The affine Weyl group

Arun Ram
Department of Mathematics
University of Wisconsin
Madison, WI 53706
ram@math.wisc.edu

1 The affine Weyl group

This section is a summary of the main facts and notations that are needed for working with the affine Weyl group \tilde{W} . The main point is that the elements of the affine Weyl group can be identified with alcoves via the bijection in (2.11).

Let $\mathfrak{h}_{\mathbb{R}}^*$ be a finite dimensional vector space over \mathbb{R} . A reflection is a diagonalizable element of $GL(\mathfrak{h}_{\mathbb{R}}^*)$ which has exactly one eigenvalue not equal to 1. A lattice is a free \mathbb{Z} -module. A Weyl group is a finite subgroup W of $GL(\mathfrak{h}_{\mathbb{R}}^*)$ which is

generated by reflections and acts on a lattice L in $\mathfrak{h}_{\mathbb{R}}^*$

such that $\mathfrak{h}_{\mathbb{R}}^* = L \otimes_{\mathbb{Z}} \mathbb{R}$. Let R^+ be an index set for the reflections in W so that, for $\alpha \in R^+$,

 s_{α} is the reflection in the hyperplane $H_{\alpha} = (\mathfrak{h}_{\mathbb{R}}^*)^{s_{\alpha}}$,

the fixed point space of the transformation s_{α} . The *chambers* are the connected components of the complement

$$\mathfrak{h}_{\mathbb{R}}^* \setminus \Big(\bigcup_{\alpha \in R^+} H_{\alpha}\Big)$$

of these hyperplanes in $\mathfrak{h}_{\mathbb{R}}^*$. These are fundamental regions for the action of W.

Let \langle,\rangle be a nondegenerate W-invariant bilinear form on $\mathfrak{h}_{\mathbb{R}}^*$. Fix a chamber C and choose vectors $\alpha^{\vee} \in \mathfrak{h}_{\mathbb{R}}^*$ such that

$$C = \{ x \in \mathfrak{h}_{\mathbb{R}}^* \mid \langle x, \alpha^{\vee} \rangle > 0 \} \quad \text{and} \quad P \supseteq L \supseteq Q, \tag{1.1}$$

where

$$P = \{ \lambda \in \mathfrak{h}_{\mathbb{R}}^* \mid \langle \lambda, \alpha^{\vee} \rangle \in \mathbb{Z} \} \quad \text{and} \quad Q = \sum_{\alpha \in R^+} \mathbb{Z}\alpha, \quad \text{where} \quad \alpha = \frac{2\alpha^{\vee}}{\langle \alpha^{\vee}, \alpha^{\vee} \rangle}.$$
 (1.2)

Pictorially,

 $\langle \lambda, \alpha^{\vee} \rangle$ is the distance from λ to the hyperplane H_{α} .

The alcoves are the connected components of the complement

$$\mathfrak{h}_{\mathbb{R}}^* \setminus \left(\bigcup_{\substack{\alpha \in \mathbb{R}^+ \\ i \in \mathbb{Z}^n}} H_{\alpha,j} \right)$$
 of the (affine) hyperplanes $H_{\alpha,j} = \{x \in \mathfrak{h}_{\mathbb{R}}^* \mid \langle x, \alpha^{\vee} \rangle = j\}$

in $\mathfrak{h}_{\mathbb{R}}^*$. The fundamental alcove is the alcove

$$A \subseteq C$$
 such that $0 \in \overline{A}$, (1.3)

where \overline{A} is the closure of A. An example is the case of type C_2 , where the picture is

The translation in λ is the operator $t_{\lambda} \colon \mathfrak{h}_{\mathbb{R}}^* \to \mathfrak{h}_{\mathbb{R}}^*$ given by

$$t_{\lambda}(x) = \lambda + x, \quad \text{for } \lambda \in P, x \in \mathfrak{h}_{\mathbb{R}}^*.$$
 (1.4)

The reflection $s_{\alpha,k}$ in the hyperplane $H_{\alpha,k}$ is given by

$$s_{\alpha,k} = t_{k\alpha} s_{\alpha} = s_{\alpha} t_{-k\alpha}. \tag{1.5}$$

The extended affine Weyl group is

$$\widetilde{W} = P \rtimes W = \{t_{\lambda}w \mid \lambda \in P, w \in W\} \quad \text{with} \quad wt_{\lambda} = t_{w\lambda}w.$$
 (1.6)

Denote the walls of C by $H_{\alpha_1}, \ldots, H_{\alpha_n}$ and extend this indexing so that

$$H_{\alpha_0}, \ldots, H_{\alpha_n}$$
 are the walls of A ,

the fundamental alcove. Then the affine Weyl group,

$$W_{\text{aff}} = Q \rtimes W$$
 is generated by s_0, \dots, s_n , (1.7)

the reflections in the hyperplanes $H_{\alpha_0}, \ldots, H_{\alpha_n}$. Furthermore, A is a fundamental region for the action of W_{aff} on $\mathfrak{h}_{\mathbb{R}}^*$ and so there is a bijection

$$\begin{array}{ccc} W_{\mathrm{aff}} & \longrightarrow & \{ \mathrm{alcoves~in}~ \mathfrak{h}_{\mathbb{R}}^* \} \\ w & \longmapsto & w^{-1}A. \end{array}$$

The length of $w \in \widetilde{W}$ is

$$\ell(w)$$
 = number of hyperplanes between A and wA. (1.8)

The difference between $W_{\rm aff}$ and \widetilde{W} is the group

$$\Omega = \widetilde{W}/W_{\text{aff}} \cong P/Q. \tag{1.9}$$

The group Ω is the set of elements of \widetilde{W} of length 0. An element of Ω acts on the fundamental alcove A by an automorphism. Its action on A induces a permutation of the walls of A, and hence a permutation of $0, 1, \ldots, n$. If $g \in \Omega$ and $g \neq 1$ let ω_i be the image of the origin under the action of g on A. If s_j denotes the reflection in the jth wall of A and w_i denotes the longest element of the stabilizer W_{ω_i} of ω_i in W, then

$$gs_ig^{-1} = s_{g(i)}$$
 and $gw_0w_i = t_{\omega_i}$. (1.10)

The group \widetilde{W} acts freely on $\Omega \times \mathfrak{h}_{\mathbb{R}}^*$ ($|\Omega|$ copies of \mathbb{R}^n tiled by alcoves) so that $g^{-1}A$ is in the same spot as A except on the gth "sheet" of $\Omega \times \mathfrak{h}_{\mathbb{R}}^*$. It is helpful to think of the elements of Ω as the deck transformations which transfer between the sheets in $\Omega \times \mathfrak{h}_{\mathbb{R}}^*$. Then

$$\begin{array}{ccc} \widetilde{W} & \longrightarrow & \{ \text{alcoves in } \Omega \times \mathfrak{h}_{\mathbb{R}}^* \} \\ w & \longmapsto & w^{-1}A \end{array} \tag{1.11}$$

is a bijection. In type C_2 , the two sheets in $\Omega \times \mathfrak{h}_{\mathbb{R}}^*$ look like

and

where the numbering on the walls of the alcoves is \widetilde{W} equivariant so that, for $w \in \widetilde{W}$, the numbering on the walls of wA is the w image of the numbering on the walls of A.

The 0-polygon is the W-orbit of A in $\Omega \times \mathfrak{h}_{\mathbb{R}}^*$ and for $\lambda \in P$, the

the translate of the W orbit of A by λ . The space $\Omega \times \mathfrak{h}_{\mathbb{R}}^*$ is tiled by the polygons and, via (2.11), we make identifications between W, \widetilde{W}, P and their geometric counterparts in $\Omega \times \mathfrak{h}_{\mathbb{R}}^*$:

$$\widetilde{W} = \{\text{alcoves}\}, \qquad W = \{\text{alcoves in the 0-polygon}\}, \qquad P = \{\text{centers of polygons}\}. \quad (1.13)$$

Define

$$P^+ = P \cap \overline{C}$$
 and $P^{++} = P \cap C$ (1.14)

so that P^+ is a set of representatives of the orbits of the action of W on P. The fundamental weights are the generators $\omega_1, \ldots, \omega_n$ of the $\mathbb{Z}_{\geq 0}$ -module P^+ so that

$$C = \sum_{i=1}^{n} \mathbb{R}_{\geq 0} \omega_i, \qquad P^+ = \sum_{i=1}^{n} \mathbb{Z}_{\geq 0} \omega_i, \qquad \text{and} \qquad P^{++} = \sum_{i=1}^{n} \mathbb{Z}_{> 0} \omega_i.$$
 (1.15)

The lattice P has \mathbb{Z} -basis $\omega_1, \ldots, \omega_n$ and the map

$$P^+ \longrightarrow P^{++}$$

 $\lambda \longmapsto \rho + \lambda$, where $\rho = \omega_1 + \ldots + \omega_n$, (1.16)

is a bijection. The *simple coroots* are $\alpha_1^{\vee}, \ldots, \alpha_n^{\vee}$ the dual basis to the fundamental weights,

$$\langle \omega_i, \alpha_i^{\vee} \rangle = \delta_{ij}.$$
 (1.17)

Define

$$\overline{C^{\vee}} = \sum_{i=1}^{n} \mathbb{R}_{\leq 0} \alpha_i^{\vee} \quad \text{and} \quad C^{\vee} = \sum_{i=1}^{n} \mathbb{R}_{\leq 0} \alpha_i^{\vee}.$$
 (1.18)

The dominance order is the partial order on $\mathfrak{h}_{\mathbb{R}}^*$ given by

$$\mu \le \lambda \quad \text{if} \quad \mu \in \lambda + \overline{C^{\vee}}.$$
 (1.19)

In type C_2 the lattice $P = \mathbb{Z}\varepsilon_1 + \mathbb{Z}\varepsilon_2$ with $\{\varepsilon_1, \varepsilon_2\}$ an orthonormal basis of $\mathfrak{h}_{\mathbb{R}}^* \cong \mathbb{R}^2$ and $W = \{1, s_1, s_2, s_1s_2, s_2s_1, s_1s_2s_1, s_2s_1s_2, s_1s_2s_1s_2\}$ is the dihedral group of order 8 generated by the reflections s_1 and s_2 in the hyperplanes H_{α_1} and H_{α_2} , respectively, where

$$H_{\alpha_1} = \{ x \in \mathfrak{h}_{\mathbb{R}}^* \mid \langle x, \varepsilon_1 \rangle = 0 \} \quad \text{and} \quad H_{\alpha_2} = \{ x \in \mathfrak{h}_{\mathbb{R}}^* \mid \langle x, \varepsilon_2 - \varepsilon_1 \rangle = 0 \}.$$

The set P^+

The set P^{++}

In this case

$$\begin{array}{ll} \omega_1 = \varepsilon_1 + \varepsilon_2, & \alpha_1 = 2\varepsilon_1, & \alpha_1^{\vee} = \varepsilon_1, \\ \omega_2 = \varepsilon_2, & \alpha_2 = \varepsilon_2 - \varepsilon_1, & \alpha_2^{\vee} = \alpha_2, \end{array}$$

 $\quad \text{and} \quad$

$$R = \{\pm \alpha_1, \pm \alpha_2, \pm (\alpha_1 + \alpha_2), \pm (\alpha_1 + 2\alpha_2)\}.$$