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1 Bar invariant bases

Proposition 1. Let (W,≤) be a poset such that for u, v ∈ W the interval [u, v] is finite. Let M
be the free Z[q, q−1] modules with basis {Tw | w ∈ W},

M = Z[q, q−1]-span{Tw | w ∈ W},

and let : M → M be a Z-linear involution such that

q = q−1 and Tw = Tw +
∑
v<w

awvTv,

where avw ∈ Z[q, q−1]. Then

(a) There is a unique basis {C−
w | w ∈ W} such that

Cw = Cw and C−
w = Tw +

∑
v<w

P−
vwTv with P−

vw ∈ q−1Z[q−1].

(b) There is a unique basis {C−
w | w ∈ W} such that

Cw = Cw and C+
w = Tw +

∑
v<w

P+
vwTv with P+

vw ∈ qZ[q].

Proof. (a) The p−vw are dertermined by induction:

P−
ww = 1 and P−

uw =
∑

k∈Z<0

fkq
k

where
f =

∑
k∈Z

fkq
k =

∑
u<z≤w

auzP
−
zw (= P−

uw − P−
uw).

(b) The P+
vw are dertermined by induction:

P+
ww = 1 and P+

uw =
∑

k∈Z>0

fkq
k

where
f =

∑
k∈Z

fkq
k =

∑
u<z≤w

auzP
+
zw (= P+

uw − P+
uw).
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The dual module
M∗ = HomZ[q,q−1](M, Z[q, q−1])

is given a bar involution

: M∗ → M∗ defined by 〈ϕ, m〉 = 〈ϕ, m〉

If {Tw | w ∈ W} is the dual basis to {Tw | w ∈ W} then

Tw =
∑

v

bvwT v where bvw = 〈Tw, Tv〉 = 〈Tw, Tv〉 =
〈
Tw,

∑
z≤v

azvTz

〉
so that B = At. If {Cw | w ∈ W} is the dual basis to {Cw | w ∈ W} then

Cw = Cw since 〈Cw, Cv〉 = 〈Cw, Cv〉 = 〈Cw, Cv〉 = δvw,

and

Cw =
∑

P vwT v where δvw 〈Cw, Cv〉 =
〈 ∑

u

P uwTu,
∑

z

PzvTz

〉
=

∑
u

P uwPuv

so that
(P uw) =

(
(Puv)−1

)t = (P t)−1.

2 The affine Hecke algebra

The affine Hecke algebra H̃ has Z[q, q−1] basis {Tw | w ∈ W̃},

H̃ = Z[q, q−1]-span{Tw | w ∈ W̃}

with relations

Tw1Tw2 = Tw1w2 , if `(w1w2) = `(w1) + `(w2),
TsiTw = (q − q−1)Tw + Tsiw, if `(siw) < `(w), (0 ≤ i ≤ n).

The algebra H̃ also has bases

{XλTw | w ∈ W,λ ∈ P} and {TvX
µ | v ∈ W,µ ∈ P},

where
Xλ = Ttλ , if λ ∈ P+, and Xλ = Xµ(Xν)−1,

if λ = µ− ν with µ, ν ∈ P+.
The bar involution on H̃ is the Z-linear map : H̃ → H̃ given by

q = q−1 and Tw = T−1
w−1 for w ∈ W̃ .

Define elements 10, ε0 ∈ H by

12
0 = 10, and Tsi10 = q10, for 1 ≤ i ≤ n,

ε2
0 = ε0, and Tsiε0 = q−1ε0, for 1 ≤ i ≤ n,

and let
Aµ = ε0X

µ10, for µ ∈ P .
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Proposition 2.

(a) Xλ = Tw0X
w0λT−1

w0
, for λ ∈ P ,

(b) 10 = 10 and ε0 = ε0.

(c) If z ∈ Z[P ]W then z = z.

(d) q−`(w0)Aλ+ρ = q−`(w0)Aλ+ρ.

The τ -operators are given by

τi = Ti −
q − q−1

1−X−αi
.

Then

(a) Xλτi = τiX
siλ,

(b) τ2
i =

(q − q−1Xαi)(q − q−1X−αi)
(1−Xαi)(1−X−αi)

(c) displaystyleτiτjτi · · ·︸ ︷︷ ︸
mij factors

= τjτiτj · · ·︸ ︷︷ ︸
mij factors

The shift operator is
∆ =

∏
α∈R+

(qXα/2 − q−1X−α/2).

Then

(Ti + q)∆ = (si∆)(Ti − q) and ∆C[P ]W = {h ∈ H̃ | (ti + q−1h = 0 for 1 ≤ i ≤ n}

ε0Eλ = ∆10Eλ−ρ and 〈∆f,∆g〉k = qNk〈f, g〉k+1.

The ??-trace on H̃ is the linear map τ : H̃ → C given by

tr(h) = h|1, or, more precisely, tr(Tw) = δw1.

Define an inner product on H̃ by
〈h1, h2〉 = tr(h1h2),

so that
〈Tu, Tv〉 = [Tu−1Tv]1 and 〈Tu, Tv〉 = q`(u)??δuv−1 .

The generic degrees are dλ(q) given by

tr =
∑
λ∈Ĥ

dλ(q)χλ
H .

The Kazhdan-Lusztig basis is defined by

{h ∈ H | 〈h, h#〉 ∈ 1 + q−1Z[q−1], h = h}

or by the usual bar invariance and triangularity conditions.
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3 Kazhdan-Lusztig polynomials

The Iwahori-Hecke algebra is the algebra over Z[q] given by generators Tw, w ∈ W and relations

TsiTw =

{
Tsiw, if siw > w,
qTsiw + (q − 1)Tw, if siw < w.

The bar involution on H is the Z-algebra involution given by

q = q−1 and Tw = T−1
w−1 ,

for w ∈ W . The Kazhdan-Lusztig basis of H is the basis {Cw | w ∈ W} given by

(a) Cw = Cw, and

(b) Cw = Tw +
∑

v≤w pvw(q)Tv, where pvw(q) ∈ qZ[q].

Kazhdan-Lusztig polynomials

(1) Pww(q) = 1,

(2) Pxw(q) = 0, if x 6< w,

(3) deg(Pxw(q)) ≤ 1
2(`(w)− `(x)− 1), if x 6= w.

Define
µ(x,w) = coefficient of the highest degree term in Pxw(q),

which is the term of degree 1
2(`(w)− `(x)− 1). Then, if sw < w

Pxw(q) =

{
Psx,w(q), if sx > x,

Psx,sw(q) + qPx,sw −
∑

sz<z q
1
2
(`(w)−`(z))µ(z, sw)Px,z, if sx < x.

The W -graph has

Vertices: W

Edges: x ↔ y if µ[x, y] =

{
µ(x, y), if x < y,
µ(y, x), if y < x,

Then

KL(s)xx =

{
−1, if sx < x,

1, if sx > x,

KL(s)xy =

{
µ[x, y], if sx < x, sy > y and x ↔ y,
0, otherwise,

Define a relation ≤L by taking the closure of the relation

x ≤L y if D`(x) 6⊆ D`(y) and x ↔ y is an edge.

and define
x =L y if x ≤L y and y ≤L x.
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3.1 The case of dihedral groups

In type A1,
H = span{1, T1} with T 2

1 = (q − 1)T1 + q.

So
T1 = T−1

1 = (q−1 − 1) + q−1T1, and C1 = q−
1
2 (1 + T1),

since

q−
1
2 (1 + T1) = q

1
2 (1 + T−1

1 ) = q
1
2 (1 + q−1T1 + (q−1 − 1)) = q

1
2 q−1(1 + T1) = q−

1
2 (1 + T1).

In type A2, H = span{1, T1, T2, T1T2, T2T1, T1T2T2} and

C1 = q−
1
2 (1 + T1),

C2 = q−
1
2 (1 + T2),

C1C2 = q−1(1 + T1 + T2 + T1T2) = C12,

C2C1 = q−1(1 + T1 + T2 + T2T1) = C21,

C1C21 = q−
3
2 (T1T2T1 + T1T2 + (q − 1)T1 + q + T1 + T2T1 + T1 + T2 + 1),

= q−
3
2 (T1T2T1 + T1T2 + T2T1 + T1 + T2 + 1) + C1,

so that
C121 = C1C12 − C1 = q−

3
2 (T1T2T1 + T1T2 + T2T1 + T1 + T2 + 1).

Note that C2
1 = (q

1
2 + q−

1
2 )C1. Then, using that Ti = q

1
2 Ci − 1, to produce the matrices for the

regular representation in the KL-basis,

ρ(T1) =



−1 0 0 0 0 0
q

1
2 q q

1
2 0 0 0

0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 q

1
2 q 0

0 0 q
1
2 0 0 q


and ρ(T2) =



−1 0 0 0 0 0
0 −1 0 0 0 0
0 q

1
2 q 0 0 0

q
1
2 0 0 q q

1
2 0

0 0 0 0 −1 0
0 0 0 0 q

1
2 q


with rows and columns indexed by 1, C1, C21, C2, C12, C121.

In type B2, H = span{1, T1, T2, T1T2, T2T1, T1T2T1, T2T1T2, T1T2T1T2}, and

C1C2 = C12, C2C1 = C21, C1C21 = C121+C1, C2C12 = C212+C2, C2C121 = C2121+C21.

where

C1 = q−
1
2 (1 + T1),

C2 = q−
1
2 (1 + T2),

C12 = q−1(1 + T1 + T2 + T1T2),

C21 = q−1(1 + T1 + T2 + T2T1),

C121 = q−
3
2 (1 + T1 + T2 + T1T2 + T2T1 + T1T2T1),

C212 = q−
3
2 (1 + T1 + T2 + T1T2 + T2T1 + T2T1T2),

C1212 = q−2(1 + T1 + T2 + T1T2 + T2T1 + T1T2T1 + T2T1T2 + T2T1T2T1).
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and the matrices of the regular representation in the KL-basis are

ρ(T1) =



−1 0 0 0 0 0 0 0
q

1
2 q q

1
2 0 0 0 0 0

0 0 −1 0 0 0 0 0
0 0 q

1
2 q 0 0 0 0

0 0 0 0 −1 0 0 0
0 0 0 0 q

1
2 q q

1
2 0

0 0 0 0 0 0 −1 0
0 0 0 0 0 0 q

1
2 q



ρ(T2) =



−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 q

1
2 q q

1
2 0 0 0 0

0 0 0 −1 0 0 0 0
q

1
2 0 0 0 q q

1
2 0 0

0 0 0 0 0 −1 0 0
0 0 0 q 0 q

1
2 q 0

0 0 0 q
1
2 0 0 0 q


with rows and columns indexed by 1, C1, C21, C121, C2, C12, C212, C1212.

Proposition 3. Let W be the dihedral group of order 2m. Then

Cw = q−
1
2
`(w)

( ∑
v≤w

Tv

)
, so that pvw(q) = 1, for all v ≤ w.

Proof. Let Cw be defined by the formula in the statement of the Theorem. If s1w > w so that
w = s2s1s2s1 · · · then

Cs1Cw = q−`(w)/2q−1/2

∑
v≤w

Tv +
∑

v≤s1w
s1v<v

Tv + (q − 1)
∑
v<w

s1v<v

Tv + q
∑
v<w

s2v<v

Tv


= q−`(w)/2q−1/2

 ∑
v≤s1w
s2v<v

Tv +
∑
v<w

s1v<v

Tv +
∑

v≤s1w
s1v<v

Tv −
∑
v<w

s1v<v

Tv + q
∑

v≤s2w

Tv


= Cs1v + q−`(w)/2q1/2

 ∑
v≤s2w

Tv


= Cs1w + Cs2w,

and, if s1w < w so that w = s1s2s1s2 · · · then let w′ = s1w and w′′ = s2s1w so that

Cs1Cw = Cs1Cs1w′ = Cs1

(
Cs1Cw′ − Cs2w′

)
= Cs1

(
Cs1Cw′ − Cw′′

)
= (q1/2 + q−1/2)Cs1Cw′ − Cs1Cw′′

= (q1/2 + q−1/2)Cs1Cw′ − (q1/2 + q−1/2)Cw′′ , by induction,

= (q1/2 + q−1/2)(Cs1Cw′ − Cw′′) = (q1/2 + q−1/2)Cw.
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So,

Cs1Cw =

{
Cs1w + Cs2w, if s1w > w, i.e. w = s2s1s2s1 · · · ,
(q

1
2 + q−

1
2 )Cw, if s1w < w, i.e. w = s1s2s1s2 · · · .

(3.1)

In the first case, `(s2w) < `(w) and so, by induction, Cs1w = Cs1Cw −Cs2w is bar invariant.

From equation (???)

T1Cw =

{
qCw, if s1w < w, i.e. w = s1s2s1s2 · · · ,
q

1
2 Cs1w − Cw + q

1
2 Cs2w, if s1w > w, i.e. w = s2s1s2s1 · · · .

For example, in the case I2(5),

C2C1 = C21, C1C21 = C121 + C1, C2C121 = C2121 + C21, C1C2121 = C12121 + C121,
C1C2 = C12, C2C12 = C212 + C2, C1C212 = C1212 + C12, C2C1212 = C21212 + C212,

and the matrices of the regular representation in the KL-basis are

ρ(T1) =



−1 0 0 0 0 0 0 0 0 0
q

1
2 q q

1
2 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0
0 0 q

1
2 q q

1
2 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 q

1
2 q q

1
2 0 0

0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 q

1
2 q 0

0 0 0 0 q
1
2 0 0 0 0 q



ρ(T2) =



−1 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0
0 q

1
2 q q

1
2 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0
0 0 0 q

1
2 q 0 0 0 0 0

q
1
2 0 0 0 0 q q

1
2 0 0 0

0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 q

1
2 q q

1
2 0

0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 q

1
2 q
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