
Knizhnik-Zamolodchikov

Arun Ram
Department of Mathematics

University of Wisconsin
Madison, WI 53706
ram@math.wisc.edu

July 25, 2005

1 KZ connections

1.1 Connections

Let OX be a commutative C-algebra with 1. A derivation of OX is a C-linear map

∂ : OX → OX such that ∂(fg) = ∂(f)g + f∂(g),

for f, g ∈ OX . Let

I = ker
(
OX ⊗OX → OX

a⊗ a′ 7→ aa′

)
and Ω1

X = I/I2.

Then OX acts on Ω1
X by

f
( ∑

gi ⊗ hi) =
∑

fgi ⊗ hi =
∑

gi ⊗ fhi mod I2,

for f ∈ OX and
∑

gi ⊗ hi ∈ I. Let Der(OX) be the vector space of derivations of OX . Then

d : OX −→ Ω1
X

f 7−→ f ⊗ 1− 1⊗ f
and

HomOX
(Ω1

X ,OX) ∼−→ Der(OX)
ϕ 7−→ fd

areOX module homomorphisms. If Ω!
X is a reflexiveOX module then Ω1

X = HomOX
(Der(OX),OX).

Let M be a OX module. A connection on M is a C-linear map

∇ : M −→ Ω1
X ⊗OX

M such that ∇(fm) = d(f)⊗m + f∇(m),

for f ∈ OX and m ∈ M . Let ∇ be a connection on M and define

Der(OX) −→ EndC(M)
∂ 7−→ ∇∂

by ∇∂ = (∂ ⊗ idM ) ◦ ∇,

so that
∇∂ : M

∇−→Ω1
X ⊗OX

M
∂⊗idM−→ OX ⊗OX

M = M.

Then, for f, g ∈ OX , ∂, ∂1, ∂1 ∈ Der(OX) and m ∈ M ,

(a) ∇∂(fm) = ∂(f)m + f∇∂(m),

(b) ∇f∂1+g∂2(m) = f∇∂1(m) + g∇∂2(m).

If Ω1
X is a reflexive OX module then the connection ∇ is determined by the map ∂ 7→ ∇∂ with

the properties (a) and (b).
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1.2 Configuration space

The symmetric group Sk acts on Ck by permuting coordinates. Then Sk is a reflection group
and

Hεi−εj = {(z1, . . . , zk) ∈ Ck | zi − zj = 0}, 1 ≤ i < j ≤ k,

are the reflecting hyperplanes for the reflections in Sk. The configuration spaces are

Dk(C) = Ck\
( ⋃

1≤i<j≤k

Hεi−εj

)
and Ck(C) = Dk(C)/Sk.

The braid group is
Bk = π1(Ck(C)) = {braids on k strands}.

The pure braid group is

PBk = π1(Dm(C)) = {braids with ith top dot connected to the bottom ith dot},

with an exact sequence
{1} −→ PBk −→ Bk −→ Sk −→ {1}.

1.3 Knizhnik-Zamolodchikov and the classical Yang-Baxter equation

Let g be a Lie algebra and let V1, . . . , Vk be g modules. Let

r : C\{0} −→ g⊗ g

z 7−→
∑

r(1) ⊗ r(2)

and let

rij(z)(v1 ⊗ · · · vk) = v1 ⊗ · · · vj−1 ⊗ r(1)vj ⊗ vj+1 ⊗ · · · ⊗ vk−1 ⊗ r(2)vk ⊗ vk+1 ⊗ · · · ⊗ vm.

The KZ-connection (Knizhnik-Zamolodchikov connection) is

∇ =
∑

1≤i<j≤k

rij(zi − zj)(dzi − dzj),

a 1-form on Dk(C) with values in End(V1⊗ · · · ⊗Vk. Then ∇ defines a connection on the trivial
bundle over Dk(C) with fiber V1 ⊗ · · ·Vk. The connection ∇ is flat if and only if r satisfies the
classical Yang-Baxter equation:

[r12(z1 − z2), r23(z2 − z3)] + r12(z1 − z2), r13(z1 − z3)] + [r13(z1 − z3), r23(z2 − z3)] = 0.

The KZ-equations are

∂f

∂zj
=

m∑
k=1
k 6=j

rjk(zj − zk)f, for f : Dk(C) −→ V1 ⊗ · · ·Vk,

the conditions for f to be a covariant flat section of the bundle Dk(C) × (V1 ⊗ · · · ⊗ Vm) with
connection ∇. The mondromy of this connection is a representation of the pure braid group
PBk.

If V1 = V2 = · · · = Vk then Sk acts on Dk(C)× (V1 ⊗ · · · ⊗ Vk) by

w((z1, . . . , zk), v1 ⊗ · · · vk) = zw(1), . . . zw(k)), vw(1) ⊗ · · · ⊗ vw(k)),

2



and ∇ is Sk invariant. Thus ∇ defines a connection in a bundle over Ck(C) with fiber V ⊗k. The
monodromy of this connection is a representation of the braid group Bk.

If 〈, 〉 : g⊗ g → C is a nondegenerate form and

t =
∑

i

bi ⊗ b∗i ,

where {bi} is a basis of g and {b∗i } is the dual basis of with respect to 〈, 〉 then

r(z1 − z2) =
1

z1 − z2
t

satsfies the CYBE (classical Yang-Baxter equation).

1.4 Quantization and KZ

Let g be a Lie algebra over C. Let gh be a Lie algebra over C[[h]] such that gh
∼= g[[h]] as C[[h]]

modules. Let
th ∈ S2(gh)G.

There exists a quasitriangular quasiHopf algebra Agh,th over C[[h]] such that

Agh,th
∼= Û(gh), as a C[[h]] algebra.

Proof. Let
Ah = Û(gh) with RKZ = ehth/2.

Note that ∆op
h = RKZ∆hR−1

KZ by the gh invariance of th. The universal KZ equation is

∂f

∂zj
= ~

m∑
k=1
k 6=j

tjkh
zj − zk

f, j = 1, 2, . . . ,m, (KZm)

where ~ = h
2πi and f : Cm → (Ugh)⊗m. Note that

RKZ = ehth/2 is the monodromy of (KZ2).

Define
ΦKZ = g−1

1 g2 in (Ugh)⊗3 by

analytic solutions g1 : C → (Ugh)⊗3 and g2 : C → (Ugh)⊗3 of the equation

g′(x) = ~
(

t12h

x
+

t23h

x− 1

)
g(x),

so that

f(z1, z2; z3) = (z3 − z1)h(t12h +t13h +t23h )g

(
z2 − z1

z3 − z1

)
is a solution of (KZ3) (using the invariance of (KZ3) under transformations zi 7→ azi + b). Here
g1 and g2 have asymptotic behaviour

g1(x) ∼ xht12h as x → 0
g2(x) ∼ (1− x)ht23h as x → 1.
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Then (Ũg[[h]],∆,RKZ,ΦKZ) is a quasi Hopf algebra.
We want a Hopf algebra, i.e. a quasi Hopf algebra with Φh = 1 ⊗ 1 ⊗ 1. The point is that

one can twist to

(Uhg,Rh,Φh = id), where Uhg is the quantum group,

i.e. there exists F ∈ Ug[[h]]⊗ Ug[[h]] such that

∆h = F∆(a)F−1,

Φh = F12(∆⊗ id)(F)ΦKZ(id⊗∆)(F)−1F−1
23 ,

Rh = F21RKZF−1
12 .

1.5 Affine Lie algebras and KZ

Let g = n− ⊕ h⊕ n+ be a finite dimensional simple Lie algebra over C and fix a nondegenerate
symmetric ad-invariant bilinear form 〈, 〉 on g. The affine Lie algebra is the Lie algebra

ĝ = g((z))⊕ Cc

with c central and with

[f, g] = [f(z), g(z)] + res0

(〈
f(z),

dg

dz

〉)
· c,

where res0h is the coefficient of z−1 in h. Let d be the derivation of ĝ such that

[d, c] = 0 and [d, f ] = z
df

dz
.

Let V be a finite dimensional irreducible g module. The loop representation is the ĝ module

V ((z)) = V ⊗C C((z)), with c acting by 0.

A level k highest weight representation of highest weight λ is a ĝ module W with a vector w+ ∈ W
such that

(a) W = (U ĝ)w+,

(b) cw+ = κw+,

(c) zg[[z]]w+ = 0 and n+w+ = 0,

(d) hw+ = λ(h)w+, for h ∈ h.

The conformal weight of W is

hκ(λ) =
〈λ + ρ, λ + ρ〉 − 〈ρ, ρ〉

2(κ + h∨)

Let W0,W1 be highest weight representations of level κ and highest weights λ(0) and λ(1).
Let V be a simple g module of highest weight µ. An intertwining operator is a f̂g module
homomorphism

IW1,W0

V : W1 → W0 ⊗ V ((z)) and JW1,W0

V = zhκ(λ(0))+hκ(µ)−hκ(λ(1))IW1,W0

I
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is the rescaled intertwining operator. Let W0, . . . ,Wk be highest weight ĝ modules of level κ and
let V1, . . . , Vk be simple g modules. Let F = IW0,W1

V1
◦ · · · ◦ IWk−1,Wk

Vk
so that

F : Wk −→ Wk−1⊗Vk((zk)) −→ Wk−2⊗Vk−1((zk−1))⊗Vk((zk)) −→ · · · −→ W0⊗V1((z1))⊗· · ·⊗Vk((zk)).

Then define

f : Dk(C) −→ V1 ⊗ · · ·Vk by f(z1, . . . , zm) = 〈w+
0 , Fw+

k 〉.

Then f satisfies the KZ equations for

r(z1 − z2) =
1

κ + h∨
t

z1 − z2
.

1.6 Affine Lie algebras and quantum groups

Let
g̃ = g[z, z−1], a subalgebra of ĝ.

If V is a g̃ module then

V (1) ⊆ V (2) ⊆ · · · where V (N) = {v ∈ V | (zg)Nv = 0}.

The smooth vectors in V are the elements of

V (∞) =
⋃

N∈Z>0

V (N).

The category Oκ is the category of g̃ modules V such that

(a) c acts by the scalar κ− h, where h is the Coxeter number,

(b) If v ∈ V then dim((Ug)v) is finite,

(c) If v ∈ V and x ∈ zg[[z]] then xNv = 0 for N >> 0,

(d) V is a finitely generated g̃ module.

Equivalently Oκ is the category of smooth g̃ modules such that

c acts by κ− h and dim(V (1)) is finite.

Let q = e−iπκ and let Õκ be the category of finite dimensional Uqg modules of type 1 which are
U0 semisimple.

Theorem 1.1. There is an equivalence of categories

Oκ
∼= Õκ.

Let V (λ) be the irreducible finite dimensional g module of highest weight λ ∈ P+. Extend
V (λ) to a g[[z]] module by letting zg[[z]] act trivially and let c act by (κ−h). The Weyl module
is the g̃ module given by

W κ(λ) = U g̃⊗U(g[[z]]⊕Cc) V (λ).

Let
Lκ(λ) be the unique simple quotient of W κ(λ).
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