The affine Hecke algebra

Arun Ram
Department of Mathematics
University of Wisconsin
Madison, WI 53706
ram@math.wisc.edu

1 The affine Hecke algebra

1.1 The alcove walk algebra

Fix notations for the Weyl group W, the extended affine Weyl group \widetilde{W} , and their action on $\Omega \times \mathfrak{h}_{\mathbb{R}}^*$ as in Section 2. Label the walls of the alcoves so that the fundamental alcove has walls labeled $0, 1, \ldots, n$ and the labeling is \widetilde{W} -equivariant (see the picture in (2.12)).

The periodic orientation is the orientation of the walls of the alcoves given by

setting the positive side of
$$H_{\alpha,j}$$
 to be $\{x \in \mathfrak{h}_{\mathbb{R}}^* \mid \langle x, \alpha^{\vee} \rangle > j\}.$ (1.1)

This is an orientation of the walls of the alcoves such that if \triangle is an alcove and $\lambda \in P$ then

the walls of $\lambda + \triangle$ have the same orientation as the walls of \triangle .

Let \mathbb{K} be a field. Use the notations for elements of Ω as in (2.10). The alcove walk algebra is the algebra over \mathbb{K} given by generators $g \in \Omega$ and

positive i-crossing negative i-crossing positive i-fold negative i-fold

with relations (straightening laws)

$$-\stackrel{i}{\longrightarrow} = -\stackrel{i}{\longrightarrow} + -\stackrel{i}{\longrightarrow}$$
 and
$$-\stackrel{i}{\longrightarrow} + = -\stackrel{i}{\longrightarrow} + -\stackrel{i}{\longrightarrow} +$$
 (1.2)

and

$$g\left(\begin{array}{c} i \\ - \end{array} \right) = \left(\begin{array}{c} g(i) \\ - \end{array} \right) + g, \qquad g\left(\begin{array}{c} i \\ - \end{array} \right) + \left(\begin{array}{c} g(i) \\ - \end{array} \right) + g,$$

$$g\left(\begin{array}{c} i \\ - \end{array} \right) + \left(\begin{array}{c} g(i) \\ - \end{array} \right) + g, \qquad g\left(\begin{array}{c} i \\ - \end{array} \right) + \left(\begin{array}{c} g(i) \\ - \end{array} \right) + g.$$

Viewing the product as concatenation each word in the generators can be represented as a sequence of arrows, with the first arrow having its head or its tail in the fundamental alcove. An *alcove walk* is a word in the generators such that,

- (a) the tail of the first step is in the fundamental alcove A,
- (b) at every step, the head of each arrow is in the same alcove as the tail of the next arrow.

The type of a walk p is the sequence of labels on the arrows. Note that, if $w \in \widetilde{W}$ then

$$\ell(w) = \text{length of a minimal length walk from } A \text{ to } wA.$$
 (1.3)

For example, in type C_2 ,

is an alcove walk p of type (1, 2, 0, 1, 0, 2, 1, 2, 1, 0, 1, 2) with two folds. Using the notation

$$c_i^+$$
 for a positive *i*-crossing, f_i^+ for a positive *i*-fold, c_i^- for a negative *i*-crossing, f_i^- for a negative *i*-fold, (1.4)

the walk in the picture is $c_1^-c_2^-c_0^+c_1^-f_0^+c_2^+c_1^+c_2^+f_1^-c_0^+c_1^+c_2^+.$

The proof of the following lemma is straightforward following the scheme indicated by the example which follows.

Lemma 1.1. The set of alcove walks is a basis of the alcove walk algebra.

For example, in type C_2 , a product of the generators which is not a walk is

$$c_1^-c_2^+c_0^+c_1^-f_0^-c_2^+c_1^-c_2^+f_1^-c_0^+c_1^+c_2^-,\\$$

but, by first applying relations $f_i^{\mp} = -f_i^{\pm}$ and then working left to right applying the relations $c_i^{\pm} = c_i^{\mp} + f_i^{\pm}$, gives

$$\begin{split} c_1^-c_2^+c_0^+c_1^-f_0^-c_2^+c_1^-c_2^+f_1^-c_0^+c_1^+c_2^- &= -(c_1^-c_2^+c_0^+c_1^-f_0^+c_2^+c_1^-c_2^+f_1^-c_0^+c_1^+c_2^-) \\ &= -(c_1^-(c_2^-+f_2^+)c_0^+c_1^-f_0^+c_2^+f_1^-c_0^+f_1^+c_2^-) \\ &= -(c_1^-(c_2^-+f_2^+)c_0^+c_1^-f_0^+c_2^+(c_1^++f_1^-)c_2^+f_1^-c_0^+c_1^+c_2^-) \\ &= -\left(c_1^-(c_2^-+f_2^+)c_0^+c_1^-f_0^+c_2^+(c_1^++f_1^-)c_2^+f_1^-c_0^+c_1^+(c_2^++f_2^-)\right) \end{split}$$

and every term in the expansion of this expression is an alcove walk.

1.2 The affine Hecke algebra

Fix an invertible element $q \in \mathbb{K}$. The affine Hecke algebra \tilde{H} is the quotient of the alcove walk algebra by the relations

and

$$p = p'$$
 if p and p' are nonfolded walks with $end(p) = end(p')$, (1.5)

where $\operatorname{end}(p)$ is the final alcove of p. Conceptually, the affine Hecke algebra only remembers the ending alcove of a walk (and some information about the folds) and forgets how it got to its destination.

For $w \in W$ and $\lambda \in P$ define elements

 $T_{w^{-1}}^{-1}=$ (image in \tilde{H} of a minimal length alcove walk from A to wA), $X^{\lambda}=$ (image in \tilde{H} of a minimal length alcove walk from A to $t_{\lambda}A$).

The following proposition shows that the alcove walk definition of the affine Hecke algebra coincides with the standard definition by generators and relations (see [IM] and [Lu]). A consequence of the proposition is that

the finite Hecke algebra,
$$H = \operatorname{span}\{T_{w^{-1}}^{-1} \mid w \in W\}, \text{ and}$$

the Laurent polynomial ring, $\mathbb{K}[P] = \operatorname{span}\{X^{\lambda} \mid \lambda \in P\},$ (1.6)

are subalgebras of \tilde{H} .

Proposition 1.2. Let $g \in \Omega$, $\lambda, \mu \in P$, $w \in W$ and $1 \le i \le n$. Let φ be the element of R^+ such that $H_{\alpha_0} = H_{\varphi,1}$ is the wall of A which is not a wall of C and let s_{φ} be the reflection in H_{φ} . Let w_0 be the longest element of W. The following identities hold in \tilde{H} .

(a)
$$X^{\lambda}X^{\mu} = X^{\lambda+\mu} = X^{\mu}X^{\lambda}$$
.

(b)
$$T_{s_i} T_w = \begin{cases} T_{s_i w}, & \text{if } \ell(s_i w) > \ell(w), \\ T_{s_i w} + (q - q^{-1}) T_w, & \text{if } \ell(s_i w) < \ell(w). \end{cases}$$

(c) If
$$\langle \lambda, \alpha_i^{\vee} \rangle = 0$$
 then $T_{s_i} X^{\lambda} = X^{\lambda} T_{s_i}$.

(d) If
$$\langle \lambda, \alpha_i^{\vee} \rangle = 1$$
 then $T_{s_i} X^{s_i \lambda} T_{s_i} = X^{\lambda}$.

(e)
$$T_{s_i} X^{\lambda} = X^{s_i \lambda} T_{s_i} + (q - q^{-1}) \frac{X^{\lambda} - X^{s_i \lambda}}{1 - X^{-\alpha_i}}$$
.

$$(f) T_{s_0} T_{s_{\varphi}} = X^{\varphi}.$$

(g) $X^{\omega_i} = gT_{w_0w_i}$, where the action of g on A sends the origin to ω_i and w_i is the longest element of the stabilizer W_{ω_i} of ω_i in W.

Proof. Use notations for alcove walks as in (3.4).

(a) If p_{λ} is a minimal length walk from A to $t_{\lambda}A$ and p_{μ} is a minimal length walk from from A to $t_{\mu}A$ then

 $p_{\lambda}p_{\mu}$ and $p_{\mu}p_{\lambda}$ are both nonfolded walks from A to $t_{\lambda+\mu}A$.

Thus the images of $p_{\lambda}p_{\mu}$ and $p_{\mu}p_{\lambda}$ are equal in \tilde{H} .

(b) If $\ell(ws_i) > \ell(w)$ and p_w is a minimal length walk from A to wA then

 $p_{ws_i} = p_w c_i^-$ is a minimal length walk from A to $ws_i A$.

and so $T_{s_iw^{-1}}^{-1} = T_{ws_i^{-1}}^{-1} = T_{w^{-1}}^{-1}T_{s_i}^{-1} = (T_{s_i}T_{w^{-1}})^{-1}$ in \tilde{H} . Taking inverses gives the first result, and the second follows by switching w and ws_i and using the relation $T_{s_i}^{-1} = T_{s_i} - (q - q^{-1})$ which follows from (3.2) and (3.5).

(c) Let p_{λ} be a minimal length alcove walk from A to $t_{\lambda}A$. If $\langle \lambda, \alpha_i^{\vee} \rangle = 0$ then H_{α_i} is a wall of $t_{\lambda}A$ and $s_i\lambda = \lambda$ and

 $c_i^- p_{\lambda} c_i^+$ is a nonfolded walk from A to $t_{\lambda} A$.

Thus $T_{s_i}^{-1}X^{\lambda}T_{s_i}=X^{\lambda}=X^{s_i\lambda}$ in $\tilde{H}.$

(d) Let p_{λ} be a minimal length walk from A to $t_{\lambda}A$. If $\langle \lambda, \alpha_i^{\vee} \rangle = 1$ then there is a minimal length walk from A to $t_{\lambda}A$ of the form $p_{\lambda} = p_{t_{\lambda}s_i}c_i^+$ where $p_{t_{\lambda}s_i}$ is minimal length walk from A to $t_{\lambda}s_iA$. Then

 $c_i^- p_{t_{\lambda} s_i}$ is a minimal length walk from A to $t_{s_i \lambda} A$.

Thus $T_{s_i}^{-1}(X^{\lambda}T_{s_i^{-1}})=X^{s_i\lambda}$ in $\tilde{H}.$

(e) Note that (c) and (d) are special cases of (e). If the statement of (e) holds for λ then, by multiplying on the left by $X^{-s_i\lambda}$ and on the right by $X^{-\lambda}$, it holds for $-\lambda$, If the statement (e) holds for λ and μ then it holds for $\lambda + \mu$ since

$$\begin{split} T_{s_i} X^{\lambda} X^{\mu} &= \left(X^{s_i \lambda} T_{s_i} + (q - q^{-1}) \frac{X^{\lambda} - X^{s_i \lambda}}{1 - X^{-\alpha_i}} \right) X^{\mu} \\ &= X^{s_i \lambda} \left(X^{s_i \mu} T_{s_i} + (q - q^{-1}) \frac{X^{\mu} - X^{s_i \mu}}{1 - X^{-\alpha_i}} \right) + (q - q^{-1}) \left(\frac{X^{\lambda} - X^{s_i \lambda}}{1 - X^{-\alpha_i}} \right) X^{\mu} \\ &= X^{s_i (\lambda + \mu)} T_{s_i} + (q - q^{-1}) \frac{X^{\lambda + \mu} - X^{s_i (\lambda + \mu)}}{1 - X^{-\alpha_i}}. \end{split}$$

Thus, to prove (e) it is sufficient to verify (c) and (d), which has already been done.

(f) Let $p_{s_{\varphi}}$ be a minimal length walk from $s_{\varphi}A$ to A, then

$$p_{\varphi} = c_0^+ p_{s_{\varphi}}$$
 is a minimal length walk from A to $t_{\varphi}A$.

Thus $T_0 T_{s_{\varphi}} = X^{\varphi}$ in \tilde{H} .

(g) If $p_{w_0w_i}$ is a minimal length walk from w_iw_0A to A then

 $p_{\omega_i} = g p_{w_0 w_i}$ is a minimal length walk from A to $t_{\omega_i} A$.

Thus $X^{\omega_i} = gT_{w_0w_i}$ in \tilde{H} . For example, in type C_2 , $w_0 = s_2s_1s_2s_1$ and there is one element g in Ω such that $g \neq 1$ for which $g\omega_2 = 0$ and $w_2 = s_1$ so that $w_0w_2 = s_2s_1s_2$.

The sets

$$\{T_{w^{-1}}^{-1}X^{\lambda}\mid w\in W, \lambda\in P\} \qquad \text{and} \qquad \{X^{\mu}T_{v^{-1}}^{-1}\mid \mu\in P, v\in W\} \tag{1.7}$$

are bases of \tilde{H} . If p is an alcove walk then the weight of p and the final direction of p are

$$\operatorname{wt}(p) \in P \text{ and } \varphi(p) \in W$$
 such that $p \text{ ends in the alcove } \operatorname{wt}(p) + \varphi(p)A.$ (1.8)

Let

$$f^{-}(p) = \text{(number of negative folds of } p),$$

 $f^{+}(p) = \text{(number of positive folds of } p),$ and $f(p) = \text{(total number of folds of } p).$ (1.9)

The following theorem provides a combinatorial formulation of the transition matrix between the bases in (3.7). It is a q-version of the main result of [LP] and an extension of Corollary 6.1 of [Sc].

Theorem 1.3. Use notations as in (3.4). Let $\lambda \in P$ and $w \in W$. Fix a minimal length walk $p_w = c_{i_1}^- c_{i_2}^- \cdots c_{i_r}^-$ from A to wA and a minimal length walk $p_\lambda = c_{j_1}^{\epsilon_1} \cdots c_{j_s}^{\epsilon_s}$ from A to $t_\lambda A$. Then, with notations as in (3.8) and (3.9),

$$T_{w^{-1}}^{-1}X^{\lambda} = \sum_{p} (-1)^{f^{-}(p)} (q-q^{-1})^{f(p)} X^{\operatorname{wt}(p)} T_{\varphi(p)^{-1}}^{-1},$$

where the sum is over all alcove walks $p = c_{i_1}^- \cdots c_{i_r}^- p_{j_1} \cdots p_{j_s}$ such that p_{j_k} is either $c_{j_k}^{\epsilon_k}$, $c_{j_k}^{-\epsilon_k}$ or $f_{j_k}^{\epsilon_k}$.

Proof. The product $p_w p_\lambda = c_{i_1}^- c_{i_2}^- \cdots c_{i_r}^- c_{j_1}^{\epsilon_1} \cdots c_{j_s}^{\epsilon_s}$ may not necessarily be walk, but its straightening produces a sum of walks, and this decomposition gives the formula in the statement. \square

Remark 1.4. The initial direction $\iota(p)$ and the final direction $\varphi(p)$ of an alcove walk p appear naturally in Theorem 3.3. These statistics also appear in the Pieri-Chevalley formula in the K-theory of the flag variety (see [PR], [GR], [Br] and [LP]).

Remark 1.5. In Theorem 3.3, for certain λ the walk p_{λ} may be chosen so that all the terms in the expansion of $T_{w^{-1}}^{-1}X^{\lambda}$ have the same sign. For example, if λ is dominant, then p_{λ} can be taken with all $\epsilon_k = +$, in which case all folds which appear in the straightening of $p_w p_{\lambda}$ will be positive folds and so all terms in the expansion will be positive. If λ is antidominant then p_{λ} can be taken with all $\epsilon_k = -$ and all terms in the expansion will be negative. This fact gives positivity results for products in the cohomology and the K-theory of the flag variety (see [PR], [Br]).

Remark 1.6. The affine Hecke algebra \tilde{H} has basis $\{X^{\lambda}T_{w^{-1}}^{-1} \mid \lambda \in P, w \in W\}$ in bijection with the alcoves in $\Omega \times \mathfrak{h}_{\mathbb{R}}^*$, where $X^{\lambda}T_{w^{-1}}^{-1}$ is the image in \tilde{H} of a minimal length alcove walk from A to the alcove $\lambda + wA$. Changing the orientation of the walls of the alcoves changes the resulting basis in the affine Hecke algebra \tilde{H} . The orientation in (3.1) is the one such that

the most negative point is
$$-\infty \rho$$
, deep in the chamber $w_0 C$. (1.10)

Another standard orientation is where

the most negative point is the center of the fundamental alcove
$$A$$
. (1.11)

Using the orientation of the walls given by (3.11) produces the basis commonly denoted $\{T_w \mid w \in \widetilde{W}\}$ by taking T_w to be the image in \widetilde{H} of a minimal length alcove walk from A to $w^{-1}A$. Since $T_i^{-1} = T_i - (q - q^{-1})$ the transition matrix between the basis $\{X^{\lambda}T_{w^{-1}}^{-1} \mid \lambda \in P, w \in W\}$ and the basis $\{T_w \mid w \in \widetilde{W}\}$ is triangular.