The symmetric group and Brauer algebras

Arun Ram
Department of Mathematics
University of Wisconsin
Madison, WI 53706
ram@math.wisc.edu

1 The symmetric group $\mathbb{C}S_k$ and the Brauer algebra

If $\lambda \in \hat{G}L_n$ then

$$L_{\mathfrak{gl}_n}(\lambda) \otimes V \cong \bigoplus_{\mu/\lambda = \square} L_{\mathfrak{gl}_n}(\mu) \quad \text{as } \mathfrak{gl}_n(\mathbb{C})\text{-modules},$$
 (1.1)

where the sum is over $\mu \in \hat{\mathfrak{gl}}_n$ that are obtained from λ by adding a box. The *Young lattice* is the graph \hat{S} given by setting

vertices on level k: $\hat{S}_k = \{\text{partitions } \lambda \text{ with } k \text{ boxes}\}, \text{ and}$ a labeled edge $\lambda \xrightarrow{c(\mu/\lambda)} \mu$, $\lambda \in \hat{S}_k$, $\mu \in \hat{S}_{k+1}$ if μ is obtained from λ by adding a box. (1.2)

It encodes the decompositions in (???).

Theorem 1.1. Define elements $m_1, \ldots, m_k \in \mathbb{C}S_k$ by

$$m_1 = 0,$$
 and $m_i = \sum_{\ell=1}^{i-1} s_{\ell i},$ for $i > 1$.

Then

- (a) $m_i m_j = m_j m_i$ for $1 \le i, j \le n$.
- (b) The eigenvalues of the elements m_i are given by the diagram \hat{S}

in the sense that if

 \hat{S}_k is the set of vertices on level k, and

$$\hat{S}_k^{\lambda} = \{ paths \ p = (\emptyset \to p^{(1)} \to p^{(2)} \to \cdots \to p^{(k)} = \lambda) \ to \ \lambda \ in \ \hat{S} \}, \quad for \ \lambda \in \hat{S}_k,$$

then

 \hat{S}_k is an index set for the simple $\mathbb{C}S_k$ modules S_k^{λ} and

$$S_k^{\lambda}$$
 has a basis $\{v_p \mid p \in \hat{S}_k^{\lambda}\}$ with $m_i v_p = c(p(i))v_p$,

where $p(i) = p^{(i)}/p^{(i-1)}$ is the box added at step i in p and c(b) denotes the content of the box b.

(c)
$$\kappa = m_k + m_{k-1} + \cdots + m_2$$
 is a central element of $\mathbb{C}S_k$ and

$$\kappa \ acts \ on \ S_k^{\lambda} \ by \ the \ constant \qquad \sum_{b \in \lambda} c(b).$$

Proof. The tensor product rule for GL_n is

$$L_{\mathfrak{gl}_n}(\mu) \otimes V \cong \bigoplus_{\lambda/\mu = \square} L_{\mathfrak{gl}_n}(\mu),$$

where the sum is over all partitions λ such that $\ell(\lambda) \leq n$, $\lambda \supseteq \mu$ and λ differs from μ by a single box. Since the S_k action and the GL_n action commute on $V^{\otimes k}$ it follows that,

as
$$(U\mathfrak{gl}_n, \mathbb{C}S_k)$$
 bimodules, $V^{\otimes k} \cong \bigoplus_{\substack{\lambda \vdash k \ \ell(\lambda) \leq n}} L_{\mathfrak{gl}_n}(\lambda) \otimes S_k^{\lambda}$,

where S_k^{λ} are some S_k -modules. Comparing the $L_{\mathfrak{gl}_n}(\lambda)$ components on each side of

$$\begin{split} \bigoplus_{\lambda} L_{\mathfrak{gl}_n}(\lambda) \otimes S_k^{\lambda} &\cong V^{\otimes k} = V^{\otimes (k-1)} \otimes V \cong \left(\bigoplus_{\mu} L_{\mathfrak{gl}_n}(\mu) \otimes S_{k-1}^{\mu}\right) \otimes V \\ &\cong \bigoplus_{\mu} \bigoplus_{\lambda/\mu = \square} L_{\mathfrak{gl}_n}(\lambda) \otimes S_{k-1}^{\mu} \cong \bigoplus_{\lambda} \left(L_{\mathfrak{gl}_n}(\lambda) \otimes \left(\bigoplus_{\lambda/\mu} S_{k-1}^{\mu}\right)\right) \end{split}$$

gives

$$S_k^{\lambda} \cong \bigoplus_{\lambda/\mu = \square} S_{k-1}^{\mu}.$$

Using the basis $\{v_{i_1} \otimes \cdots \otimes v_{i_k} \mid 1 \leq i_1, \dots, i_k \leq n\}$ of $V^{\otimes k}$, the direct computation

$$\kappa(v_{i_1} \otimes \cdots \otimes v_{i_k}) = \sum_{\ell=1}^k \left(v_{i_1} \otimes \cdots \otimes \sum_{i,j=1}^n E_{ij} E_{ji} v_{i\ell} \otimes \cdots \otimes v_{i_k} \right)$$

$$+ \sum_{1 \leq \ell < m \leq k} \sum_{i,j=1}^n \left(v_{i_1} \otimes \cdots \otimes E_{ji} v_{i_\ell} \otimes \cdots \otimes E_{ij} v_{i_m} \otimes \cdots \otimes v_{i_k} \right)$$

$$+ v_{i_1} \otimes \cdots \otimes E_{ij} v_{i_\ell} \otimes \cdots \otimes E_{ji} v_{i_m} \otimes \cdots \otimes v_{i_k} \right)$$

$$= \left(kn + 2 \sum_{1 \leq \ell < m \leq k} s_{\ell m} \right) \left(v_{i_1} \otimes \cdots \otimes v_{i_k} \right) = (kn + 2z_k) (v_{i_1} \otimes \cdots \otimes v_{i_k})$$

Shows that

$$\kappa = kn + 2 \sum_{1 \le \ell < m \le k} s_{\ell m},$$
 as operators on $V^{\otimes k}$.

Since κ is a central element of $U\mathfrak{gl}_n$ and

$$V^{\otimes k} \cong \bigoplus_{\substack{\lambda \vdash k \ \ell(\lambda) \leq n}} L(\lambda) \otimes S_k^{\lambda}$$
 as $(U\mathfrak{gl}_n, \mathbb{C}S_k)$ bimodules,

it follows from (???) that

$$z_k = \sum_{1 \le \ell < m \le k} s_{\ell m}$$
 acts on S_k^{λ} by $\sum_{b \in \lambda} c(b)$.

Thus, in (???),

$$m_k = \sum_{1 \le \ell \le k} s_{\ell k} = z_k - z_{k-1}$$
 acts on S_{k-1}^{μ} by the constant $c(\lambda/\mu)$.

Since the values $c(\lambda/\mu)$ are distinct for the distinct summands in (????),

$$S_{k-1}^{\mu} = \{ v \in S_k^{\lambda} \mid m_k v = c(\lambda/\mu)v \},$$

the $c(\lambda/\mu)$ eigenspace of m_k in S_k^{λ} . Iterating the decomposition (???) gives

$$S_k^{\lambda} = \bigoplus_{p \in \hat{S}_k^{\lambda}} S_1^{\square},$$

and, since S_1^\square is one dimensional, this determines (up to constants) a unique

basis of
$$S_k^{\lambda}$$
 $\{v_p \mid p \in \hat{S}_k^{\lambda}\}$ such that $m_i v_p = c(p(i))v_p$.

In $\mathbb{C}S_k$, $s_im_is_i + s_i = m_{i+1}$, and so

$$s_i m_i + 1 = m_{i+1} s_i$$
 and $s_i m_j = m_j s_i$, for $j \neq i, i+1$.

Write $(s_i)_{pq}$ to denote the (p,q) entry of the matrix determined by the action of s_i on S_k^{λ} with respect to the basis in (???). Then

$$(s_i)_{pp}(m_i)_{pp} + 1 = (m_{i+1})_{pp}(s_i)_{pp}$$
 giving $(s_i)_{pp} = \frac{1}{(m_{i+1})_{pp} - (m_i)_{pp}}$.

Then COPY FROM NOTES.

Corollary 1.2. As $(U\mathfrak{gl}_n, \mathbb{C}S_k)$ bimodules,

$$V^{\otimes k} \cong \bigoplus_{\substack{\lambda \vdash k \\ \ell(\lambda) \le n}} L_{\mathfrak{gl}_n}(\lambda) \otimes S_k^{\lambda},$$

where S_k^{λ} are simple S_k modules.

Corollary 1.3. For $\lambda \in \hat{S}_k$, and $\mu \in \hat{S}_{k-1}$,

$$\operatorname{Res}_{S_{k-1}}^{S_k}(S_k^{\lambda}) \cong \bigoplus_{\lambda/\nu = \square} S_{k-1}^{\nu} \quad and \quad \operatorname{Ind}_{S_{k-1}}^{S_k}(S_{k-1}^{\mu}) \cong \bigoplus_{\nu/\mu = \square} S_k^{\nu}. \tag{1.3}$$

where the first sum is over all partitions ν that are obtained from λ by removing a box, and the second sum is over all partitions ν which are obtained from μ by adding a box.

Corollary 1.4. Let $(\mathbb{C}S_k)_{pq}$ be the (p,q) (simultaneous) eigenspace of $\mathbb{C}S_k$ with respect to the action of m_1, \ldots, m_k by left and right multiplication,

$$(\mathbb{C}S_k)_{pq} = \{a \in \mathbb{C}S_k \mid for \ 1 \leq i, j \leq k, \ m_i a = c(p(i))a \ and \ am_j = c(q(j))m_j\}.$$

Then $\dim((\mathbb{C}S_k)_{pq}) = 1$ and there exist matrix units

$$e_{pq}^{\lambda}, \qquad \lambda \in \hat{S}_k, \quad p, q \in \hat{S}_k^{\lambda}$$

such that

$$(\mathbb{C}S_k)_{pq} = \mathbb{C}e_{pq}$$
 and $e_{pq}^{\lambda}e_{rs}^{\mu} = \delta_{\lambda\mu}\delta_{qr}e_{ps}^{\lambda}$.

Corollary 1.5. Let $\Phi \colon \mathbb{C}S_k \to \operatorname{End}(V^{\otimes k})$ and $\Psi \colon U\mathfrak{gl}_n \to \operatorname{End}(V^{\otimes k})$ be the representations of S_k and \mathfrak{gl}_n corresponding to their actions on $V^{\otimes k}$. Then

$$\operatorname{End}_{GL_n(\mathbb{C})}(V^{\otimes k}) = \Phi(\mathbb{C}S_k)$$
 and $\operatorname{End}_{\mathbb{C}S_k}(V^{\otimes k}) = \Psi(U\mathfrak{gl}_n),$

and

$$\ker \Phi = \langle \sum_{w \in S_{n+1}} \det(w) w \rangle,$$

the ideal of $\mathbb{C}S_k$ generated by the alternating sum of the permutations in the subgroup S_n (ker $\Phi = 0$ if $n \leq k$).

1.1 The tower \hat{B}

If $\lambda \in \hat{O}_n$ then

$$L_{O_n}(\lambda) \otimes V \cong \bigoplus_{\substack{\mu/\lambda = \square \\ \text{or } \lambda/\mu = \square}} L_{O_n}(\mu), \quad \text{as } O_n(\mathbb{C})\text{-modules},$$

where the sum is over $\mu \in \hat{O}_n$ that are obtained from λ by adding or removing a box. Build a graph $\hat{B}(n)$ which encodes the $O_n(\mathbb{C})$ -module decomposition of $V^{\otimes k}$, $k \in \mathbb{Z}_{>0}$, by setting

vertices on level
$$k$$
: $\hat{B}_k(n) = \{\lambda \in \hat{O}_n \mid k - |\lambda| \in 2\mathbb{Z}_{\geq 0}\}$, and an edge $\lambda \to \mu$, if $\mu \in \hat{B}_{k+1}(n)$ is obtained from $\lambda \in \hat{B}_k(n)$ by adding or removing a box, (1.4)

Theorem 1.6. Define elements $m_1, \ldots, m_k \in \mathbb{C}B_k(n)$ by

$$m_1 = 0,$$
 and $m_i = \frac{k(n-1)}{4} + \sum_{\ell=1}^{i-1} s_{\ell i} - e_{\ell i},$ for $i > 1$.

Then

(a)
$$m_i m_j = m_j m_i$$
 for $1 \le i, j \le n$.

(b) The eigenvalues of the elements m_i are given by the diagram

in the sense that if

 \hat{B}_k is the set of vertices on level k, and

$$\hat{B}_k^{\lambda} = \{ paths \ p = (\emptyset \to p^{(1)} \to p^{(2)} \to cdots \to p^{(k)} = \lambda) \ to \ \lambda \ in \ \hat{B} \}, \quad for \ \lambda \in \hat{B}_k,$$

then

 \hat{B}_k is an index set for the simple $\mathbb{C}B_k$ modules, B_k^{λ} , and

$$B_k^\lambda \qquad has \ a \ basis \qquad \{v_p \ | \ p \in \hat{B}_k^\lambda\} \qquad with \qquad m_i v_p = c(p(i)) v_p,$$

where

$$\begin{cases} c(p^{(i)}/p^{(i-1)}) + \frac{n-1}{2}, & \text{if } p^{(i)}/p^{(i-1)} = \square, \\ -c(p^{(i-1)}/p^{(i)}) - \frac{n-1}{2}, & \text{if } p^{(i-1)}/p^{(i)} = \square, \end{cases}$$

(c) $\kappa = m_k + m_{k-1} + \cdots + m_2$ is a central element of $\mathbb{C}B_k(n)$ and

$$\kappa$$
 acts on B_k^{λ} by the constant $\frac{n-1}{2} + \sum_{b \in \lambda} c(b)$.

Proof. Let κ be the Casimir element of \mathfrak{so}_n as in ???. Then

$$\kappa(v_{i_1} \otimes \cdots \otimes v_{i_k}) = -\frac{1}{4} \left(\sum_{\ell=1}^k v_{i_1} \otimes \cdots \otimes \sum_{i,j=1}^n (E_{ij} - E_{ji})^2 v_{i_\ell} \otimes \cdots \otimes v_{i_k} \right)$$

$$-\frac{1}{4} 2 \sum_{1 \leq \ell < m \leq k} \sum_{i,j=1}^n v_{i_1} \otimes \cdots \otimes (E_{ij} - E_{ji}) v_{i_\ell} \otimes \cdots \otimes (E_{ij} - E_{ji}) v_{i_m} \otimes \cdots \otimes v_{i_k}$$

$$= \left(-\frac{1}{4} \left(\sum_{\ell=1}^k 1 - n - n + 1 \right) - \frac{1}{4} 2 \cdot 2 \sum_{1 \leq \ell < m \leq k} (e_{\ell m} - s_{\ell m}) \right) (v_{i_1} \otimes \cdots \otimes v_{i_k})$$

since $(E_{ij} - E_{ji})^2 = E_{ij}^2 - E_{ij}E_{ji} - E_{ji}E_{ij} + E_{ji}^2$ and $E_{ij}^2v_{i\ell} = 0$ unless $i = j = i_\ell$. Thus, as operators on $V^{\otimes k}$,

$$\kappa = -\frac{1}{4}k(2-2n) + \sum_{1 \le \ell < m \le k} (s_{\ell m} - e_{\ell m}) = \frac{k(n-1)}{2} + \sum_{1 \le \ell < m \le k} s_{\ell m} - e_{\ell m}.$$

Since κ is a central element of $U\mathfrak{gl}_n$ and

$$V^{\otimes k} \cong \bigoplus_{\substack{\lambda \vdash k \\ \ell(\lambda) \leq n}} L(\lambda) \otimes B_k^{\lambda}$$
 as $(U\mathfrak{so}_n, \mathbb{C}B_k(n))$ bimodules,

it follows from (???) that

$$\frac{k(n-1)}{2} + \sum_{1 \le \ell < m \le k} s_{\ell m} - e_{\ell m} \quad \text{acts on } B_k^{\lambda} \text{ by } \quad (n-1)|\lambda| + \sum_{b \in \lambda} c(b).$$

The last statement follows since

$$m_1 + \dots + m_k = \frac{k(n-1)}{2} + \sum_{1 \le \ell < m \le k} s_{\ell m} - e_{\ell m},$$

for every $k \in \mathbb{Z}_{>0}$.

References

- [HR] T. Halverson and A. Ram, *Partition algebras*, European J. Combinatorics **26** (2005), 869–921.
- [Ko1] M. Kosuda, Irreducible representations of the party algebra, preprint 2004.
- [Ko2] M. Kosuda, Characterization of the party algebras Ryukyu Math. J. 13 (2003), 199–228.
- [Ta] K. Tanabe, On the centralizer algebra of the unitary reflection group G(m, p, n), Nagoya Math. J. 148 (1997), 113-126.
- [Dr1] V.G. Drinfel'd, A new realization of Yangians and quantized affine algebras, Soviet Math. Dokl. **36** No. 2 (1998), 212–216.