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1 Convolution algebras

1.1 The decomposition theorem

Let M be a smooth G-variety and let N be a G-variety with finitely many G-orbits such that
the orbit decomposition is an algebraic stratification of IV,

N:|_| Gz, and w: M — N
%)

is a G-equivariant projective morphism. Let Cj; be the constant perverse sheaf on M. The
decomposition theorem [CG, 8.4.12] says that

wly = @ L) @ICNi=@ LN ®IC?,  where LX) = D L(), i),
1E€EL )\EM iE€EZ
A=(p,x)EM

1« is the derived functor of sheaf theoretic direct image, A runs over the indexes of the intersec-
tion cohomology complexes IC*, L()) are finite dimensional vector spaces, and = indicates an
equality up to shifts in the derived category.

1.2 Convolution algebras

Let u: M — N be a proper map. The convolution algebra is

keZ

The decomposition theorem for u.Cps induces a decomposition of A. Since the intersection
cohomology complexes ICy are the simple objects in the category of perverse sheaves,

Ext%b(N)(IC”\, IC*) = 6,,C, and Ext’gb(m(m, ICH) =0, for k € Zy,
and the decomposition of A simplifies to

A= @ EndeLOV)P | P ( P HomC(L(A),L(u))®Ext’]§b(N)(IC’A,IC“))

AeM k€Zso X\ peM



In this context there is a good theory of projective, standard and simple modules, and their
decomposition matrices satisfy a BGG reciprocity. View elements of A as sums

Z Z c;‘)’é?aj‘)“Q where cj‘;“Q €C, and a;‘)’b € @Ext%b(N)(IC’)‘,IC“).
Ab PEL(N),QeL(w) k>0

The algebra A is completely controlled by the dimensions of the L(\) and the multiplication in
Apasic = Ext*(IC,IC)  where  IC = 1C*.
xeM
an algebra which has all one dimensional simple modules. The radical filtration of A is
Rad‘(4) = @D Home(L(\), L(n) ® ( P Exthyy, (ICY, IC#))
)\,/LGM kEZZZ

and the nonzero
L(\) are the simple A-modules.

1.3 Projective modules

Let e* be a minimal idempotent in @, End(L(x)). Then

P(\) = Ae* = LA D | € L(w) @ Extly oy, (IC*, ICY)
k>0

is the projective cover of the simple A-module L(\). Define an A-module filtration
P()\) D p()\)(l) > p()\)(Q) D...

by
PO = @D L) ® Bxthy, ) (IC*, ICY).

k>m
m

Then
L)) = P()\)/P()\)(l) and gr(P()\)) is a semisimple A-module.

Thus the multiplicity of the simple A-module L(x) in a composition series of P()\) is

[P(V) : L(p)] = dim (Ext*(ICo x, [Coy ) = Y dim(Extfy, o (IC*, IC)).
k>0

1.4 Standard and costandard modules

Let A = (¢, x);
z € 0%, and let iz: {x} — N De the injection.

Then i;u*c ar is the stalk of u.Chs at x and the Yoneda product makes

A? = H*(i%,Cpr) = Hompp 4 (C, i psCas [%]) = Hom po ) ((ia 1 C[—+], 1xCar),  and
VP = H*(i3Cy) = H*({a}, g pCar) = Hompy () (D, i pCar [¥]) = Hom oy ()1 C—+], 114Cir ),
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into right A-modules. The action of an element a € Ext*(11.Cpr, p1+Car) = Hom po(ny (1Cor s p15Cor [K])
sends

H*({z},ipnCar) — H**({a}, ipaCar).

A G-equivariant local system is a G-equivariant locally constant sheaf. The orbit O¥ can
be identified with G/G, where G, is the stabilizer of z. mo(0%,z) = G, /G, where G is the
connected component of the identity in G). There is a homomorphism 7; (0%, x) — mo(0%, ) =
G;/GS and the representations of 71 (0%, x) on the fibers £, of G-equivariant local systems £
are exactly the pullbacks of finite dimensional representations of C' = G, /G5 to (0%, z). In
this way the irreducible G-equivariant local systems on Q¥ can be indexed by (some of the)
irreducible representations of G,/G% [CG, Lemma 8.4.11]. There is an action of C' = G;/GS on
A% which commutes with the action of A. Similar arguments apply to V¥. As (A, C') bimodules,

A¥ = @ Alp,x) ®x and V¥ = @ Ve, x) ® X,
xeC xeC

and the standard and costandard A-modules are
AN =A(p,x) and V(A =V(p,x).
Using the decomposition theorem

A(N) = H*(inCo)y = @D L(p) © H (i, 101y,

keZ
n

where the subscript y denotes the y-isotypic component. Define a filtration

AN DANY DANP Do by =P P L) @ 7 (i, 1C),.

jzm ¢

Then A(N)™) is an A-module and gr(A()))) is a semisimple A-module. This (and a similar
argument for V()A)) show that the multiplicity of the simple A-module L(u) in composition
series of A(A) and V(\) are

AN : L] = Y dim(H*IC%),)  and  [V(N): L(p)] = 3 dim(H*@51CH),).
k k

Define the standard KL-polynomial and the costandard KL-polynomial of A to be

Pg(t) =Y tFdim(H* (i, IC*),)  and Py, (t) =Y tFdim(H"(i31CH),),

k k

”w

respectively. Then 777 says that
[AN) : L(w)] = P(1)  and  [V(A): L(w)] = P}, (1).

These identities are analogues of the original Kazhdan-Lusztig conjecture describing the multi-
plicities of simple g-modules in Verma modules.



1.5 The contravariant form

Note that there is a canonical homomorphism
AN)2V(N)
coming from applying the functor H* to the composition
(1)1 (i) psCt — psCs — (i) (i) *115Car s

where the two maps arise from the canonical adjoint functor maps. Use the map c) to define a
bilinear form on A(\) by

() AN AN — C
m1 ® msy — mq N C)\(mz)
Then
L(X) = A(A)/Rad((, ).
1.6 Contragradient modules

There is an involutive antiautomorphism ‘: A — A on A (coming from switching the two factors
in Z=M xy M). If M is an A-module the contragredient module is

M* = Homc (M, C) with (a)(m) = (a'(m)), forac A, € M*, and m € M.

Then

1.7 Reciprocity
If A= (¢, p) define

dw-f—d(p-‘rk’

dy = dimc(0%), and assume that Ext ), )

(IC®,IC%) =0, for all odd k.



[P(\) : L(p)] = ; dimExt},, , (IC*, IC*)
- Z dimExt), v (10, 1C7)

= Z kdlmExtdA—gd)—Fk(IC)‘ Ic*)

!
= (—1)%T N "X (0,igICY ®@igICy)
(©)

L)dertes Z X ( )% > [Hip(ICY) : aJa é(—l)dw > Hlig(ICy) - m)
a,k B,L
ZX<@ZHkZ© 1Cy) : 04@2 bin(ICy) : ]ﬁ)
0,a,8
= > dimH* (i, ICy) (Z (0,0 & ﬂ)) 3 dimH (i41Cy)
aB k (0) ¢

= Z M., Ly (Z x(0,a* ® ﬂ)) M : Ly
(0}

= me DopPyp(1)
= (PDPt)wa

where

1) the third equality follows from the vanishing of Ext groups in odd degrees,

(1)
(2) x denotes the Euler characteristic,
(3) P is the matrix (Pyo(1)), and

(4)

4) D is the matrix (D o x(0,a* ® 3)).

This identity is the “BGG reciprocity” for the algebra A.

1.8 The Steinberg variety
Let x € N and define
Z=MxyM={(mi,me) € M x M | u(mq) = pu(mz)} and M, = p(z).

There are commutative diagrams

Z=MxyM - MxM M, — M
l/ﬁlz lmXuz and lu lu
N=Nr 2 NxN (zr} = N



which (via base change) provide isomorphisms

H.(Z) = Homppz,,)(Cz,,, (Czy, %))
= Hom ps(7,,) (152CN ' Cay xary [ma + ma) [—+])
= Hom () (Ch, (1112) %' Chty xay [ma + ma — %)
= Hom po(ny (Civ, A (11 % pi2)w(Car, B Cagy) [y + ma — #])
|

= Hompo(ny (Civ, A'((11)«Cosy W (p12)+Caiz ) [ma + mag — #])
= Ethé&n;2_*((M1)*CM1; (12)+Chry )

H.(M) = Hompy(pz,)(Car,, (Car, [¥])) = Homps ) (1 Cay, (¢*Car)[#])Y)
= Hom pi (41 (Cay, 1 (¢ Car[2m]) [=#]) = Hompo o) (Ciays i ptuCar[m — #])
=H""" (Z;M*CM),
and
H*(My) = Hompy(ar, ) (Car, s Car, [¥]) = Hompo g,y (11" Cay, Ca, [#])
= Hom po((4})(Cyay, 1 Cors, [¥]) = Hompo(141) (Ciay, pue"Cos [4])

= Hom ps((4})(Cray, ipChr[#]) = Hompe 121 (Cyay, ippiCaa [* — m])
= H" " (izpCumr).

1.9 The category D’(N)
The category Comp®(Sh(N)) is the cateogry of all finite complexes

A=0—-AT™ A7 oo Anh A" ), m,n € Zsso,

of sheaves on N with morphisms being morphisms of complexes which commute with the dif-
ferentials. The jth cohomology sheaf of A is

_ ker(A7 — AT

H(4) (AT A

A morphism in Comp?(Sh(N)) is a quasi-isomorphism if it induces isomorphisms on cohomology.
The category D?(Sh(N)) is the category Comp®(Sh(N)) with additional morphisms obtained
by formally inverting all quasi-isomorphisms.
Assume that N is a G-variety with a finite number of orbits such that the G-orbit decom-
position
N = |_| (04 is an algebraic stratification of X.
©

A constructible sheaf is a sheaf that is locally constant on strata of N. A constructible complex
is a complex such that all of its cohomology sheaves are constructible.

The derived category of bounded constructible complexes of sheaves on N is the full subcate-
gory DP(N) of DP(Sh(IN)) consisting of constructible complexes. Full means that the morphisms
in D*(N) are the same as those in D°(Sh(N)).

The shift functor [i]: D*(N) — DY(N) is the functor that shifts all complexes by 4.



The Verdier duality functor V: D*(N) — DP(N) is defined by requiring
Hom pe vy (A1, A[i]) = Hom pi ) (A (A1 KA [—i], Cn[2dime N]), for all i € Z, where
A: N — N x N is the diagonal map.
The Verdier duality functor satisfies the properties
(A\/)V = A, (A[’LD\/ = Av[—i], and HOIDDb(N) (Al,AQ) = HOHlDb(N) (A\Q/,A\l/)
Define
EthDb(X)(Al,AQ) = Home )(Al,AQ[ ])
HF(A) = HF¥(X,A) = Home(X)((CX,A[k:]), the hypercohomology of A € D*(N),
HE(N) = Home(N)((CN,(CN[ D, the cohomology of N,
Hy(N) = Homps(ny (Cn, (Cn[E])Y), the Borel-Moore homology of N,
Dx = CY, the dualizing complex,
respectively. The Yoneda product

EXtIl))b (Al, Ag) X EX‘C%

) (Az, Ag) — ExtPh? (A1, As)

P(N) ()
is given by
Hom pb 3y (A1, A2[p]) x Hom sy (Az2[p], As[p + g]) — Hompy(ny (A1, Aslp + q]),
using the canonical identification Hom ps (A2, As[g]) = Homps ) (A2[p], Aslp + q]).
If f: X — Y is a morphism define
f« = derived functor of sheaf theoretic direct image,

f* = derived functor of sheaf theoretic inverse image,

flfA=(frAY)Y, for Ae DY), and  fid = (f.AY)Y, for A € D’(X).

Then
Hompy(x)(f*A1, A2) = Homps(y) (41, f<A2),  and

Hom pyp X)(Ag,f A1) = Hompe(y(fid2, A1).
If f: X - Z and g: Y — Z define The base change formula is
XxzY =Y
J(m lg gfiA = (m)um A, for A€ D(X),
x Lz
where X xzY ={(z,y) e X xY | f(z) =g(y)}.

The category of perverse sheaves on X is a full subcategory of D?(X) which is abelian. The
simple objects in the category of perverse sheaves are the intersection cohomology complezes

I1C, indexed by pairs o= (0,x),
where O is a G-orbit on X and Y is an irreducible local system on X. By 777, the local systems x

on O can be identified with (some of the) representations of the component group Zg(x)/Zg(x)°
where x is a point in Q. If X is smooth the constant perverse sheaf Cx on X is given by

CX‘XZ- = Cx, [dimc X;],

on the irreducible components of X. Since the intersection cohomology complexes ICy are the
simple objects of the category of perverse sheaves,

Exthny(ICs, ICy) = C- 04y and  Extiy, (104, ICy) =0, if k> 0.



2 Dlab-Ringel algebras
Let C and D be rings,

L, a (C, D) bimodule,

R, a(D,C) bimodule 4 e l@pR—=C

a (C,C) bimodule homomorphism. Define an algebra
A=Co®D®LO®R®R®c L

and product determined by the multiplication in C' and D, the module structure of R and L
and the additional relations

cr=0, d=0, rd=0, lec=0, and (1 ®0)(re®¥y)=r1®c(l; rg)ls.
Let
ec be the image of the identity of C' in A, and
ep be the image of the identity of D in A.
Then, if e = ec then

1=ec+ep, C =ecAec, L = ecAep,
R = epAec, D' = epAep,

so that
A= {(j 5,) ] cec,eeL,reR,d’eD’}
with matrix multiplication. Then
epAep = D+ R®c¢ L is a subring of A, and

R ®c L is an ideal in ep Aep, and

R®c L =epAecAep.

2.1 Structure of Z(¢)

Let
e:Lep R—C be a (C,C) bimodule homomorphism.

Let left radical L(e) and the right radical R(g) of € are defined by

L(e) ={teL]|e(f{®r)eRad(C), for all r € R},
R(e) ={reR|c(l®r)ecRad(C), for all ¢ € L},

The map ¢ is nondegenerate if Rad(C) =0, L(e) = 0, and R(¢) = 0. Let

C = C/Rad(C), ' _—
L=1/L), e -
R = R/R(e), " '



Then ker ¢ is generated by R ®¢ L(¢) and R(¢) ®¢ L, and we have that ker o - R C R(e) and
L -kerp C L(e). Then

I =Rad(C) + L(e) + R(e) + ker ¢ is a nilpotent ideal of A(e),

and

= A(g) where the map & =

is a nondegenerate (C, C') bimodule homomorphism.
If e: L®p R — C is nondegenerate and R is a projective C-module then there is a (D, ()
bimodule isomorphism

i R Lx
i L — C so that e=evo(id®T)
T —
{ — E(@@T)

and
A(e) = Alevy).

If C, D, L, R are finite dimensional vector spaces over F and D = T then
e=¢gy@evp: (Lo® P*)®p (Ry®d P) — C,

with P projective and imeg C Rad(C).
If e = g9 @ evp with P finitely generated and projective then

A(e)-mod — A(ep)-mod _ @
iy . oM where 6—1—2191@%-

If ime C Rad(C) then
Rad(A(€o)) =1= Rad(C’) D Rad(D) @ Ly ® Ry ® Ry ®¢c Lo

and
A(Eo) C D

~

Rad(A(zy) Rad(C) ~ Rad(D)’

2.2 The module category of Z(¢)
Let C and D be categories

F:C—D and G:C—7D befunctors, and F-5G,

a natural transformation. Define a category A with

EM
FM —— GM
Objects: (M, V; \ / ), where M € C, V € D, and m,n € Mor(D),

m n

v



Morphisms: (f,g) with f € Mor(C), g € Mor(D) such that

EM
FM —— GM

m n
V

commutes.

Y
FM —> GM'

m\l/z

A fundamental case is when D is the category of vector spaces over F.
The equivalence between the category A and the module category of Z(¢) is given by letting
C = C-mod and D = D-mod and

F: C — D and G: C —
M — R@cM & M +— Home(L, M)

where the D-action on Homg (L, M) is given by
(do)(¢) = ¢(bd), forde D, ¢ € L, and ¢ € Home (L, M).

Then let £: FF — G be the natural transformation given by

e: F — G
ReocM 24 Home (L, M)

7: L — M

rem. { — e(l@r)m

Then N
A —  A-mod

(X.Y.p,\) o v where X=eM, Y=(1-eM,

and the L-action and R-action on M define p and X via

ly = (M) () and re = p(r® ), forteL,re R,zre XandyeY.

Note that
lxr=0 and ry=0, forteL,reRizeX,yeY,
and ex
R®c X =FX —— GX =Hom¢(L, X)
p\ /;\
Y
cominutes.
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2.3 Macpherson-Vilonen

Let X be a Thom-Mather stratified space with a fixed stratification such that all strata have
even codimension. Let

P(X) be the category of perverse sheaves on X.
Let S be a closed stratum such that S is contractible and let
t: X —85 =X,
be the inclusion. Let

L = the link of S
j: L—K— L, where Ul
K = perverse link of S, a closed subset of L.

Let

F: P(X-S) — {vector spaces}

P —  HYK;P)
and
G: PX-85) — {vector spaces}

P — H YLK P)=H %L jPlr-K),

Let A be the corresponding category as in the previous section. Then the map
P(X) == A

H-\(K, Q) ——— H4(L, K; Q)
P A
H 4D, K; Q)

Q +— |Qlx-s,

is an equivalence of categories, where Q‘ v_g = t"Q, and £q is the coboundary homomorphism
in the long exact sequence for the pair L, K. What is D?777

2.3.1 Examples

(1) The flag variety.
(2) The nilpotent cone.

3 Quasihereditary algebras

Let F be a field. A separable algebra over F is an algebra A such that

A -~ A
Rad () = @ e AMy, (F).

Two algebras A and B are Morita equivalent if Mod-A is equivalent to Mod-B (Check this in
Gelfand-Manin).

A ring A is semiprimary if there is a nilpotent ideal Rad(A) such that A/Rad(A) is semisimple
artinian. Note: If A is finite dimensional then A is semiprimary.

A hereditary ring is a ring A such that every submodule of a projective module is projective.
A heredity ideal is an ideal J such that

11



(a) J is projective as a right A-module,
(b) J?=J, and
(c) JRad(A)J = 0.
Note: J2 = J if and only if there is an idempotent e € A with J = AeA.

A quasihereditary ring is a semiprimary ring A with a chain of ideals

J,
0O=JCcSJhC---CJ,=4 such that J—Z is a heredity ideal of
-1

foreach 1 </¢<m-—1.
Theorem 3.1. Let A be a quasihereditary algebra,
0= ChC---CJ,=A
Let e be a indempotent in A such that
Im—1 = AeA and eA(1 —e) C Rad(A).

Let

A A
C =eAe and Aed T
and
cLp =eA(l —e) and pRc = (1—e)Ae
and let

e: L®pR — C
fQr +—— fr

Assume D is a separable k-algebra. Then
(a) D+ (1 —e)AeA(l —e)=(1—e)A(l —¢),
(b) A=C(e),
(¢c) C is qusihereditary with heredity chain

0=hC---Cly1=C, where I, = eJye.

3.1 Highest weight categories

Let A be a finite dimensional algebra and let A be an index set for

L(A), the simple A-modules.

Let P(A) be the projective cover of L()), and
I(X) the injective hull of L(A).

Let < be a partial order on A.

Let V(A) be the largest subobject of I(\) with composition factors L(u) with p < A,

be the largest quotient of P(\) with composition factors L(u) with p < A,

12



Then A = A-mod is a highest weight category if P(\) has a filtration

0=PN)™ C-..Cc PYD C PN,

with
P( /\)(k)

I

Ap), with p <A,
for 1 <k<m-—1.

Theorem 3.2. Highest weight categories satisfy BGG-reciprocity,

Proof. Since

Ext'(A(\),V(p)) =0 and  Hom(A(N),V(n)) = 0. £

it follows that
Hom(A(M), M) = (number of of V(A) in a V-filtration of M).

Thus
_ dim(Hom(A()x), I(N)))

) = VO = = L)

How does this proof compare to the proof for convolution algebras in Chriss and Ginzburg? [

=[AM) : L(p)]-

Ezamples of highest weight categories
(1) G = G(F), A the category of finite dimensional rational G-modules, and V(\) = HY(G/B, L)),
(2) A the category O, and V(\) = M(\)V.

Vogan, Irreducible characters of semisimple Lie groups II; The Kazhdan-Lusztig conjectures
Py, = Z qidim(Eth(“’)_e(y)_%(My, L)), for y < w.

7

Theorem 3.3. Let A be a finite dimensional algebra and let A = A-mod. The A is a highest
weight category if and only if A is a quasihereditary algebra.

Proof. =: Assume A is a highest weight category. Let A\ be a maximal weight and let
P(X\) = Aey and JAeyA.
Then J is projective as a left A-module,
Homyu(J,A/J) =0, J-Rad(J) = 0.

So J is a heredity ideal. Finally, (A/J)-mod is a highest weight category with (A//?) =A-{\}.

<: Assume A is a quasihereditary algebra,

O0=JpC LS Cn=A

13



Define A < p if

Ji) Ji—1
Rad(Ji/Jl;l)

Jj/Jj—1
Rad(J;/Jj-1)’

with i < j. Suppose i is (the unique integer) such that L(\) appearsin (J;/J;—1)/((Rad(J;/Ji—1))
and let

L()\) appears in and L(p) appears in

A()N) be the projective cover of L(\), as an A/J;—; module.

Then L(A) is the simple head of A()\) and, since J;_1 - Rad(A/J;—1) - Ji—1 = 0, all other compo-
sition factors of A(\) are lower.

If L(A) is a simple A-module then there is an idempotent ey € A such that P(\) = Aey (ex
is a minimal idempotent). Then

0= Joex C Jiex C -+ C Jpex = Aey = P(N)

is a good filtration of P(\). O

3.2 Duals and Projectives

Let L be a C-module and let
Z = End¢(L)

so that L is a (C, Z) bimodule. The dual module to L is the (Z,C) bimodule
L* = Hom¢ (L, C).
The evaluation map is the (C,C') bimodule homomorphism

ev: L®zL* — C
X +— A0

and the centralizer map is the (Z, Z) bimodule homomorphism

(& L"®cL — A
e Loo— L
ARt — m +—  A(m){

Recall that [Bou, Alg. II §4.2 Cor.]
(a) L is a projective C-module if and only if 1 € im¢&,
(b) If L is a projective C-module then ¢ is injective,
(¢) If L is a finitely generated projective C-module then & is bijective,
)

(d) If L is a finitely generated free module then
§71(2) = Db @ 2(by),

where {b1,...,bq} is a basis of L and {b7,...,b}} is the dual basis in M*.

Statement (a) says that L is projective if and only if there exist b; € L and b € L* such that

ifleL them (=Y b0 sothat €( Y b @bi) =1.

14



4 Cellular algebras

A cellular algebra is an algebra A with

a basis {adr | N € A, ST e AN}
an involutive antihomomrphism T A— A, and
a partial order <on A

such that
(a) (agr)* = aps,
(b) If A(< ) = span-{algp | p < A}

then
aady = Z AN QTaQT mod A(< M), for all a € A.

QeAX

Applying the involution * to (b) and using (a) gives that
ayga* Z AN QSGTQ mod A(< M), for all a € A.
QeAX

The concept of a cellular algebra is not really the “right” one. The “right” one comes from
the structure of a convolution algebra whenever the decomposition theorem holds [CG, 8.6.9].

5 Peter Webb’s generalized reciprocity

Let 0 be a complete discrete valuation ring, k = o/p its residue field and let ,A be an algebra

over o,
k «— o — K

A — A — KA

Theorem 5.1. The diagram .
KO(KA) —A> GO(KA)

Te:Dt lD
Ko(xrA) 25 Go(rA)

commutes, where e is defined by lifting idempotents. Furthermore e = D'.

Proof. If P is projective, U any finitely generated module, put
(P,U) = dimHom(P,U).
This is well defined on Ky(gA) x Go(xA) and Ko(xA) x Go(xA). Then
e(P)=K®, P, where k®,P=P.

Lemma 5.2. Let Uy be a o-form of U and let P be projective. Then Hom, A(P,Uy) is an o-lattice
in Hom, 4 (K ®, P,U) and the morphism Hom, 4 (P,Uy) — Hom, 4(P, Up/pUp) is reduction mod

p.

15



Corollary 5.3.
dimHom, (K ®, P,U) = rank,Hom, 4(P, Up) = dimHom, 4(P, Uy /pUp).

This shows that e and D are the transpose of each other with respect to the forms. The
diagram commutes from the definition of e. O

Corollary 5.4. The Cartan matrix
Coa= DCKADt
where Cy 4 is the Cartan matriz of A.

If g A is semisimple then C, 4 = id.

6 The category O

Let U be a Z graded algebra with
(a) Up reductive,
(b) U finite dimensional,
(¢) U semisimple under the adjoint action.
The category O is the category of Z graded U modules which are
(a) Uy semisimple, and
(b) Usg locally finite.
Define
O<pn={MecO|M=0ifi>n}.

6.1 Standard and costandard modules

Let Uy be an index set for the finite dimensional Z-graded Uy modules. The Verma module or
standard module and the coVerma module or costandard module are given by

AN =U®u, Uy and  V(\) =Homy_,(U,U3),  for A e Up.
Let M € O. A A-flag for M is an increasng filtration

0=MPc MDD cmMB ... suchthat M=|JMD,

and, for each i > 1, M@ /M =1 = A(XD) for some AD € U.
Proposition 6.1. (a) A(\) has simple head L()).

(b) V(X) has simple socle L(\).

(¢c) {L(\) | A€ Uy} are the simple objects in O.

Proposition 6.2. (a) A()) is the projective cover of L(A) in O<|y|-

16



(b) V(A) is the injective hull of L(\) in O<)y|-

0, fAF#p,

(¢) Homo(A(p), V(A)) = {@ if A= p.

(d) Exto(A(u), V(X)) = 0.

6.2 Projectives
If K =@ K, is a Z graded Us( module define
K
-@r.

T<n =
®i>n K; i<n

If A € Uy define
Q = U ®us, T<n(U0 @1, Up),

and let P<,(\) be an indecomposable summand of () which has L()) as a quotient and define
K, for m > n by the exact sequence

0 — Kimpn — P<n(X) — P<p(A) — 0.
Proposition 6.3. (a) Q is projective and @@ — L(\) — 0.
(b) P<n(X) is a projective cover of L(X) in O<y,.
(¢) P<p(\) has a A flag.
(d) Kppn has a A flag.

(e) L(X\) has a projective cover in P(X) in O if and only if the projective system P<p(\) —
P, (\) stabilizes, in which case

P(X) = P<p(N), forn >> 0.

6.3 Injective module
6.4 Tilting modules
Let A e Up. A tilting module is a module that has both a A flag and a nabla flag.
There is a unique indecomposable tilting module T'(\) of highest weight .
6.5 Blocks
Define > on Uy by
p=A i (AW L A0 or [V(u): L] £0.

Let [\] denote the equivalence class of A with respect to the equivalence relation generated by
>. Define
ON = {M € O |if [M: L()] # 0 then p € [A]},

and for M € O define
M — 0 (i (Pen(3)-501)).

the submodule of M generated by the images of morphisms ¢: P<y () — M.
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Theorem 6.4.
O:@OP‘] and M:@MP‘], for M € O.

6.6 Multiplicities
Let A be an abelian category and let L be simple. Let m € A The multiplicity of L in M is

[M : L] =sup Card{i | F;M/F;;-1M = L},
F

where the supremum is over all (finite) filtrations of M.
If 0-M —M-—M"—0 isexact then [M:L]=[M":L]+[M":L].
If M € O<y, and N € O with a A-flag then
[M : L(\)] = dimHomo (P<n(X), M) and [N : A(p)] = dimHom(N, V().

Thus
[P<n(N) : A(w)] = [V(n) : LN)],  for A, € U and n > max{|Al, [}

7 The category O,
Start with U = UqUgUsg.

Ot = {M € U —mod | M € U, M € U™", M € U%P}.

8 Finite dimensional algebras

Let A be a finite dimensional algebra.
The projective indecomposables are Ae for a minimal idempotent e of A.
The simples L(\) are the simple heads of the projective indecomposables P(\).
The blocks are Az for a minimal central idempotent z of A.
The Cartan matriz is

[P(A) = L(p)].

9 Temperley-Lieb algebras

9.1 Computation of the &)
The quantum dimensions of the finite dimensional simple Uslo modules are

k—j—1
dimg(L(k — 2j)) = H 2+ c(b H 2+ = [k —j + 1] = [dim(L(k — 25))].

beloi) [h(b)] o —J—1

As a (Uysly, TLk(n)) bimodule

5]
Ve 2= N Lk — 2j) @ TLY ).
j=0

[NIE
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Thus
L5

trg(b) = Y dimg(L(k — 2j))xy7 7 (b),  for b e TLy(n),
j=0

and

trg(azx) = 6zxdimg(L(0)) and trg (bZ)/f> = (5Z)/fdimq(L('y)).
gl

If a € A then
try(aer) = try(a)try(er) = ntry(a), and so

try(e1(B)) = %trq(el(b)ek) _ %trq(ekbek) _ %trq(bez)

q2

—try(ben) = 071~ ) = (= = ery ) = (= ) 1, (6) = ey 0.

So
Ldim,(L(y)) = Ltr, <b§§) = tr, (51 (b%)) = try(cJazx) = eJdimy(L(0))
[dim(L(v))]

= o (L ()] ©-1)

Thus

9.2 Generators and relations

The Temperley-Lieb algebra, CTy(n), is the algebra over C given by generators Fy, Eo, ..., Ex_1
and relations

EZ'Ej = EjEi, if |Z —j| > 1,
EiFEin By = E;, and
E? =nE,.

If
1 1
2l=q¢+q¢'=n then ng(”—FM)a ¢ l==(n—(n2-4),

since ¢> —ng+1=0. Then

i _k (k+1)/2
¢ -qg” 1 Z k k—2m+1,, 2 m—1
k] = q—q ' 21 <2m1)" (n" =4y
m=1

The problem with this expression is that it is not clear that [k] is a polynomial in n with integer
coefficients (which alternate in sign?).
The Iwahori-Hecke algebra Hy(q) is the algebra over C with generators 11,715, ..., T — 1 and
relations
I;T; = 1515, if i — j[ > 1,
LiTinTs = TiiTiTiy, i£2<i<k-—1,
T} =(q—q Ti+1.

There is a surjective algebra homomorphism

¢: Hi(q) — Ti(n)  givenby  @(T;)=E;—q¢ ' and ¢(g+q ') =n.
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with
ker o = (I;Ti1 T + TiTiq + T Ty + T + Tiq + 1)

Composing with the surjective homomorphism

Hi(q) — Hy(q)
X& s Tpq--- T2T11T2 Ty
i — T;

9.3 Murphy elements
Let us write
T, =E; —q !, sothat X' =1, and X% =T, 1 X 'T; 4
in the Temperley-Lieb algebra. Then define myq,..., my by
my =0 and (g — qil)mj = qif2X“) — ¢ TiXE 1 for2<i<k.
Soling for X*¢ in terms of the m; gives
X% =(q—q g Pmi+q T mg 44 B my) g0,
from which one obtains
gF (X + X2 4o+ X) — glk] = (g — ¢ ) (mp + [2mpy + -+ + [k — 1]my).
Using the definition of X¢ and substituting for X%-1 in terms of the m; gives
(q—q )ym; = ¢ 2X" — g xEi
=q¢ (B —q )X (Bioy —q ') — ¢ iXE
= ¢ B X B — ¢ (B XT T 4+ XOE )
=¢ B ((g— @ Tmi+ ¢ 3 miy o+ @ )+ 2 B
_ qi_3Ei71((q Y my 4 g3 D 4 @) q—2(i—2))
— (=N TImi+ ¢TIy 4+ 7O my) + 2 B
=¢ q—q e IE_imi B — ¢ g — ¢ g T (EBisimisy + mis1Eiq)
+¢ 2+ a7 MNE 1 (@ — a7 (@ 3 W mg 4+ 4+ g7 my) 4 ¢ 202)
—2¢ B 1 ((g— )@ mi g 4 - g7 my) 4 ¢72072)
=¢ q—q e VE_imi B — ¢ g — g T (EBisimis + mis1Biy)
+qi2(g — qil)Ei_1((q (@ Dy @) q72(i72))
since F;_1 commutes with mo, ms,...,m;_1. Thus
mi =q By + qEioimi1 By — (Eimymi—y + mi—1Ei_1)
+ (=g Dmica +q ' miss + ¢ P mig 4+ ¢ T Ymg) By

It seems to me that this formula provides the easiest way to compute m; in terms of the Es. 1

would not be too worried about the coefficients of E1FE4 and EsF, in my looking strange. One

expects diagrams that are equal to their own flip to act a bit differently in mx. Note also that
[4]

[3}—1:m and [3]+1=[2]",
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so these are pretty nice g-versions of 2. Let’s have a look at mg and see if we can get an induction
going. It might help to categorize the terms according to what their flip is to see where the next
level is coming from.

For n such that CTy(n) is semisimple, the simple T} (n) are indexed by partitions in the set

Tr = {\F k | X has at most two columns}.
The irreducible CTj(n) modules have seminormal basis
{vr | T is a standard tableau of shape A}

and
XCipp = q2c(T(i)),UT.

Since ¢(T'(i)) = ¢(T'(i — 1)) — 1 if the boxes T'(i) and T'(i — 1) are in the same column and
c(T(i)) + c(T(i — 1)) = 3 — i if the boxes T'(i) and T'(: — 1) are in different columns it follows
that

e T0) i g2eT-)
m;vr = 1 = CT(Z)UTa
qa—4q
where
@) 0, if T(i) and T'(i — 1) are in the same column,
cr(i) =
g [i —2+2¢(T(3))], if T(:) and T(i — 1) are in different columns.

Now we want to define pseudomatrix units in CTj(n) according to the left and right eigenspaces
of the m;. Let
pst € Ls N R,

normalized so that the coefficients are in Z[n] with greatest common divisor 1. Then

PSTPUV = YTOUVPSV,

bst = Z CS+T+PS+T+;
S+, 17+

psrexpuv = Br-0r-y-ps+v+,
Ek-+1PSTER+1 = ES+T+05(k)T(k)PSTCk+1

9.4 Examples

Let’s start with generic n. Here
a
e€sT = [[b]]eS—U—Ek‘—leU—T'

Then o
Ep=)Y_ a7 and  mp =Y pp(S)ess.

[a

whee the first sum is over all pairs (S, 7T) such that S =T or S and T only differ at the k — 1st

level.
B [2]e12,12
i ey

In CTy(n) let
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and

aq 0
en-{( ) -

a
and
( (a1 ar
az a2
aii a2 an a0
CIz = as ag2 = 0
as a a2
0 0 as
\ as
The special value n = £1, i.e. when [3] =0
Then
2
P13,13=D1,1 and we let Pg ;)),,1 s=l—ejo12
2 2 22 2 2 3
33
In this basis
01 0 0
Rad(CT3) =span |1 1 and Rad?(CT3) =span |1 0
0
Then
1 0 11 1 0
Ei=[0 0 L B=|11 . 1=[0 0
0 0 1
10 -1 0
mg=|(0 0 , ms=10 1
0 0
a a 0
en-{ J)-{:
a
a
and
a al 0
u-{( )-{(5
a2
a2
The special value n = 0, i.e. when [2] = 0.
Then
2
P12,12 = —P1, and we let p§2)712 = 1.

In the basis

P12,12
(2)
Pi12.12
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e = (1 0) , mo = <1 0) , and Rad(CT3) = span (1 O>

With respect to this basis there is a new matrix

2
&= €2ptp 1262 62p12712p§2),1262 = (” 1) N <O 1)
= . : _ _ |
62p§2)712p12,1262 62(p§2{12)262 1 n 1 0

which is not diagonal. In CT3 the basis elements

(2)
p D12, 2 2 2
1;’1 2 :}; 37 p12,12€2p§2),12 pgz),12€2pg2),12
2
P1312 P% 3,% 3 = | P12,12€2P12,12 p12,12622?§2)712
(2) (2)
P11 L—pi210—Pi313
22 373 2 2
33
form a set of matrix units. In this basis
0 1 0 0 10
Ei=10 0 , Ey;y=11 0 , 1=(0 1 ,
0 0 1
0 1 -1 0
mo = 0 0 y m3 = 0 -1 5
0 0

and
ap ag
CTQ = {<a2 >} = 0 al .
a1
ai
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