). Then

e(P ) = K⊗o P̂ , where k ⊗o P̂ = P.

Lemma 5.2. Let U0 be a o-form of U and let P be projective. Then HomoA(P̂ , U0) is an o-lattice
in HomKA(K⊗o P̂ , U) and the morphism HomoA(P̂ , U0)→ Hom

kA(P,U0/pU0) is reduction mod
p.
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Corollary 5.3.

dimHomKA(K ⊗o P̂ , U) = rankoHomoA(P̂ , U0) = dimHom
kA(P,U0/pU0).

This shows that e and D are the transpose of each other with respect to the forms. The
diagram commutes from the definition of e.

Corollary 5.4. The Cartan matrix

C
kA = DCKAD

t

where CKA is the Cartan matrix of A.

If KA is semisimple then CKA = id.

6 The category O
Let U be a Z graded algebra with

(a) U0 reductive,

(b) Ui finite dimensional,

(c) U semisimple under the adjoint action.

The category O is the category of Z graded U modules which are

(a) U0 semisimple, and

(b) U≥0 locally finite.

Define
O≤n = {M ∈ O | Mi = 0 if i > n}.

6.1 Standard and costandard modules

Let Û0 be an index set for the finite dimensional Z-graded U0 modules. The Verma module or
standard module and the coVerma module or costandard module are given by

∆(λ) = U ⊗U≥0
Uλ0 and ∇(λ) = HomU≤0

(U,Uλ0 ), for λ ∈ Û0.

Let M ∈ O. A ∆-flag for M is an increasng filtration

0 = M (0) ⊆M (1) ⊆M (2) ⊆ · · · such that M =
⋃
i

M (i),

and, for each i ≥ 1, M (i)/M (i−1) ∼= ∆(λ(i)) for some λ(i) ∈ Û0.

Proposition 6.1. (a) ∆(λ) has simple head L(λ).

(b) ∇(λ) has simple socle L(λ).

(c) {L(λ) | λ ∈ Û0} are the simple objects in O.

Proposition 6.2. (a) ∆(λ) is the projective cover of L(λ) in O≤|λ|.
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(b) ∇(λ) is the injective hull of L(λ) in O≤|λ|.

(c) HomO(∆(µ),∇(λ)) =

{
0, if λ 6= µ,
C, if λ = µ.

(d) Ext1O(∆(µ),∇(λ)) = 0.

6.2 Projectives

If K =
⊕
Ki is a Z graded U≥0 module define

τ≤n =
K⊕
i>nKi

=
⊕
i≤n

Ki.

If λ ∈ Û0 define
Q = U ⊗U≥0

τ≤n(U≥0 ⊗U0 U
λ
0 ),

and let P≤n(λ) be an indecomposable summand of Q which has L(λ) as a quotient and define
Km,n, for m ≥ n by the exact sequence

0 −→ Km,n −→ P≤m(λ) −→ P≤n(λ) −→ 0.

Proposition 6.3. (a) Q is projective and Q→ L(λ)→ 0.

(b) P≤n(λ) is a projective cover of L(λ) in O≤n.

(c) P≤n(λ) has a ∆ flag.

(d) Km,n has a ∆ flag.

(e) L(λ) has a projective cover in P (λ) in O if and only if the projective system P≤m(λ) →
P≤n(λ) stabilizes, in which case

P (λ) ∼= P≤n(λ), for n >> 0.

6.3 Injective module

6.4 Tilting modules

Let λ ∈ Û0. A tilting module is a module that has both a ∆ flag and a nabla flag.
There is a unique indecomposable tilting module T (λ) of highest weight λ.

6.5 Blocks

Define ≥ on Û0 by

µ ≥ λ if [∆(µ) : L(λ)] 6= 0 or [∇(µ) : L(λ)] 6= 0.

Let [λ] denote the equivalence class of λ with respect to the equivalence relation generated by
≥. Define

O[λ] = {M ∈ O | if [M : L(µ)] 6= 0 then µ ∈ [λ]},
and for M ∈ O define

M [λ] = U
(∑

im
(
P≤n(λ)

ϕ−→M
))
,

the submodule of M generated by the images of morphisms ϕ : P≤n(λ)→M .
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Theorem 6.4.
O =

⊕
O[λ] and M =

⊕
M [λ], for M ∈ O.

6.6 Multiplicities

Let A be an abelian category and let L be simple. Let m ∈ A The multiplicity of L in M is

[M : L] = sup
F

Card{i | FiM/Fi+1M ∼= L},

where the supremum is over all (finite) filtrations of M .

If 0→M ′ →M →M ′′ → 0 is exact then [M : L] = [M ′ : L] + [M ′′ : L].

If M ∈ O≤n and N ∈ O with a ∆-flag then

[M : L(λ)] = dimHomO(P≤n(λ),M) and [N : ∆(µ)] = dimHom(N,∇(µ)).

Thus
[P≤n(λ) : ∆(µ)] = [∇(µ) : L(λ)], for λ, µ ∈ Û0 and n ≥ max{|λ|, |µ|}.

7 The category Oint

Start with U = U<0U0U>0.

Oint = {M ∈ U −mod | M ∈ U ss
0 ,M ∈ U

nilp
>0 ,M ∈ U

nilp
<0 }.

8 Finite dimensional algebras

Let A be a finite dimensional algebra.
The projective indecomposables are Ae for a minimal idempotent e of A.
The simples L(λ) are the simple heads of the projective indecomposables P (λ).
The blocks are Az for a minimal central idempotent z of A.
The Cartan matrix is

[P (λ) : L(µ)].

9 Temperley-Lieb algebras

9.1 Computation of the εγσ

The quantum dimensions of the finite dimensional simple Uqsl2 modules are

dimq(L(k − 2j)) =
∏

b∈(k−j)

[2 + c(b)]
[h(b)]

=
k−j−1∏
i=0

[2 + i]
[k − j − i]

= [k − j + 1] = [dim(L(k − 2j))].

As a (Uqsl2, TLk(n)) bimodule

V ⊗k ∼=
b k

2
c∑

j=0

L(k − 2j)⊗ TL(k−j,j)
k .
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Thus

trq(b) =
b k

2
c∑

j=0

dimq(L(k − 2j))χ(k−j,j)
TLk

(b), for b ∈ TLk(n),

and
trq
(
aZX
σ

)
= δZXdimq(L(σ)) and trq

(
bZX
σ µ
γ

)
= δZX

σ µ
dimq(L(γ)).

If a ∈ A then

trq(aek) = trq(a)trq(ek) = ntrq(a), and so

trq(ε1(b)) =
1
n

trq(ε1(b)ek) =
1
n

trq(ekbek) =
1
n

trq(be2k)

= trq(bek) = trq(b(Tk − q)) = (z − q)trq(b) =
(
q2

n
− q
)

trq(b) =
1
n

trq(b).

So
1
ndimq(L(γ)) = 1

ntrq
(
bZX
σ µ
γ

)
= trq

(
ε1

(
bZX
σ µ
γ

))
= trq

(
εγσaZX

σ

)
= εγσdimq(L(σ))

Thus
εγσ =

[dim(L(γ))]
n · [dim(L(σ))]

. (9.1)

9.2 Generators and relations

The Temperley-Lieb algebra, CTk(n), is the algebra over C given by generators E1, E2, ..., Ek−1

and relations
EiEj = EjEi, if |i− j| > 1,
EiEi±1Ei = Ei, and
E2
i = nEi.

If

[2] = q + q−1 = n then q =
1
2

(n+
√
n2 − 4), q−1 =

1
2

(n−
√

(n2 − 4),

since q2 − nq + 1 = 0. Then

[k] =
qk − q−k

q − q−1
=

1
2k−1

(k+1)/2∑
m=1

(
k

2m− 1

)
nk−2m+1(n2 − 4)m−1.

The problem with this expression is that it is not clear that [k] is a polynomial in n with integer
coefficients (which alternate in sign?).

The Iwahori-Hecke algebra Hk(q) is the algebra over C with generators T1, T2, ..., Tk − 1 and
relations

TiTj = TjTi, if |i− j| > 1,
TiTi±1Ti = Ti+1TiTi+1, if 2 ≤ i ≤ k − 1,
T 2
i = (q − q−1)Ti + 1.

There is a surjective algebra homomorphism

ϕ : Hk(q) −→ Tk(n) given by ϕ(Ti) = Ei − q−1 and ϕ(q + q−1) = n.
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with
kerϕ = 〈TiTi+1Ti + TiTi+1 + Ti+1Ti + Ti + Ti+1 + 1〉

Composing with the surjective homomorphism

H̃k(q) −→ Hk(q)
Xεi 7−→ Ti−1 · · ·T2T

1
1 T2 · · ·Ti−1

Ti 7−→ Ti

9.3 Murphy elements

Let us write

Ti = Ei − q−1, so that Xε1 = 1, and Xεi = Ti−1X
εi−1Ti−1

in the Temperley-Lieb algebra. Then define m1, . . . ,mk by

m1 = 0 and (q − q−1)mj = qi−2Xεi)− qi−4Xεi−1 for 2 ≤ i ≤ k.

Soling for Xεi in terms of the mi gives

Xεi = (q − q−1)(q−(i−2)mi + q−(i−2+1)mi−1 + · · ·+ q−(2i−4)m2) + q−2(i−1),

from which one obtains

q(k−2)(Xε1 +Xε2 + · · ·+Xεk)− q[k] = (q − q−1)(mk + [2]mk−1 + · · ·+ [k − 1]m2).

Using the definition of Xεi and substituting for Xεi−1 in terms of the mi gives

(q − q−1)mi = qi−2Xεi − qi−4Xεi−1

= qi−2(Ei−1 − q−1)Xεi−1(Ei−1 − q−1)− qi−4Xεi−1

= qi−2Ei−1X
εi−1Ei−1 − qi−3(Ei−1X

εi−1 +Xεi−1Ei−1)

= qi−2Ei−1

(
(q − q−1)(q−(i−3)mi + q−(i−3+1)mi−1 + · · ·+ q−(2i−6)m2) + q−2(i−2)

)
Ei−1

− qi−3Ei−1

(
(q − q−1)(q−(i−3)mi + q−(i−3+1)mi−1 + · · ·+ q−(2i−6)m2) + q−2(i−2)

)
− qi−3

(
(q − q−1)(q−(i−3)mi + q−(i−3+1)mi−1 + · · ·+ q−(2i−6)m2) + q−2(i−2)

)
Ei−1

= qi−2(q − q−1)q−(i−3)Ei−1mi−1Ei−1 − qi−3(q − q−1)q−(i−3)(Ei−1mi−1 +mi−1Ei−1)

+ qi−2(q + q−1)Ei−1

(
(q − q−1)(q−(i−3+1)mi−1 + · · ·+ q−(2i−6)m2) + q−2(i−2)

)
− 2qi−3Ei−1

(
(q − q−1)(q−(i−3+1)mi−1 + · · ·+ q−(2i−6)m2) + q−2(i−2)

)
= qi−2(q − q−1)q−(i−3)Ei−1mi−1Ei−1 − qi−3(q − q−1)q−(i−3)(Ei−1mi−1 +mi−1Ei−1)

+ qi−2(q − q−1)Ei−1

(
(q − q−1)(q−(i−3+1)mi−1 + · · ·+ q−(2i−6)m2) + q−2(i−2)

)
since Ei−1 commutes with m2,m3, . . . ,mi−1. Thus

mi = q−(i−2)Ei−1 + qEi−1mi−1Ei−1 − (Ei−1mi−1 +mi−1Ei−1)

+ (q − q−1)(mi−2 + q−1mi−3 + q−2mi−4 + · · ·+ q−(i−4)m2)Ei−1.

It seems to me that this formula provides the easiest way to compute mi in terms of the Es. I
would not be too worried about the coefficients of E1E4 and E2E4 in m4 looking strange. One
expects diagrams that are equal to their own flip to act a bit differently in mk. Note also that

[3]− 1 =
[4]
[2]

and [3] + 1 = [2]2,
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so these are pretty nice q-versions of 2. Let’s have a look at m6 and see if we can get an induction
going. It might help to categorize the terms according to what their flip is to see where the next
level is coming from.

For n such that CTk(n) is semisimple, the simple Tk(n) are indexed by partitions in the set

T̂k = {λ ` k | λ has at most two columns}.

The irreducible CTk(n) modules have seminormal basis

{vT | T is a standard tableau of shape λ}

and
XεivT = q2c(T (i))vT .

Since c(T (i)) = c(T (i − 1)) − 1 if the boxes T (i) and T (i − 1) are in the same column and
c(T (i)) + c(T (i − 1)) = 3 − i if the boxes T (i) and T (i − 1) are in different columns it follows
that

mivT =
qi−2q2c(T (i)) − qi−4)q2c(T (i−1))

q − q−1
= cT (i)vT ,

where

cT (i) =

{
0, if T (i) and T (i− 1) are in the same column,
[i− 2 + 2c(T (i))], if T (i) and T (i− 1) are in different columns.

Now we want to define pseudomatrix units in CTk(n) according to the left and right eigenspaces
of the mi. Let

pST ∈ LS ∩RT ,

normalized so that the coefficients are in Z[n] with greatest common divisor 1. Then

pST pUV = γT δUV pSV ,

pST =
∑
S+,T+

cS+T+pS+T+ ,

pST ekpUV = βT−δT−U−pS+V + ,

ek+1pST ek+1 = εS+T+δS(k)T (k)pST ek+1

9.4 Examples

Let’s start with generic n. Here

eST =
[a]
[b]
eS−U−Ek−1eU−T−.

Then
Ek =

∑ [b]
[a]
eST and mk =

∑
µk(S)eSS .

whee the first sum is over all pairs (S, T ) such that S = T or S and T only differ at the k − 1st
level.

In CT2(n) let (
p12,12

p1
2
,1
2

)
=

(
[2]e12,12

[2]e1
2
,1
2

)
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In CT3(n) let 
p1 2
3

,1 2
3

p1 2
3

,1 3
2

p1 3
2

,1 2
3

p1 3
2

,1 3
2

p1
2
3

,1
2
3

 =


[2]e1 2

3
,1 2
3

[3][2]e1 2
3

,1 3
2

[2]e1 3
2

,1 2
3

[3][2]e1 3
2

,1 3
2

[3]e1
2
3

,1
2
3


In CT4(n) let

p1 2
3 4

,1 2
3 4

p1 2
3 4

,1 3
2 4

p1 3
2 4

,1 2
3 4

p1 3
2 4

,1 3
2 4

p1 2
3
3

,1 2
3
3

p1 2
3
3

,1 3
2
2

p1 2
3
3

,1 4
2
2

p1 3
2
2

,1 2
3
3

p1 3
2
2

,1 3
2
2

p1 3
2
2

,1 4
2
2

p1 4
2
2

,1 2
3
3

p1 4
2
2

,1 3
2
2

p1 4
2
2

,1 4
2
2

p1
2
3
4

,1
2
3
4



=



[2]2e1 2
3 4

,1 2
3 4

[2]2e1 2
3 4

,1 3
2 4

[2]2e1 3
2 4

,1 2
3 4

[2]2e1 3
2 4

,1 3
2 4

[3][2]2e1 2
3
3

,1 2
3
3

[3][2]2e1 2
3
3

,1 3
2
2

[3][2]2e1 2
3
3

,1 4
2
2

[3][2]2e1 3
2
2

,1 2
3
3

[3][2]2e1 3
2
2

,1 3
2
2

[3][2]2e1 3
2
2

,1 4
2
2

[3][2]2e1 4
2
2

,1 2
3
3

[3][2]2e1 4
2
2

,1 3
2
2

[3][2]2e1 4
2
2

,1 4
2
2

[4][3][2]e1
2
3
4

,1
2
3
4



The special value n = ±
√

2, i.e. when [4] = 0.

Then
p1 4
2
2

,1 4
2

3 = p1
2
3
4

,1
2
3
4

and we let p
(2)
1 4
2
2

,1 4
2
2

= 1− e1 2
3

,1 2
3
.

In this basis

Rad(CT4) = span



0 0
0 0

0 0 1
0 0 1
1 1 1

0

 and Rad2(CT4) = span



0 0
0 0

0 0 0
0 0 0
0 0 1

0



CT1 =
{(
a
)}

=
{(

a
a

)}
=


a 0

0 a
a
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and

CT2 =
{(

a1

a2

)}
=


a1 0

0 a2

a2


and

CT3 =


a11 a12

a21 a22

a3

 =





a11 a12

a21 a22

a11 a12 0
a21 a22 0
0 0 a3

a3




The special value n = ±1, i.e. when [3] = 0

Then
p1 3
2

,1 3
2

= p1
2
3

,1
2
3

and we let p
(2)
1 3
2

,1 3
2

= 1− e1 2
3

,1 2
3
.

In this basis

Rad(CT3) = span

0 1
1 1

0

 and Rad2(CT3) = span

0 0
1 0

0


Then

E1 =

1 0
0 0

0

 , E2 =

1 1
1 1

0

 , 1 =

1 0
0 0

1

 ,

m2 =

1 0
0 0

0

 , m3 =

−1 0
0 1

0

 .

CT1 =
{(

a
a

)}
=


a 0

0 0
a


and

CT2 =
{(

a1

a2

)}
=


a1 0

0 0
a2


The special value n = 0, i.e. when [2] = 0.

Then
p12,12 = −p1

2
,1
2

and we let p
(2)
12,12 = 1.

In the basis (
p12,12

p
(2)
12,12

)
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e1 =
(

1
0

)
, m2 =

(
1

0

)
, and Rad(CT2) = span

(
1

0

)
With respect to this basis there is a new matrix

E =

(
e2p

2
12,12e2 e2p12,12p

(2)
12,12e2

e2p
(2)
12,12p12,12e2 e2(p(2)

12,12)2e2

)
=
(
n 1
1 n

)
=
(

0 1
1 0

)
,

which is not diagonal. In CT3 the basis elements
p
(2)
1 2
3

,1 2
3

p1 2
3

,1 3
2

p
(2)
1 3
2

,1 2
3

p
(2)
1 3
2

,1 3
2

p1
2
3

,1
2
3

 =


p12,12e2p

(2)
12,12 p

(2)
12,12e2p

(2)
12,12

p12,12e2p12,12 p12,12e2p
(2)
12,12

1− p(2)
1 2
3

,1 2
3

− p(2)
1 3
2

,1 3
2


form a set of matrix units. In this basis

E1 =

0 1
0 0

0

 , E2 =

0 0
1 0

0

 , 1 =

1 0
0 1

1

 ,

m2 =

0 1
0 0

0

 , m3 =

−1 0
0 −1

0

 ,

CT1 =
{(
a
)}

=
{(

0
a

)}
. =


a 0

0 a
a


and

CT2 =
{(

a2

a1

)}
=


a1 a2

0 a1

a1

 .
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