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1 Abstract Crystals

Let C = ((o, af))ier be a Cartan matrix. Define free abelian groups
P= ZZM and Q= ZZO@;, and a pairing ()i PxQ—Z
iel el

given by (w;, o) = dij.
A crystal is a set B with maps

wt: B— P
gi: B—ZU{—o0} and it B— ZU{—o0},
é: B — BU{0} and fi: B— BU{0},

such that
(1) If é;b # 0 then
wt(€;b) = wt(b) + o, €i(€;0) = ¢e4(b) — 1, i(éb) = ¢i(b)+1, fié;b=Db,
and if f;b # 0 the
wt(fib) = wt(b) —ai, ei(fib) = i) + 1, ¢i(fib) = ¢i(b) =1, &fib=",
(2) ¢i(b) = &i(b) + (wt(b), o), and
(3) If ;(b) = —oco then &b = fib = 0.
The crystal graph of B is the graph with
vertex set B and labeled edges b NN é;b  when ¢€;b # 0.
The p-weight space of a crystal B is the set

B, = {be B | wt(b) = u}.
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The character of B is the weight generating function of B,

XP=> xv0 = 3" Card(B,) X" € Z[P).
beB neP

A normal crystal is a crystal B such that
ei(b) = max{k | é¥b # 0} and ©i(b) = max{k | fFb+#0}.
If B is a normal crystal and b € B the i-string of b is the set

Fpi L 2y LLogih et B2 s L Oy
FE f2o s fib <o b b 2 ®
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and (3) is equivalent to <Wt(é§i(b)b),a7\;/> = —<Wt(f;0(b)b),047\;/> so that every i string in a normal

crystal B is a model for a finite dimensional slo-module.
If B is a normal crystal define a bijection s;: B — B by

e ®p, i w(bh) > 0
sib = J}_Wt_(b)’ 1 wti0) 2 0, so that wt(s;b) = s;wt(b), for all b € B.
e, b, if wt;(b) <0,
The map s; flips each i-string in B. The equality wt(s;b) = s;wt(b) implies
P e Z[P]W, for any normal crystal B.

Proposition 1.1 (Kashiwara, Duke 73 (1994), 383-413). Let B be a normal crystal. The
maps s;: B — B 1 € 1, define an action of W on B.

Proof. O

Let By and By be crystals. A morphism ¢ € Hom(By, B2) is a map ¢: By — By U {0} such
that
wt(y(b)) =wt(b),  &i(¥(b) =ei(d),  wi(¥(b) = ¢i(b),
and A ‘
if b« &b and ¥(b) # 0 and (&b) #0  then  (b) —— &)(b)

A strict morphism is a morphism that commutes with all é; and all ﬁ

The tensor product of By and Bj is the crystal

Bl®BQZ{b1®b2 ‘ blEBl,bQEBQ} with

e’:‘i(bl ® bg) = maX{Ei(b1>,€i(bg) — (Wt(bl), Oé\-/>},
tib®b:tib+tib, v
whilbr @ ba) = whilbn) Fwtiba). o @) = max{pi(by) + (wh(ba), aY), i (b))},
éiby ® by, if i(b1) > ei(b2), . fibi @ ba, if @i(b1) > &5(ba),
éi(b1®by) = 61@?}2 ?80(1) ci(b2) and  f;(b1®b2) = fl®~2 ?(‘0(1) ei(b2)
b1 ® €iba, if i(b1) < ei(be), b1 ® fiba, if @i(b1) < ei(b2),

If By, By, B3 are crystals, then the map

(B1® By) ® By — Bj ® (By® Bs)
(b1 ®by) @b3  +—— b1 ® (by @ b3)

is a crystal isomorphism and so we may simply write By ® Be ® Bs for the tensor product of
Bl, 32 and B3.



Lemma 1.2. If By and By are normal crystals then By ® By is normal.
Proof. O

If B is a crystal the dual crystal is the crystal B*{b* | b € B} with wt(b*) = —wt(b),
ei(b*) = ¢i(b), and  @(b") = £i(b),

&(b*) = (fib)*, and fi(b*) = (&b)*.

The crystal graph of B* is obtained by reversing all the arrows in the crystal graph of B.

1.1 Irreducible crystals B()\)

A normal crystal B is irreducible if the crystal graph of B has a single connected component???
A highest weight path is an element b € B such that é;b =0 for all i € [I.

Theorem 1.3. The irreducible highest weight crystals B(\) are indexed by \ € PT.
Proof. O
We would like to show that there is a unique normal crystal B(\) of highest weight A. Define
B(X + p) is the connected component of by ® bl in B(A) ® B(p).
Thus, by definition there is a canonical injection

MM B(A+p) — B\ ®B(p)

R + + o bt
b/\+,u b)\ ® bu

Proposition 1.4. Let A+ p € PT. The crystal B(A + p) is well defined, i.e
BA+up) 2 B(y+4d) if N+pu=~y+0.

Proof. O

This reduces the problem of finding B(\) to the fundamental weights.
Theorem 1.5. Let A € PT. Then B(\) exists.

Another characterization?

B(A) = {b®b,>° € B(co) @ By™ | €5 (b) < (A, o), for all i € I}.
For each m € Z~o and each A € P" there unique injective maps

Sm: B(\) — B(m\)
bj\r — b;rzx

such that
wt(Smb) = mwt(b), gi(Smb) = me;(b), ©(Smb) = mep;(m), and
Sp(€ib) = €S, ()  and Sy (fib) = fS,(b)b.

Proposition 1.6.
B(\)Y = B(—wo).



1.2 The crystal B(c)
Define projections ﬂiﬂ‘: B(A + 1) — B(A) by the composition
M BOA+p) — BN @B() — B\
b® b/j — b,
b b — 0, if o # b}
The projective system defined by the 7T§\\+'u allows us to define
B(c0) = lim B(\) so that  my: B(co) — B()), is such that 7r§+”7r>\+u =Ty,

for all A € PT.
For each j € I define a crystal

B,(Z) = {bj(n) | n € Z} (=) L b(0) < by(1) s
with
t(by(n)) O IR SR AR (9105) B S
wt(b;i(n)) = na;, gi(bi(n)) = i(bi(n)) =
! ! ’ oo, ititj —co, ifi#j,
and
) bi(n+1), ifi=j, . bi(n—1), ifi=j,
Gy = {0 g Ry = (P =
0, if i # j, 0, if 1 # 4,
Theorem 1.7.
(a) For each j € I there is a crystal injection
®;: B(ow) — B()® Bj(Z)
bo — b0®~bj(0)
b — Y f]b(0), with n > 0 if b # by.

(b) Let (i1,i2,...) be a sequence of elements of I such that each i € I appears an infinite number
of times. Then the subcrystal of - -- @ By, (Z) @ B;,(Z) given by

B(OO) = { - ® biQ(—CLQ) X bil(—al) ’ a; € ZZO7 ap =0 for k >> 0},
the subcrystal of --- ® By, (Z) @ By, (Z) generated by - - - b;,(0) ® b;, (0).

If {i1,142, -} is a sequence of elements of I such that each ¢ € I appears an infinite number
of times the composition - - - ®;, o ®;, o ®;, realize

B(oo) = {-+- ®biy(—a2) ® by, (—a1) | a; € Z>o, ar, =0 for k >> 0}.
For each A € PT, define a crystal By * = {b, >} with
wt(0y®) = A, gi(bhyX) = —oo,  @i(by™) = —o0, &(b;) =0, fi(b;>) =0,
for all ¢ € I. Then
B(1) is the normal subcrystal of B(co) ® By > generated by b ® by, *.
Define *: B(co) — B(o0) to be the unique involution such that
(/M) =b® f'b;(0),  foralliel.

THIS DEFINITION NEEDS REWORKING!

Theorem 1.8. Kashiwara-Saito, Duke Math. J. 89 No. 1 (1997) The set B(oc) endowed with
the maps wt, e, @i, €; and f; is a crystal isomorphic to the crystal base of U, g.



1.3 Representation crystals

The quantum group is the Q(q) algebra given by generators
Eia Eu Kia Kl‘_17 Z€I7

with relations

K;— Kt
E-F-—F-E-—(S-'< v i )
1 Lg 74+ 17 q_q_l
KK '=K'K; =1, K,K; = K;K;,
KiE; = ¢l@o) B K, KiF; = ¢ ) By K,
. [;J] EJE;E;"", 0= [;J] FFF for i # j,
r=0 r=
where ¢;; = —(aj, o)) + 1, and
k —k
4 —q n [n]!
k)= k)l = [K][k—1]---[2][1 =
O MU I e P M | Ier S

Theorem 1.9. (Drinfel’d) The algebra U,g is the unique Cartan preserving Hopf algebra defor-
mation of G.

Proof. ]

An integrable Uyg-module is a Usg-module M such that

M= M,  where M,={meM|Km=qg"Im, foraliel},
pnepP

and for each m € M and i € I, Efm:O and Fikmzo for £k >> 0.

Theorem 1.10. There is a bijection

{simple integrable Usg-modules} L pr
L(\) D)
Proof. O

Let M be a integrable U,g-module. The crystal operators €;: M — M and fi: M — M are
the linear operators determined by
&(FFm) = pF

K3 7

m and ﬁ(FZ(k)m) = F* Dy,

1 )

for all & € Z>o and m € M such that E;m = 0 and Fi(k)m # 0. The convention is that
Fm=0
; .

A crystal basis of M is a pair (L, B),

L, is a free Q[¢]-module with

L=rL,, B=||B., whee  M,=Q(q) ®qq Ly
peP peP B, is a basis of L, /qLy,,



for all y € P, and such that L is stable under €; and fz and the images of the operators é; and
fion L, /qL, with the definitions
wt(b) = p, itbe B,
ei(b) = max{k | é¥b # 0}, and ©i(b) = max{k | fFb+# 0},
make B into a crystal.

For each A\ € P* let L(\) be the irreducible U,g-module of highest weight A and fix a highest
weight vector v;\r in L(A). Define homomorphisms of U, g-modules

m: Ugg — L))

u [ — uvj

Define
L(N) = Q[q}—span{fik e filv:{ | i1,... ik € T}, and
B()\) = {images of fi, -~ fy, vy in L(\)/qL(\)}.
Theorem 1.11.
(a) Let X € P* and let L(\) be the irreducible Uyg module of highest weight . Then (L(X), B(\))
is a crystal basis of L(\).
(b) There is a unique crystal basis (L£(c0), B(co)) of U, g such that, for all X € P*,
mA(L(00)) =L(A)  and  7TA\(B(c0)) = B(A) U{0},
where Ty L(00)/qL(0c0) — L(N)/qL(N) is the map induced by .

1.4 Quiver crystals

Let (I,9Q%) be the directed graph with vertex set I and an edge (i — j) € Q% if («, a}/> = -1
Fix an orientiation of (I,QF), i.e. a map
. + *
“ Q - c such that Ci—j +cj—i = 0.
1—) | — C’i—>j
Recall that
P+ = Z Zzowi and Q_ = — Z Zzoai.
icl il
Fix
A= Z \iw; € P and the I-graded vector space Ccr = @ cN.
icl iel
For each
—v = Z —via; € Q7 fix the I-graded vector space C" = @ Cc":.

i€l i€l

There is a natural GL, = H GL,,(C) action on the variety

icl
XM =| @ Homerc))e <€B Hom(@’i,@”)) . (GB HOm(‘CM’CWQ
(i—j)eQE i€l el
Ti—j € Hom(C”i, Cyj),
(i) EQ* icl icl r; € Hom(C*,C")



Write

:a_):@miqj , xﬁ:@mi_) , and :a_:@ng , for . € X(A\)x_p.

i—j iel iel

Use the orientation to define a G L,-invariant symplectic form on X (\)y_, by

w(z,y) = Y i Tr(wjmming)+ Y Tr(zicyin) =Y Tr(yimwic),  for z,y € X(A)r-
(i—f)eQ* i€l =

The corresponding moment map

w: X(AN)a—p — gl, is given by w(x); = xjexi + Z Cimsj (TjmiTisy).
(i—j)eQ*

A point z € X (A\)x_, is stable if every x.,-invariant I-graded vector space U C ker(z.,) is 0.
Let

XNy = 1~ H0)*/GL, = { GL,-orbits of stable points in x~(0) },
ANy ={ [z] € X(N)r—v | z— = 0 and =, is nilpotent },
B(A)a—, = { irreducible components of A(A)x_, }.

If b € B(A\)A—, define

ei(b) = €i([z]) = &i(x) = dim <coker(xz-<_ ® @x@_j)>

jel

for a generic point [z] in b. Let

—y € XAy, im(z_)CV CC¥,
XN g = {(w,V) (A (z) }

dim(V) =v —da;, V is z,-stable

and define o -
X mda) = XN gy 2 XV
|, - @) =
Passing to G L,-orbits of stable points these maps induce
XNy wt (XSRS 5 x5

where X(/\)ii_zyd ={ [z] € X(A)a—y | €i(z) = d }. The result is a bijection

et BV )™ BV

Theorem 1.12. Let A € Pt. The set

B(\) = |_| B(M)a—v with the maps éi: B(A\) = B(\) U{0}
re@—
defined by 227 is a realization of the highest weight crystal of weight .

Proof. O



Let (I,Q%) be a quiver, let Q™ be the opposite orientation and let QT = QT UQ~. For each
—v=— Z vioy, € Q" fix an I-graded vector space V= GB Vi,

i€l i€l
such that dim(V;) = v;. Let
Gy = [lie; GL(VA), By = @i—jeqr Hom(Vi, Vj),
and
gl(V) =@, End(Vi), Xy = @(z‘—g‘)eﬂi Hom(V;, Vj).

Define a moment map p: Xy — gly, by

W= Dierthi where pi(z) = Z Tj—siTij—g — Ti—sjLj—si,
(i—j)eQ*
and let
Ay ={zr € Xy | u(x) =0 and z is nilpotent}.
Let

B(o0)_, = {irreducible components of Ay } and B(oo) = |_| B(oo)_p.
—veQ~
For b € B define
wt(b) = —v, ifbe B(oo)_y, and gi(b) = &i(x) = dim coker (( ®;—; V;) MV}) ,

where x is any generic point of b.
Let Xo(—v) = {z € X(~v) | p(z) = 0} and let Xo(—v + ra;, —ra;) be the set of triples
(z,®,¢') such that
¢/

z € Xo(-v), and 0—V(-v+ rai)i)v(_y)_) (—ra;) — 0

is an exact sequence of I-graded vector spaces such that im (¢) is 2-stable. For each (x, ¢, ¢') €
Xi(=v +ra;, —ra;) let

:V(-v+ra) — V(-v+re;)) and 2" V(—ra;) — V(—ra;)

be the induced maps,

0 — V(v), 5, V(v); 4 0 — 0
The maps
Xo(—v+ra)) < Xo(—v+ra) x Xo(—ra;) <~ Xh(—v + rai, —rog) L Xo(—v)
z — (7,0) = (z,2') — (z,¢,¢) —
induce an isomorphism
e =wom b {b€ B(co)_, | €i(b) = r}—"{b € B(c0)_pira, | €i(b) = 0}.
These maps determine maps €; on B(o0).
Theorem 1.13. This is a realization of the crystal B(oo).
Proof. ]



1.5 Path crystals

Let B be the set of paths in by where a path in by is the image of a piecewise linear map

p:[0,1] — bhg such that p(0) =0 and p(1) € P.

PICTURE
Define functions .
wt: B — P,
82'(])): é — ZZO and (bz g — ZZO
é&:B—BU{0} and fi: B— BU{0}

wt(p) = p(1)
= the endpoint of p,
ei(p) = | [(min{(p(t),eqV) |0 <t <1} |
= distance from the most negative point to H,,,
wilp) = | [p(1), o) —min{(p(t),a;) | 0 <t < 1}] |
= distance from the most negative point to p(1),

- t— p(t) + ri(t)ai, if Ti(O) =0,
éi(p) = .
0, otherwise,

~ t— p(t) — gi(t)()éi, lf Ez(l) = 1,
fi(p) = .
0, otherwise,

where r;: [0,1] — [0, 1] and ¢;: [0,1] — [0, 1] are the monotone functions given by

ri(t) = 1 — min{1, (p(s),a)) —ei(p) | 0 < s < t}

7

6t) = min{1, (p(s), a)) — ei(p) | £ <5 < 1}

(2

To visualize these operations note that

(p(t), ;) is the “distance of the point p(¢) from the hyperplane H,,.”

(2

PICTURE

For a path “traveling back and forth with respect to H,,”, place a hyperplane Hy,,, parallel to
H,, and through the most negative point of p. Draw another parallel hyperplane Hynp+1 one
unit in the positive direction from Hyyp (ie. (z,0)) = (y, o)) + 1 for € Hunp, ¥ € Hinp+1)-
Water poured down the tube created by Hpnp and Hpynp41 will create a waterfall and wet those
parts of p corresponding to where the function ¢; is increasing.

PICTURE

The new path fip is the path which follows the same trajectory as p except that the “wet parts”
are “reflected with respect to the a; direction”. In the case, figure 2, where the “the water flows
in the positive direction” then f;p = 0.



Proposition 1.14. The set B is a normal crystal.
Proof. O

Define the concatenation or tensor product of paths p; and ps to be the path p; ® ps given
by
p1(2t)> 0<t< 1/27
p1(l) +pa(2t —1), 1/2<t<1.

(p1 ®p2)(t) = {

The reverse of the path p is the path p* given by
p*(t) = p(1 —1t), 0<t<1.
For k € Z>( the k-stretch of p is the path kp given by
(kp)(t) = p(kt), 0<t<1.
Let C be the dominant chamber, let p be the half-sum of the positive roots and set
C—p={z—pebhp|xzeC} PICTURE
Write p C C — p if p(t) € C — p for all 0 < ¢ < 1. The definitions imply that
pE Bisa highest weight path if and only if pCC—p.

Theorem 1.15. Let B be a subcrystal ofé such that B,, is finite for all p € P. Then

XB: Z Swt(b)>

beB
bCC—p

where sy denotes the Weyl character corresponding to A € P™.

Proof. Let € PT. Then

B — (w) ewr wt(p _ K(w wt(p)+wp
Vo, = (e} (Sew)| -5 o
weW pEB zg‘év

Let p € B and w € W be such that wt(p) +wp = p+ p. Let ty be maximal such that there is an
i € I with wp + p(ty) € Hy,. If to does not exist then p € C'— p and w = 1. If ¢( does exist set

~(wp,e’)

[ F i (wp,af) <0,
®(p) =
é; p,  if (wp, ) > 0.

Then wt(p) + wp = wt(P(p)) + s;wp and and the pairs (p, w) and (P(p), s;w) cancel in the sum
(272). O

Let A € Pt and let b) be a highest weight path with wt(b)) = A. For example, b} might
be the path given by
bi(t) = tA, 0<t<l1.

Define . o

so that b(\) is the collection of paths obtained by applying finite sequences of f; to bj\r.
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Corollary 1.16. Let A € P™.
(a) sy = Z e"to)

beB(A)

(b) sx(¢”) = H M _ Z q<wt(b),p>

beB(N)
() (1) = [I S+
a€ER*

(d) If Ky, are defined by sy = Z Kyumy, then Ky, = Card(B(\),),
pnepP

Proof. O

= Card(B(\)).

Let J C I. The crystal
Res;B is B with only those crystal operators €j, f] for j € J.

This is a crystal for the parabolic subsystem (W, C, P).

Proposition 1.17. Let A € P and let B()\) be the irreducible highest weight crystal of highest
weight .

Res;B(\) = € B(wt(p) BN @B = €D Bwip) B = B(—woh).
peB(N) pEB(u)

Proof. O

Corollary 1.18. Let pi,v, A € P* and let T € P} .

¢, = Card({b € B(u) | wt(b} @b) =X and b} ®@be C —p}), and
c}T = Card({b € B(\) | wty(b) =7 and bC Cy—ps}).

Then

A A J
SuSy = E ClvSA and Sy = E CJ 85
A

7'€PJ+
Proof. O

For paths p1,ps € B define

d(p1,p2) = max{|p1(t) —p2(t)[ | 0 <t <1}

Proposition 1.19. The operators
é: B — Bu{0} and fi: B— Bu{0}

are the unique operators such that

11



(1)

€ib1 ® ba, if pi(b1) > €i(b2),
b1 ® €ba, if pi(b1) < &i(b2),

and

éi(b1 @ be) = {

- ;b ® ba, if pi(b1) > €;(b2),
fi(b1 ® bp) = Jibr & bs f@(l) (b2)
b1 ® fiba, if pi(b1) < €i(b2),
(2) The operators
Hwt(p),a) . v
fi b, Zf <Wt(p)7 'L> > O}
s$ip = P, if (w
ey it (wi(p),

=
S
2 L R
< 7
I

define an action of W on B.
(3) €i(b) = max{k | &b # 0} and @;(b) = max{k | f¥b # 0}.
(4) If &b # 0 then fiéb =b and (&:b)* = fib*.
If fib # 0 then & fib = b and (fib)* = &;b*.
(5) Ifbe B and k € Zsg then
k(éb) = eF(kb)  and  k(fib) = fF(kb).

(6) There is a constant ¢, depending only on (W, C, P) such that

If €;b1 # 0 and é;by # 0 then d(€é;b1, é;b2) < c-d(b1,b2), and

If fibi # 0 and fiby # 0 then d(fiby, fib2) < ¢ d(by, bs).

Proof.

1.6 The crystal BZ*
Let

n
R™ = Z Re;, with the g; an orthonormal basis,
=1

W =5,, acting on R by permuting the ¢&;,
C={p=mer+ -+ pnen | p1 <pz <--- < pin},

L= zn:Z{fi,
i=1

and let b; be the straightline path from 0 to ¢;. Then

Bf?k:{bil"'bik |1 <4dp,...,0 <n}

is the set of length k paths in R™ where each step is a unit step in one of the directions &1, ...

To compute the operators é; and fl on a path b= b;, ---b;, in B®* place the value

(2
+1 = (g, ;) Jover each b;,
—1 = (g441, o Yover each b;, 1,

0 = (g;,; )over each b;, j #i,i+ 1,

12



Ignoring Os read this sequence of +1 from left to right and succesively remove adjacent (+1,—1)
pairs until the sequence is of the form

cogood  good

L
+1 +1...+1 -1 —1...—1

conormal nodes normal nodes

The —1s in this sequence are the normal nodes and the +1s are the conormal nodes. The good
node is the leftmost normal node and the cogood node is the right most conormal node. The

good node is exactly at the position where the path b is at its most negative point with respect
to the hyperplane H,,. Then

e;(b) = (# of normal nodes),
©i(b) = (# of conormal nodes),

é;(b) = same as b except with the cogood node path step changed to b;,
ﬁ(b) same as b except with the good node path step changed to b;,

For example, if n =5 and k£ = 30 and

b = byb3b3b1b2b2b b4b1b2b3b3bab1b1b2b3b3babi babsbsbibibb1bababy

then the parentheses in the table

() -1 ()

-1 ) )+l
+1 41 ( () ) o0

000 0 41 -1 -1 0 0 +1 -1
00 -1 41 +1 -1 0 0 -1 +1
000 0 +1 +1 +1 +1 -1 =1 0

by b3 bz by by ba by by by b
b3 bg by by by by by by by b
by bs bs by by by by by by by

indicate the (41, —1) pairings and the numbers in the top row indicate the resulting sequence
of —1s and +1s. Then

€1 (b) - ng(b) = 37
éi(b) = b 1030301b2b2b4b4b1b20303D201b1b2b3b3020204b5b5b1b1b1b1b20204,
f (b) = bab3b3b1babababyb1babsbzbib1bibabzbsbabibabsbsbibibibibababy,

The highest weight paths in B®* are the b = b;, - - bi, such that for every 1 < j < k and
every 1 < i < n the

(# of bl in bil B sz) 2 (# of bi+1 in bil . bj)

The map

Q: {highest weight paths in B,?k}g{standard tableaux with k£ boxes and < n rows}

13



is given by making the standard tableau
Q(b) such that entry j is in row i if b has b; in position j (i.e. if b;, = b;).

For example, if k = n = 4 then By = {b;, b2, b3,bs} and the map @ is given by

blblblbl — 1234 b1b253b4 — 1
2

3

4

b1b1b1by — 123 b1b1bobg —— 12
4 3

4

b1b1boby —— 124 b1bob1bg — 13
3 2

4

blbzblbl — 134 blbgbgbl — 14
2 2

3

blblbgbg — 12 b1b2b1b2 — 13

34 24

Let z; = . For a highest weight path b € B&*
wt(b) = Aier + - + Anen if the shape of Q(b) is A= (A1, ).
and so the character of the crystal BE¥ is

(14 -+ ) = Z sy, where f* = (# of standard tableaux of shape \).

AbFn
L(N)<n
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