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1 The type GL, affine braid group
There are three equivalent ways of depicting affine braids
(a) As braids in a (slightly thickened) cylinder,
(b) As braids in a (slightly thickened) annulus,

(c) As braids with a flagpole.
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The multiplication is by placing one cylinder on top of another, placing one annulus inside
another, or placing one flagpole braid on top of another. These are equivalent formulations
since an annulus can be made into a cylinder by turning up the edges and a cylindrical braid
can be made into a flagpole braid by putting a flagpole down the middle of the cylinder and
pushing the pole over to the left so that the strings begin and end to its right.

The affine braid group is the group By, formed by the affine braids with & strands. The affine
braid group By, can be presented by generators T}, Tb, ..., T;_; and X*!
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with relations
(a) LTy = Ty, iffi—j| > 1,
(b) T3Ti+1T; = Ti41 T3 Tita, for1<i<k-2,
(c) X' Xo'Th =Th X' Th X1,
(d) XoT; = T; X1, for2<i<k-—1.
For 1 < i < k define
X =T, \T; o---ToZ' X*'Th'Ty---T; 1 = PICTURE. (1.2)

By drawing pictures of the corresponding affine braids it is easy to check that the X all
commute with each other and so X = (X% | 1 < ¢ < k) is an abelian subgroup of By. Let
L = 7F be the free abelian group generated by €1, ...,c,. Then

L={M\e1+ -+ e | \i € Z} and X={X*| xeL} (1.3)

where XA = (Xe1)M(X=2) 2. (X&) for X € L.
For 1 < i < k define

XS =T, Ty g ToyT X T\ Ty --- T, = PICTURE, (1.4)

By drawing pictures of the corresponding affine braids it is easy to check that the X all
commute with each other and so X = (X¢ | 1 < ¢ < k) is an abelian subgroup of Bj. The free
abelian group generated by 1, ..., is ZF and

X ={X*| A€ ZF} where X*=(XS)M(X2) 2. (XEk)M (1.5)

for A = A\jep + - -+ + A\peg in ZF.
Let U be a quasitriangular Hopf algebra Let M and V be U-modules such that the operators
Rarv, Ry and Ryy are well defined. Define R;, 1 <4 <k —1, and R3 in Endy(M ® VEek) by

k—i—1)

Ry =idy ®idP" Y © Ryy @15 and  RZ = (Ryryv Rvar) @idp Y.

Then the braid relations
RiRi+1Ri = E}{ = }g = Ri+1RiRi+l



and

2R 2R = %@ﬁm%m%

imply that there is a well defined map

d: B, — Endy(M @ VEF)
T, R;, 1<i<k-1,
X — R(Q),

which makes M ® V®* into a right B; module. Note that

O(X™) = Rygvei-n v Ry pmgye:

and thus, by (777), the eigenvalues of ®(X°%?) are related to the eigenvalues of the Casimir.

1.1 The B, module M @ V&

Let U be a quasitriangular Hopf algebra. Let M and V be a U-modules such that Rjsy and
Ry are well defined operators. Define R;, 1 <i < k — 1, and R%in Endy, (M ® VEF) by

Ry =idy @1d2" Y @ Ryy @id2* Y and R} = (Ruv Rvar) @id2¢ Y.
Proposition 1.1. The map defined by

®: Bp — Endy,o(M V)
T, +— R;, 1<i<k-1,
X R3,

makes M ® V& into a right B;, module.

Proof. 1t is necessary to show that
(a) RiR; = RjR;, if [i — 4| > 1,
(b) R2R; = RiR2, i>2,

(¢) RiRiy1 Ry = Riy 1 RiRiy1, 1 <i<k—2,
)
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The relations (a) and (b) follow immediately from the definitions of R; and R2 and (c) is a
particular case of the braid relation (?77). The relation (d) is also a consequence of the braid
relation:

R2RyR2R, = Ry R3R 2.

RER\RERy = (Ryv Ry ®1d)(id ® Ryv)(Ryy Ryw ®1d)(id @ Ryv)
= (RMV X id) (id & RMV)(RVV X id) (id (=) RVM)(RVM & id) (id & va)

= (id ® Ryv)(Ryy ®1id)(id @ Rary) (Ryy ®@id)(id ® Ryar)(Ryawr @ id)

=({d® va)(RM\/ RVM ®id)(id ® RVV)(RMV RVM ®id)
CRRRE,



or equivalently,

RoRlRoRl % @ § - 1ROR1R0-

1.2 Schur functors

Fix a U module V' and a weight A in §* and let M(A) be the Verma module of highest weight
A. The Schur functor from U-modules to Bi-modules is the functor F) v given by

Fyy (M) = Homy(M(\), M @ V). (1.6)

The functors F) v are interesting whenever they are well defined. Of particular importance are
the B modules
MVE =By (M) and £V = By (L (). (L.7)

Since the image of M(\) under a U-module homomorphism is determined by the image of a
generating highest weight vector, the By module F) \v (M) can be identified with the vector
space of highest weight vectors of weight \ in M ® V®*. The functor F' \,v is the composition
of two functors: the functor - ® V®* and the functor Homy (M (), -). The first is exact when V/
is finite dimensional and the second is exact when A is integrally dominant, because these are
cases when V' is flat and M ()) is projective, see [Jz, p. 72]. More generally one should analyze
all the functors
F v (M) = Ext{;(M(\), M @ V).

1.3 Restriction from B, to By

Proposition 1.2. The braid group By is the quotient of the affine braid group by the relation
X1 =1 and so the modules £*/° are B-modules. Let Pt be the set of dominant integral weights.
Define the tensor product multiplicities cﬁw M\, i, v € PT, by the Upg-module decompositions

L) ® L(v) = @D L(n)®w.

AeP+

Then ~
Resgh (V') = €] (£7/°)%

vePt

Proof. Let us abuse notation slightly and write sums instead of direct sums. Then, as a (Uyg, By)

bimodule
® Ve = Z L(\) & LM,

where LM# = Fy(L(u)). As a (Ung, Bi) bimodule

Lip) @ VO = L(p) ® (Z L(v)® /;V/0> => e, LN @0,
v AV

Comparing coefficients of L(A) in these two identities yields the formula in the statement. [



1.4 Quantum traces

For z € End(M) such thatz commutes with e define the quantum trace of z by
qtr(z) = tr(e"z).
The quantum dimension of M is
qdim(M) = qtr(iday).

If M is a semisimple U-module and z € Endy (M) then

try(z) = Z dimg (L(A))x2(2), since M = @ L) ® 27,
XeM XeM

as a (U, Z)-bimodule, where Z = Endy (M), L()\) are simple U-modules and Z* are the simple
Z modules. There are natural injections

Endy, (M) <— Endy,(M®V)
z — z ®idy

Proposition 1.3. Then

atr ey (2) = qdim(V)qtr,,(2) and qtrM®V(zRMV) = aqtr,,(2),

X

By Proposition (3.7) (a) it is enough to show that éyRés = (dimy(V))"tv(A\) "1, as elements of
Endy(V @V ®@V*). Let {e;} be a basis of V and let {e’} be a dual basis in V*. It follows from
the identities (2.5), (2.6) and (2.7) that if R = Y-, a; ® b; and (S®id)(R) =R~ = 3, ¢; ® d;,

then
ZbiSQ(ai) = ZdjS(Cj) = Zs_l(dj)Cj = u_l.
( J J



Let z,y € V and let ¢ € V*. Then,

taRéy(z @y ® ¢) = (dimy (V)™ e, v_luy>é2]:22 Qe ® ek
k

= (dimgy (V) ¢, v uy)és Z bier ® a;x ® e~
ki

= (dimg(V)) "2(p, v uy) Y (", v uaiz)biey @ e @ €
kil

= (dimg(V)) " 2(p, v uy) Y (biv ™ uaiz) @ e @ €

= (dimg (V) "*(¢, v tuy) Zl: b;S?(a;)v " ur @ € @ €
= (dimy (V) "%(¢, v tuy) Zl: v lur @ e ® €
=& z0y® ) |

= (dimg(V)) "o (V) tex(z @y @ 9).

1.5 Markov traces

A Markov trace on the affine braid group is a trace functional which respects the inclusions
Bi € By C --- where

Bk — Zg'k+1
1o~k 1 e kktl
[IEEENN HEEEEN]
(1.8)
b — b
TTTTTTI TTTTTTT
More precisely, a Markov trace on the affine braid group with parameters z,Q1,Q2,... € Cis a

sequence of functions
mty: By — C such that

1

E

(1) mt (1) =1,

(2) mtyy(b) = mty(b), for b € By,

(3) mty(b1by) = mty(baby), for by, by € By,

(4) mtyy1(bT}) = zmty(b), for b € By,

(5) mty 1 (b(Xk+1)") = Q,mty(b), for b € By,

where
k+1

ekl — T Thq - T2X81T2—1 .. .Tk__llTk_l I_I:I:I:I:IJ

If M is a finite dimensional U = Upg module and a € Endy (M) the quantum trace of a on
M is the trace of the action of €"?a on M,

try(a) = Tr(e"Pa, M),  and  dim,(M) = tr,(idy) = Tr(e, M) (1.9)



is the quantum dimension of M.

Theorem 1.4. Let i,v € PT be dominant integral weights. Let M = L(u) and V' = L(v) and
let @y, be the representation of By defined in Proposition 3.5. Then the functions

mty: By — C
) i, (4(0)
dimg (M)dimg (V')*

form a Markov trace on the affine braid group with parameters

8% 3 A
= 7q< e and Q, = Zqr((kv\+2p>*(u,u+2p>f<v,l/+2p>) dimg (L(A)) ¢y
dim, (V) e dimg (L () dimg (L(»))

A

7w and the sum in the expression for (), are as in the tensor product

where the positive integers c
decomposition

L(u) ® L(v) = @ L) &,
A

Let g5 : Endy (M @ VEF) — Endy (M @ VE*-1) be given by

e VeVv* — C

r®¢ +—— dimg (V) lo(ehPa). (1.10)

ex(2) = (id gy en-1 ®e)o(2®id) where

If V is simple then é is the unique U-invariant projection onto the invariants in V' ® V*. Picto-
rially,

1 v k 1---k-1
[HENENN NN LIl
Sk z = z = | e(?)
FETTTTd RRRL NRRRL
The argument of [LR] Theorem 3.10b shows that
mtk(b) = mtkfl(skfl(b)), if b e Bk (1.11)

Since €1 ((X')") is a Upg-module homomorphism from M to M and, since M is simple, Schur’s
lemma implies that

r loops {i%%I = (X)) = Q, - idy, for some @, € C.

U



——D o —— — ——
0
al = €1, af = 2eq, w =e1 4 +en,
_ VvV __ VvV __
Qp = E; —Ei—1, Q) =& —&i—1, wy =&+ +én,
n
PV:E Ze;, and QV={Me1+ -+ en | A+1---4+ X, =0mod 2}.
=1
Then
\
p=¢ =¢€n+teéna and Sp = th—1tnSn—1n;

so that

Sp = Sn—15n—2 825152 " Sp—-15pSn—1" " 8528182** Sn—1.
So

Xt = T,y Ty Ty T Ty Ty - oI T -+ Ty
Next
\

Wy = En, Wy =11 Tp-1, and wy =t1-- - ty,

so that
WoWn = Ty = SpSp—1-"- 28182 - Sy

and

X = ol Th_q---I5TV15---T,,.
Then X¢ =T X*+1 T} and so

X = Tz—lTerl1 e Tn_laTnTn_l Ty Ty - T
=o' T T N Ty T Ty -+ T W T -+ T



When n = 2: In this case the Dynkin diagram is 2 ! 9  and if

f
=1 K ] 1e

then

XF?32 - UT2T1T2 - TOT1T00' == PICTURE,
X = TyTy 'Tio = oToT, 'Ty = PICTURE,
Xerte: — Ty = PICTURE.

The affine braid group of type C' B is given by generators go, . . ., g, and relations according
to the Dynkin diagram of type C

1 2 3 n—1 n 0

so that

91929192 = 92919291, and 909ngdodn = 9n9o9ngo,
9i9i+19i = gi+19igi+1, for2<i<n—1, and g¢,9; = gjg;, for |i —j| > 1,
909; = gigo, for 1 <i<n—1.



A pictorial representation B is

BT
1T =

i i+1

| TR

It may be helpful to add to B the full twist

o= //'/.% so that og10~" =go, and 0gio " = gn-iva,
e

and

_\)_E

produces the automorphism of the Dynkin diagram. 3
This pictorial representation indicates that there are R-matrix representations of B as follows.
Let U be a quasitriangular Hopf algebra. Let M;, Ms and V be U-modules. Then the map

CB — End, (M; ® V" @ M,)

g R vRv, ® idg(k_l) ® idas,

g — idy, ®1d20Y @ Ryy @1d2F Y @ idyy,
g idy, ® ids(kfl) ® Ry, Rosy v

Then ‘
A

o fLI-I-I—[:]:]:
U 'R “
There is an isomorphism moving the right hand pole to the left, after which
v ]
U U ')

In this new notation

21111 o HR I
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= o[ TR

The Dynkin diagram of affine type C' is

1 2 3 n—1 n 0
_____ 5 2
Then ,
()[1:251, O[Y:[—jl, w¥25(51+...+5n)7
o =¢ —¢€i—1, o =gi—¢gi—1, w =g+ +en,
n
PV ={\e1 4+ Anen |all \; € $Zxgorall \; € Zxo}, Q=) Ze;.
=1
Then
30:25717 ()0\/:5717 and Scp:tn:Snsn—l"'525152"‘5n‘
So

X =TT, Ty - ToTW Ty - - - T,

1 & — -1 (27 —1
Then, since X =T, X T 7,

X& — Tz:rlsz:é . TEIToTnTn—l T Ty - - T

Next
wy = 5(61 +-ven)  and  wi = S1nS2n-183n-3 " wo = titg - ln.
So
wowy = (5182 Sn) (5152 - Sp—1)(5152 - - Sp—2) - - - (5152)51.
So X
Xalertten) - o(Ty---To)(ThTy- - Thr) (W To - - Th—2)--- (Th12)Th,
where

g =
an element of order 2.
When n = 2: the Dynkin diagram is LY1——2 9 and the alcoves are
0 0 0 0
1 1
of 3 LD 5 (°
¢

T 2N 1 1
ol A1 2 | |0

0 0 0 0
ol W!| A4 [oXa| 4 |0

1 1 /N
of A N | 1 2 0

0 0 0 0

11



and

X2 = TyTLTW Ty = PICTURE,
X = T, 'TyTyTy = PICTURE,
Xz(e1+e2) — oI, = PICTURE.

3 Affine type C' Temperley-Lieb

Let H be the quotient of CB by the relations

9@ =(q—q Vg +1, for1<i<n-—1,
B=(-5Yg+1, and g2=(t—t g, +1
Then let
€ =q— i, for1<i<n-—1,
ep = S — go, and en =1t — gn-

Proposition 3.1.

(a) The relation
92 =(q—q Ngi+1 isequivalent to e} = (qgl)ei.

(b) Assuming the relations g7 = (¢ — ¢~ ')g; + 1, the relation
9iGi+19i = Gi+19iGi+1 1S equivalent to ejejr1€; — €j11€i€i41 = €; — €i41.
(¢) Assuming the relations g7 = (q; — q; *)gi + 1, the relation

90919091 = g1gogigo s equivalent to egereper — ereperen = (sq T+ qs 1) (eoer — ereq).

Define an algebra T,, generated by eg,eq, ..., e, with relations
ef=(s+s e, e =(g+qg )  eg=(t+ten,
eseres = (sq7t + gs™1)ea, €i€i_1€; = €;, €i€it1€; = €, eneoen = (tg~1 + gt He,.

where 2 < i < n. This algebra is a surjective image of H with kernel generated by

777

Putting

:Hei and J:HGi

i even i odd

and imposing the relations
1JI =5l and JIJ =bJ

makes this into a finite dimensional algebra (see the work of Rittenberg, Nichols, de Gier and
Pyatov).
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